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1. INTRODUCTION 

A one-hour lecture on RF linear accelerators (linacs) coupled with a six-hours course (with a smaller 
group) was proposed to the CAS students. The aim of the lecture was to give to the students an 
introduction to RF specifies and beam dynamics allowing to get a basic understanding of linacs. The 
course was dedicated to the high power light ions linacs (protons, H- or Deuterons) considered in a lot 
of different projects at that time. This paper deals with the notions introduced in the lecture. Student 
wanting to learn more about linacs are advised to read books such as [1] and [2]. 

After a short introduction on applications of RF linacs and their advantages/drawbacks versus 
circular accelerators, this paper is divided in two parts: 

• The first part introduces the RF cavity through its basic principle, the notion of RF modes, 
and the way they are excited either from the RF source or by the beam. 

• The second part gives useful notions of beam dynamics: The transit time factor, the notion of 
synchronism, the particle motion in continuous non linear forces (longitudinal dynamics) and 
periodic linear forces (transverse dynamics). The notion of beam rms properties and the 
matching in the linac is discussed. The effect of non-linear forces on emittance growth is 
introduced. 

2. WHY RF LINACS 

The goal of a particle accelerator is to obtain a required beam within the lowest cost. By required, one 
means a given particle type, with a given intensity, at a given energy within a given emittance (or 
brightness) in a given time structure. In the cost, the construction as well as the operation costs should 
be included (including the staff). 

Three main competitors fulfilling this goal are: Synchrotrons, cyclotrons and RF linear 
accelerators (linacs)1. 

The main advantages of linacs are: 

- they can handle high current beams (they are not, or less limited by tune shift), 

- they can run in high duty-cycle (the beam passes only once at each position), 

- they exhibit low synchrotron radiation losses (no dipoles). 

The main drawbacks are: 

- they require a large number of cavities and need a lot of space, 

- the synchrotron radiation damping of light particles (electrons/positrons) cannot be easily 
used to reduce the beam emittance. 

 

 
                                                      
1 We should not forget electrostatic machines, suitable for low current, low energy beams. 
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Linacs are therefore mainly used for: 

- low energy injectors (where the space-charge force is more important and the duty-cycle is 
high),  

- high intensity/power proton beams (high space-charge level or/and duty cycle), 

- new lepton colliders projects at very high energy (no radiation losses). 

3. THE RF CAVITIES 

The role of a RF cavity is to give energy to the beam. As the RF cost represents usually the major part 
of the linac costs (except the building), the choice of the RF structure has to be studied very carefully. 
In this lecture, only the principle of a RF cavity is presented. More detailed information can be found 
in the CAS sections dedicated to RF [3]. 

3.1 A standing wave RF cavity 

3.1.1 Field calculation 

A RF cavity is simply a piece of conductor enclosing an empty volume (generally vacuum). Solutions 
of Maxwell's equations in this volume, taking into account the boundary conditions on the conductor, 
allow the existence of electromagnetic fields configurations in the cavity: the resonant modes. 

Each mode, labelled n, is characterized by an electromagnetic field amplitude configuration 
( )rEn / ( )rBn  oscillating at a RF frequency fn. The electric field amplitude configuration is solution of 

the equation: 
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( )rEn  should satisfy the imposed boundary conditions, and 

nn f⋅= πω 2  is the mode pulsation. 

The electric field in the cavity is a weighted sum of all the modes: 
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an is a complex number, 

en(t) is the field variation with time, it is solution of [4]: 
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 H  is the magnetic induction. It is often used close to the surface in place of B  as it is 
macroscopically continuous through the surface (and not B ). 
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 is the current density, of the beam for example. J

 The first term on the right hand side of Eq. (3) is an integration over the conductor which is 
not a perfect conductor. Due to power losses by Joule effects, it can be rewritten as a 
damping term: 
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The calculation of Q0n, the quality factor of the mode, can be deduced from power losses 
considerations: 

Un(0) is the energy stored by the n-mode at time t=0. For t > 0, no additional power is injected 
in the cavity. Let's define k(t) as : 
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The energy lost per unit time is the power dissipated in the conductor Pn:  
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The average power dissipated in the conductor per cycle is proportional to the square of the 
current density (and thus the magnetic field) close to the surface: 
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Rs is the surface resistance defined as: 
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 σ is the conductor conductivity (1/σ = 1.7⋅10-7 Ω.m for copper). 
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 Rres is the residual resistance (10-9-10-8
 Ω) depending on the surface imperfections, 

 T is the working absolute temperature, 

 Tc = 9.2 K is the critical temperature. 

