
SRB SYSTEM AT BELLE/KEK

Y. Iida, I. Adachi, N. Katayama, S. Kawabata, A. Manabe, T. Sasaki, S. Y Suzuki, S. Yashiro, Y.

Watase, KEK