From equations (5) and (7) can be deduced: 
( ) ( ) ( )02 =⋅= tPtktP nn , (10) 

The stored energy is proportional to the squared of the field: 
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then: 
( ) ( ) ( )02 =⋅= tUtktU nn . (12) 

Equation (6) becomes: 
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A comparison with the damping term written in (4) gives: 
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 In the second term of Eq. (3), the integration is performed over the open surfaces S' and 
represents the coupling with outside system. This coupling can be divided in 2 
contributions: 

a) the injected power coming from the power generator through the coupler, 

b) an additional damping, which can be represented by an other quality factor Qexn known as the 
external Q, corresponding to power losses through the opened surfaces. The coupling can be 
calculated from the coupler geometry with electromagnetic codes. 
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( 0ϕ+⋅ tj

n
RFeS ω )  is the RF source filling through the coupler. 

 The last term of Eq. (3), represents the field excited by the beam, known as the beam 
loading. It is proportional to the beam intensity:  
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( )tI  is a complex number (it has a phase) representing the beam current. 

Equation (3) can then be modelised by: 
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which is the equation of a damped harmonic oscillator in a forced regime. 

Qn  is the quality factor of the cavity, with 
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τ ⋅= 2  is the cavity filling time. 
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One notes that both the coupler and the beam can excite some RF modes. 

Equation (18) is this of an RLC circuit which is often used to modelise the system. A complete 
study of this model, out of the scope of this lecture, can be found in ref. [4]. 

Among all these modes, one specific mode, having a field amplitude along longitudinal 
direction on axis, is used to accelerate the beam. The geometry of the cavity is then calculated to 
match the frequency of this accelerating mode to the RF frequency. This mode is excited in the cavity 
through a power coupler whose geometry is calculated and adjusted to transfer electromagnetic energy 
in the cavity to the beam without reflection (this procedure is called the coupler matching). 

3.1.2 Shunt impedances 

To first order, one considers that only the accelerating mode is excited in the cavity. The transverse 
component of the electric field is generally zero on the axis. An expression of the z-component of the 
field on the axis is then: 

 
( ) ( ) ( )ϕ+⋅= tsEtsE zz ωcos, 0 . (19) 

Ez0(s) is the field amplitude. 

One defines the cavity voltage V0 as:  
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Actually, q⋅V0 represents the maximum energy (in eV) a particle with charge q could gain if the field 
was always maximum. 

Let Pd be the power deposition in the cavity: 
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R is known as the cavity shunt impedance and is very useful in cavity design. For an optimum 
acceleration, it has to be the highest as possible. 

Generally, because the electric field is changing with time as the particle transits through the 
cavity, the maximum energy, q⋅V,  that can be gained in the cavity by a particle of charge q is lower 
than q⋅V0. One defines the transit time factor T as: 

 

0V
VT = ≤ 1. (22) 

It is a corrective factor on the energy gain taking into account the particle transit time in the 
cavity. It is obviously depending on the particle velocity. A way to calculate it is described in the 
beam dynamics paragraph. 

 

The effective shunt impedance RT2 is then proportional to the ratio between the square of the 
maximum energy ΔUmax that can be gained by the beam and the power lost in the cavity: 
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It is some sort of cavity efficiency and has to be maximum. 

The shunt impedance is often used to compare the efficiency of different structure at a given 
energy. More generally, when the geometry of the structures is different, one extends the preceding 
definition per unit length to allow for a better comparison. 

Let L be the cavity length2. The mean cavity electric field E0 is defined as: 
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The power deposition per unit length in the cavity P'd  is then: 
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Z is the cavity shunt impedance per unit length. 

 

The effective shunt impedance per unit length ZT2 is then proportional to the ratio between the 
square of the maximum energy ΔU'max that can be gained per unit length by the beam and the power 
lost per unit length in the cavity: 
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As it is depending on the particle velocity, one chooses the structure that maximizes ZT2 at a 
given energy. Figure 1 represents the evolution of the effective shunt impedance per meter for 2 
different structures (SDTL and CCL) with different apertures φ. The higher the aperture (space 
available for the beam) the lower is the effective shunt impedance. SDTL structures are more efficient 
at lower energy and CCL structures are more efficient at higher energy. The optimum transition 
energy is around 100 MeV for protons. 

 

                                                      
2 Due to the cavity fringe field L is often arbitrary defined as the physical length of the cavity. 
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375 MeV85 MeV45 MeV19 MeV 234 MeV  
Figure 1 : Effective shunt impedance per meter of different structures 

3.2 A travelling wave RF cavity 

A travelling wave cavity of cavity is generally used to accelerate ultra-relativistic particles. These 
cavities have generally two power ports. One from which the power enters, the other, at the other end, 
to which the power exits (Figure 2). The electric field travels through the cavity from the input to the 
output port. Its phase velocity is adjusted to the beam velocity. The field phase is adjusted to 
continuously accelerate the beam. 

 

 
Figure 2 : A travelling wave cavity 

The RF phase velocity in empty cavities or wave-guides is usually higher (or equal) than the 
speed of light in vacuum c. As particle velocity cannot excess c, the RF phase velocity should be 
slowed-down to reach the synchronism condition. This can be done by introducing some periodic 
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obstacles into the guide (e.g. an iris-loaded waveguide). The periodic field can then be expanded in a 
Fourier series, with different wave numbers: 
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ezn are the space harmonic amplitudes,  
kn are the space harmonic wave numbers, 
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  d is the obstacle period, and 
  k0 is the guide wave number. 

The phase velocity vn of space-harmonic number n is: 

 

n
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Particle whose velocity is close to the phase velocity of one space harmonic exchanges energy 
with it. Otherwise, the average effect is null. 

A complete calculation of these insertion obstacles as well as a large bibliography can be found 
in ref. [5]. This kind a travelling wave accelerating structure is mainly used to accelerate ultra 
relativistic electrons. 

Moreover, this model of a travelling wave acceleration is often used to simplify the calculation 
of the longitudinal motion equations (even for acceleration with standing wave cavities). 

4. ELEMENTS OF BEAM DYNAMICS 

4.1 The transit time factor and the particle synchronous phase 

A cavity has a finite length L. s0 is the cavity input abscissa. Ez(s) is the amplitude of the electric field 
longitudinal component on axis. 

The energy3 gained by a charged particle on axis in the cavity is: 
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  q is the particle charge, 

  φ(s) is the cavity RF phase when the particle is at abscissa s. It is defined as: 
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φ0 = φ(s0)  is the RF phase when the particle enters the cavity. 
                                                      
3 This is actually the longitudinal energy, but we can consider that there is no transverse field on cavity axis. 
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Writing φ(s) = φ(s) + (φs − φs), φs being an arbitrary phase and using trigonometric relationships, 
one gets for the energy gain: 
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By defining φs such as: , ( ) ( )( ) 0sin
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Giving the definition of the synchronous phase φs: 
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one finally gets: 
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with: 
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T is known as the transit time factor. It depends on the particle initial velocity as well as on the 
field amplitude. It can be noticed that this definition does not make any assumption on the field shape 
(no symmetry) resulting from a slightly different synchronous phase definition which can be found in 
literature (which is often taken as the RF phase when the particle reaches the mid-cavity). When the 
velocity gain in the cavity is much lower than the input particle velocity, T depends only on the 
velocity and can be easily tabulated. 

The calculation of T with formula (35) is sometimes difficult to do as φs has to be known. In 
fact, T does not depend on φs when the velocity gain is small and an other formula (a little bit more 
difficult to understand physically) can be used:  
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4.2 Notion of Synchronism 

A linac is designed such that a theoretical particle, called the synchronous particle, enters successively 
on axis the RF cavities with a predefined RF phase in order to get a required energy gain. This very 
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important notion of synchronism allows understanding the efficiency as well as the stability of the 
linacs. 

Particles can be accelerated with travelling waves as well as standing waves structures. 

4.2.1 Acceleration with travelling waves 

βz⋅cSynchronous
particle

ω
k

 

Figure 3: Particle accelerated by a travelling wave 

The on-axis RF accelerating field can be written as: 

 
( )kztEtzEz −⋅= ωcos),( 0 , (37) 

ω is the RF pulsation, 

k is the RF wave number. 

The synchronism condition is reached when the particle longitudinal velocity equals the RF 
phase velocity: 

ω
β kcz = . (38) 

  c is the speed of light in vacuum,  

βz is the reduced longitudinal velocity of the synchronous particle. It can be noticed that when 
the paraxial approximation4 is used, βz is replaced by β, the reduced total speed of the particle. 

4.2.2 Standing waves 

In most linacs, the beam is accelerated with RF cavities or gaps operating in standing wave conditions. 
A RF power, produced by one or many RF sources, is introduced through a coupler in a resonant 
cavity exciting the wanted standing wave accelerating mode. The cavity shape has been calculated and 
adjusted to match the accelerating mode to the power-supply frequencies and to throw the other modes 
frequencies far from the RF one. 

                                                      
4 as 221 yxz ′+′+⋅= ββ , paraxial approximation occurs when x' << 1 and y' << 1. 
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As a first step, let's assume a set of thin independently phased RF cavities along the beam path 
(Figure 4). 

 

φsi φsi+1 φsi-1 

Di Di-1 

φi φi+1 φi-1 

βsi-1 

Cavity number i-1 i i+1 

Synchronous phase 

Particle velocity 

RF phase 

Distances 

βsi 

Figure 4 : A set of independently phased cavity 

φi is the absolute RF phase in the ith cavity when t=0 (t=0 has been arbitrarily defined), 

βsi is the synchronous particle reduced velocity at the ith cavity output, 

φsi is the RF synchronous phase of the ith cavity of the synchronous particle5, 

Di is the distance between the ith and the i+1th cavities. 

The synchronism condition is reached when: 
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f
c

=λ  is the RF wavelength. 

One observes that the synchronism condition does not depend on the RF field amplitude. It has 
a non intuitive consequence : an increase of the accelerating field amplitude in the cavities without 
phase change does not induce an increase of the synchronous particle final energy but a change of the 
synchronous phase fulfilling the synchronism condition. 

Two different kinds of structures exist: 

• The coupled cavity structures where the phase between cavities is fixed. The synchronism 
condition is achieved by adjusting the distance between the cavities. 

In a Drift Tube Linac (DTL), for example, the phase difference between the cells is fixed (=2π). 
The distance between cells is then calculated to have: 
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• The independent cavity structures where the distance between cavities is fixed. The 
synchronism condition is then achieved by adjusting the phase difference between the cavities. 

 

                                                      
5 Don't confuse the synchronous-particle phase, which is the phase of the synchronous particle in a cavity and a 
particle synchronous-phase which is the synchronous phase of a particle (whatever it is) in a cavity. 

63



   

  

In a Superconducting Cavity Linac (SCL), for example, the distance between cavities is fixed 
by the cryogenics mechanics. The phase difference between cavities is then calculated to have: 
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4.3 Particle motion in electromagnetic fields 

4.3.1 Basis 

Electromagnetic field can be divided in 2 contributions: 

• The electric field: E , 

• The magnetic field: B . 

The intensity of these contributions depends on the referential where they are expressed. 

The motion equation of a particle of charge q in these fields is: 
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dt
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  p  is the momentum of the particle, v  is its velocity. 

Lets call s the abscissa of the beam in the linac path (rather than z to avoid any confusion with 
the particle longitudinal position in the bunch), the motion equation can be rewritten: 
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  vz is the particle longitudinal velocity. 

A projection on Cartesian axis6 (x, y, z) gives: 
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6 In general, x and y play the same role in a linac (in contrary of in circular accelerator). 
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c
vw

w =β , the reduced velocity w-component, w being x, y or z, vw being the particle velocity w 

component, 

m and q are respectively the rest mass and the charge of the particle, 

c is the speed of light. 

One clearly observes that longitudinal and transverse motions are coupled. However, for an 
easier understanding, and because the coupling is often very weak, the longitudinal and the transverse 
motions are usually treated as uncoupled, the longitudinal velocity vz variations being considered 
apart. To uncouple the transverse and longitudinal motions, the paraxial approximation has to be 
done. 

4.3.2 Paraxial approximation 

The paraxial approximation consists in assuming that . 122 <<′+′ yx

Its natural consequence is : 

 
βββ ≈′+′+⋅= 221 yxz . (45) 

For x' < 100 mrad and y' < 100 mrad, the error on β (or βz) is lower than 1%!!! 

This approximation is very good at high energy where the beam divergence is small, but is more 
difficult to justify at very low energy! 

4.3.3 Energy gain calculation 

From Eqs. (44), one can easily obtain the energy gain: 
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giving : 
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One finds the well-known result that the only electric field contributes to energy gain. 

4.4 Longitudinal particle dynamics (motion in non linear force) 

4.4.1 The longitudinal variables 

The variables generally used to describe the longitudinal particle motion, as a function of s, are: 

φ, the absolute particle phase, calculated from the RF frequency, with φ = 0 arbitrary chosen. 

W, the particle kinetic energy7. 

 

 

                                                      
7 This is really a “longitudinal” particle property only in paraxial approximation !!  
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The evolution of these variables with s is given by the equations: 
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Applying these equations to the synchronous particle, one gets: 
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Let us define the reduced phase and energy variables for each particle:  
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Late particles have a positive ϕ. 

The motion equations with these new variables become: 
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When the beam is accelerated by a standing wave cavity structure, a synchronous particle enters 
successive cavities receiving a strong energy gain, separated by long drift spaces where no 
acceleration occurs. In order to ease the understanding of the physics, this periodic acceleration 
scheme can be replaced by a continuous acceleration one. This scheme consists in assuming that the 
beam is accelerated by a travelling wave propagating at the same speed than that of the synchronous 
particle. This scheme allows a mathematical resolution of the dynamics equations8 with the electric 
field that does not depend on s. 

4.4.2 The electric field model 

The electric field, which is generally a function of s, is then chosen constant. The field amplitude of 
the travelling wave is E0T (mean electric field) on axis. E0 is defined as the potential gain of one 

                                                      
8 Equations are smoothed for analytic solutions, then quantified for a numerical solution! 
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cavity V0 divided by the distance between the centres of consecutive cavities. The transit time factor T 
has been included to take into account the variable efficiency of the acceleration in standing wave 
cavities with the particle velocity. 

The on-axis electric field longitudinal component becomes: 

 
( ) ( )00 cos0,, sz TErsE φ+ϕ⋅==ϕ , (52) 

φs0 being the RF synchronous phase of the synchronous particle. 
 

The energy gain per meter of the synchronous particle is then: 

 
00 cos ssTqEG φ⋅= . (53) 

 
Ts is the transit time factor of the synchronous particle. 
 

Let’s assume an axisymmetric accelerating field, the off-axis electric field longitudinal 
component can be written : 

 
( ) ( )00 cos)(,, sz rRTErsE φφ +ϕ⋅⋅= , (54) 

r being the radial position of the particle, 

R(r) is expressing the radial evolution of the electric field longitudinal component. It can 
usually be written as ( )21)( rOrR += . Close to the axis, Bessel function, solution of the Maxwell 
equations in axisymmetric geometry in vacuum, can be used to expressed R(r) [2][6], but far from the 
axis, the cavity geometry has a strong influence through the boundary conditions. The radial position 
(r) can be replaced by (x,y) if the cavity is not axisymmetric. Some authors include the variation of the 
field with r in the transit time factor: T(r) 

From the relationship  and remarking that the electric field transverse component is 
zero on axis, one gets the electric field transverse component: 

0=⋅∇ E

 

( ) ( )

( ) ( ) drrrR
TE

r

drr
s

rsE
r

rsE

r

s
s

r
z

r

⋅⋅⋅+ϕ⋅⋅−=

⋅⋅
∂

ϕ∂
⋅−=ϕ

∫

∫

0
0

0

0

sin1

,,1,,

φ
λβ

 (55) 

 

The electric field radial component can be written: 

 

( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ +⋅+ϕ⋅−=ϕ 3

0
0

2
sin,, rOrTE

rsE s
s

r φ
λβ

. (56) 

 

Three assumptions should be done to decouple the longitudinal motion from the transverse one: 

• In general, we can assume: ( ) λβ srOr
<<+ 3

2
. As (x’, y’) << 1, and the contribution of the 

transverse electric field to the energy gain can be usually neglected in equation (51):  
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zszyx EEEyEx −<<′+′ . (57) 
 
• Generally, the paraxial assumption holds, and we consider: 
•  

122 <<′+′ yx . (58) 
 
• Finally, we can assume that the longitudinal field does not depend on the radial position r, by 

taking: 
•  

( ) 1≈rR . (59) 

4.4.3 The equations of motion 

Using these assumptions, Eqs. (51) become: 

 

( ) ( )

( )( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

ϕ⋅+ϕ−⋅⋅⋅−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

ϕ

.sinsincos1cos

,112

000 ss

s

TEq
ds
dw

ssds
d

φφ

ββλ
π

 (60) 

 

which is in fact the equation of motion for on-axis particles. 

 

Moreover, a small longitudinal velocity dispersion assumption can be done: 

 

ss β
δβ

ββ
111 1 <<=− − , (61) 

and a first order development around the synchronous velocity gives: 
( ) 23

1

mc
w

ss ⋅
−=−

γβ
δβ . 

If one considers that the transit-time factor does not depends on the beam particles energy: 

 
( ) sTwT = , (62) 

Equations (60) become: 

 

( )

( )( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

ϕ∂

∂
−=ϕ⋅+ϕ−⋅⋅⋅−=

∂

∂
=

⋅⋅
⋅−=

ϕ

w
sss

w

ss

H
TEq

ds
dw

w
H

mc
w

ds
d

φ

φ

φφ

λγβ
π

sinsincos1cos

2

000

23

 (63) 

As ϕ and w are canonical variables with the independent variable s, a Hamiltonian Hϕw has been 
used to describe the particle motion: 

( )
( ) ( ) ( )( )ϕ−ϕ⋅+−ϕ⋅⋅⋅⋅−⋅

⋅⋅
−=ϕ sincos1cossin

2
2

000

2

23 sss
ss

w rRTEqw
mc

H φφ
λγβ

π . (64) 
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In the phase space (ϕ, w), particles are following curves for which: Hφw = Cst. They are 
represented on Figure 5 for on-axis particle. On Figure 5.a), βsγs = Cst, whereas on Figure 5.b), an 
adiabatic acceleration (βsγs ≠ Cst) is added and the bucket turns into the well-known golf club shape. 

 

ϕ

w

 ϕ

w

 

(1) 

(2) 

a) b) 

Figure 5 : Particle trajectories in longitudinal phase-space 

a) βsγs = Cst, 
 
b) Adiabatic acceleration : the golf club represents the input acceptance (in red, (1)). In 

blue (2) are the trajectories of 2 particles. They exhibit the damping of the phase 
oscillation amplitude with acceleration.  

 

A particle entering the cavity later than the synchronous particle gets a larger energy gain. A 
particle entering the cavity in advance (called the early particle) gets a smaller energy gain. 
 

Figure 6 : Energy gain - Synchronous particle 

ϕ+φs0 

Synchronous particle 

βs 

φs0 

q⋅E0T 

Late particle 

Early Particle 

φ1 φ2
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The synchronous phase of the synchronous particle is a stable point situated between –π/2 and 
09. 

The choice of the synchronous phase delimits a phase acceptance: 
• The higher limit φ1 is the phase for which a late particle gets the same energy gain as the 

synchronous particle: 
•  

01 sφφ −=  ⇒ 01 2 sφ⋅−=ϕ  (65) 
 

• At the lower limit φ2, the confinement potential equals the potential at the higher limit (φ1). 
As the potential is the integral of the force, φ2 is the phase for which the horizontally 
hatched surface (on Figure 6) equals the vertically hatched one. It can be calculated from 
the Hamiltonian given in Eq. (64): 

•  
( ) ( )0,0, 0102 =−=ϕ==−=ϕ ϕϕ wHwH swsw φφφφ .  (66) 

 
φ2 is solution of : 
 

( ) ( ) 0cossincossin 000022 =−+− ssss φφφφφφ . (67) 
 

• The choice of the synchronous phase determines also the energy acceptance ΔE 
corresponding to the difference between the potential energy of a particle with a phase φ1 
and the synchronous particle. It can be also calculated from the Hamiltonian given in 
Eq.(64): 

•  
( ) ( )0,,0 01 =−=ϕ=Δ==ϕ ϕϕ wHEwH sww φφ . (68) 

giving: 
 

( )0000 sincos2 sssTqEE φφφ −⋅=Δ . (69) 
 

( ) ( )
2
1

0000

23

sincos2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅⋅

⋅⋅
=Δ sss

ss TqE
mc

E φφφ
π

λγβ
. (70) 

 

The acceptance area in the phase-energy space is called the bucket, its limit is called the 
separatrix. The energy acceptance ΔE and the phase φ2 are represented as a function of the 
synchronous phase on Figure 7. 

 

                                                      
9 For positively charged particle, as for negative charged one it depends on convention (is qE0>0 or E0>0 ?). 
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Figure 7 : Bucket dimensions as a function of the synchronous phase 

 

For small phase amplitude oscillations, equations (63) becomes: 

 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

ϕ⋅⋅⋅=

⋅⋅
⋅−=

ϕ

00

23

sin

2

ss

ss

TEq
ds
dw

mc
w

ds
d

φ

λγβ
π

 (71) 

 
giving the second order differential equation of phase evolution: 
 

02 2
2

2

=ϕ⋅+
ϕ

⋅+
ϕ

zk
ds
d

ds
d

ς
 (72) 

with: 

• 
( )

( ) λγβ
φπ

⋅⋅

−⋅⋅
=

23
002 sin2

mc
TEq

k
ss

ss
z . (73) 

 
kz is the phase advance per meter of the beam core. In periodic structures of period L, 

Lk zz =σ  is the longitudinal core phase advance per lattice. 
 

• ( ) dsd ss

ss

γβ
γβ

ς ⋅=
3
2 . (74) 

ς  is the damping length of the core oscillations. 
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Both ς and the variation of kz with βsγs contribute to phase oscillation damping with 
acceleration. The adiabatic damping of the phase amplitude oscillation ϕa, defined when the 
contribution of ς is negligible, can be calculated [6]: 

 
( ) 4/3−∝ϕ ssa γβ . (75) 

Liouville theorem implies that the energy amplitude oscillation wa variation is: 

 
( ) 4/3

ssaw γβ∝ . 

The Hamiltonian in linear force becomes then: 

 

( ) 2
sin

2
2 2

00

2

23
ϕφ

λγβ
π

⋅⋅⋅+⋅
⋅⋅

−=ϕ ss
ss

w TEqw
mc

H  (76) 

 
The curves for which the Hamiltonian is constant are then ellipses. 

4.5 Motion in linear force 

We have seen that the longitudinal particle motion is basically non linear, but it can be linearised when 
the particle phase oscillation amplitude is very small compared to φ1. The transverse forces are much 
more linear than the longitudinal one, and the use of linear focusing force is very close to the reality, 
and can be solved analytically. 

4.5.1 Linear transverse forces 

In linacs, the main elements used to transport a beam are the cavities and the quadrupoles. These both 
elements induce transverse forces. 

Quadrupoles 

In perfect thick lens quadrupole the magnetic field is: 

 

⎩
⎨
⎧

⋅=
⋅=
xGB
yGB

y

x  (77) 

 
  G is the quadrupole gradient (in T/m). 

With the paraxial approximation and because magnetic field does not change the particle 
energy, the equations of transverse dynamics in quadrupole are then: 
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 (78) 
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The transverse perfect quadrupole force is linear. 

Actually, fringe field and non-perfect hyperbolic poles induce non linear effects which can be 
generally neglected at first order in linacs. 

RF gap 

When a particle travels through a cavity, the integration of the effect of the radial electric field 
and the azimuthal magnetic field can be modelised by a transverse kick, which is linear at second 
order. This kick modifies the particle transverse momentum: 

 

( ) ( )( ) ( ) rrrOr
mc

TLqE
zz

z

r ′Δ⋅+′⋅Δ=+⋅⋅−=Δ γβγβφ
λγβ

π
γβ 3

22

0 sin . (79) 

With 222
yxr βββ += . 

The term in r’ shows that the particle transverse oscillation is damped by acceleration in 
accelerating cavities. 

4.5.2 Motion of particle in periodic linear force 

At first order, the motion of particle can be linearised and the motion along all directions can be 
decoupled. The motion equation in w direction (w being x, y or ϕ) is solution of a second order 
equation: 

 

( ) 02

2

=⋅+⋅⋅+ wsk
ds
dw

ds
dA

ds
wd

w
z

z

w γβ
γβ

. (80) 

Aw being a constant equal to 1 for w = x or y and 3 for w = ϕ. 

 

Now, lets consider that the focusing force is periodic with period S, i.e.: . ( ) (skSsk xx =+ )
Generally, the damping term given by the acceleration is very small and can be considered as a 

perturbation: 

 

( )
Sw

S

z

z

w wsk
ds
dw

ds
dA

⋅<<⋅⋅
γβ

γβ
, (81) 

Sa  giving the average value of quantity a over one lattice period. 

In this assumption, the solution of equation (80) is: 

 
( ) ( ) ( ) ( )( )00cos sssIssw wwzwwm ψψγββ +−⋅⋅= , (82) 

with βwm periodic ( ( ) ( )sSs wmwm ββ =+ ), known as the structure beta function, solution of: 

 

( )
⎟
⎟

⎠

⎞

⎜
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⎝

⎛
⎟
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⎞
⎜
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4
1122

dt
d

sk
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d wm

wm
wmw

wm β
β

β
β

. (83) 

zwI γβ , known as the Courant-Snyder invariant (which is actually invariant with no 
acceleration), 
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and ψw the particle phase advance, defined as: 

 

 ( ) ( )∫=
s

s wm
w s

dss
0

β
ψ . (84) 

Particles are turning around periodic ellipses whose equations are: 

 
( ) ( ) ( ) zwwmwmwm Iwswwsws γββαγ =′⋅+′⋅⋅⋅+⋅ 22 2 , (85) 

 

with:  ( ) ( )
ds

sd
s wm

wm
β

α
2
1

−= , (86) 

 

and:  ( ) ( )( )
( )s

s
s

wm

wm
wm β

α
γ

21 +
= . (87) 

 

The surface of the ellipses is decreasing as zγβ1 which is close to γβ1  with the paraxial 
approximation. 

The phase advance per lattice σw defined as: 

 
( ) ( )sSs www ψψσ −+= , (88) 

 

gives an idea of how fast the particles are turning around the ellipses. The number 
wσ
π2  is the number 

of lattice periods after which the particle has made one turn around the ellipses. One can notice that, in 
linear forces, the phase advance per lattice is the same whatever the particle amplitude. 
 

As an example, let have a look on a particle motion along one direction in a FODO channel. On 
Figure 8, 5 FODO lattices have been represented.  

 

The particle phase advance per lattice is 360°/5=72°. The particle position in 2D phase-space is 
represented by the red point in 4 different positions in the lattice. Each line correspond to one position: 

 

1rst line: middle of focusing quadrupole, 

2nd line: between focusing and defocusing quadrupoles, 

3rd line: middle of defocusing quadrupole, 

4th line: between defocusing and focusing quadrupoles. 

One observes that lattice after lattice, at the same position, the particle turns around an ellipse. 
The ellipse is different from position to position within the lattice. Its equation is given by (85). This is 
very important to figure out that these ellipses have nothing to do with the beam (no beam have been 
defined here, but just one particle). These ellipses are defined by the transport channel only. 
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Figure 8 : Particle transport in a FODO channel 

As a conclusion, we should keep in mind that a large number of assumptions have been done to 
 in practical cases. 

namics. 

4.6 Beam RMS dimension and Twiss parameters 

A bunch is constituted of N particles. Its dimensions can be are defined statistically as followed: 

 

get that results. The opportunity of each assumption has to be studied very carefully
Nevertheless, the results presented here give a good understanding of the beam dy

• The beam centre of gravity position: ∑
=

• The beam centre of gravity slope:

=
Ni

iw
N

w
,1

1 , (89) 

∑
=

′=′
Ni

iw
N

w
,1

1 , (90) 

 
 

• The beam RMS size: ( ) ( )∑
=

−=−=
Ni

i ww
N

www
,1

22 1~ , (91) 

• The beam RMS divergence: ( ) ( )∑
=

′−′=′−′=′
Ni

i ww
N

www
,1

22 1~ , (92) 
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w
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• The beam RMS emittance: ( ) ( ) 222 ~~~ wwwwwww ′−′⋅−−′=ε . (93) 

 
The beam Twiss parameters are then deduced from the beam rms dimensions: 
 

,  
( ) ( )

w
w

wwww

ε
α ~
~ ′−′⋅−

−= . 
w

w
w
ε

β ~
~~ 2

= ,  
w

w
w
ε

γ ~
~~

2′
= (94)  

 
Generally, at least 90% of the bunch particles occupy an ellipse of equation10: 
 

wwww wwww εβαγ ~5~~2~ 22 ⋅=′⋅+′⋅⋅⋅+⋅ . (95) 

 

The parameter w can be x, y, z or ϕ. On Figure 9 is represented the phase-space 2D projections 
of a beam with ~100,000 particles. Ellipses in red correspond to ellipses calculated with equation (95). 
They contain, in this example, 92% of the particles. 

 

 
Figure 9 : Phase-space beam distribution and Twiss parameters 

4.7 Matched/Mismatched beam 

A beam is matched when its Twiss parameters at a given position s correspond to the transport channel 
periodic Courant-Snyder parameters. In this condition, the same beam phase-space shape is 
reproduced period after period. The envelope evolution with s is periodic and the smoothest as 
possible. On Figure 10 has been represented the evolution of beams in the same FODO channel as 
                                                      
10 If the bunch was uniform, 100% of the particles would occupy this ellipse. 
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before (upper line). In the middle line are represented the ellipses represented the beams in the phase-
space at the focusing quadrupole centre. The dashed black circle represents a particle motion in this 
channel. One matched (in continuous red) and two mismatched (in dashed pink and dotted blue) 
beams have been represented. One particle of each beams have also been represented. 

The matched beam ellipse is periodic, as one particle is replaced by an other one. Its envelope 
(last line) is periodic with the lattice period L. 

 

The mismatched beam ellipses are sweeping an bigger area (dashed-black circle) than the beam 
ellipse surfaces. Their envelopes period is greater than the lattice period. Its oscillation is a 
combination of two oscillations with two different periods: one is the lattice period L, the other is 

Lw ⋅σπ2 , σw being the channel phase advance per lattice. 
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Figure 10 : Matched and mismatched beam in FODO channel 

 

- When the force is linear

 

 (Figure 11), all particles are turning in the phase-space with the 
same period (i.e. the same phase advance per lattice). The beam phase-space distribution 
is changing lattice after lattice, but its emittance is kept constant. 

 

 

 
X'

X

X'

X

 

Hamiltonian = Cst

Matched beam Mismatched beam 
Figure 11 : Matched (left) and mismatched (right) beam in linear forces 
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- When the force is non linear (Figure 13) (external force or force induced by space-
 (cou m een beam pa  part le  percharge lo bian interactions betw rticles)), ic  phase-advance  

lattice depends on its oscillation amplitude. Beam particles are no more turning all at the 
same speed, and an apparent emittance growth is observed11. This effect is known as the 
beam filamentation (Figure 12). After a long time (many particle betatron periods), the 
phase-space swept by the beam is completely full of particle. The apparent emittance is 
larger.  
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Figure 12 : Filamentation of mismatched beam in non linear force 

 

 
11 Even if the phase-space area occupied by the particle is constant (Liouville theorem applies). 
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Final beam

 
Figure 13 : Matched (left) and mismatched (right) beam in non linear forces 

. CONCLUSION 

This paper is a short introduction containing the first basic notions useful for a first approach 
ith linacs. A better understanding cannot be obtained without tackling subjects like the existing 

structures, the RF control, the space-charge effects or the resonances. Motivated students are strongly 
advised to read tom Wangler's book [2]. 
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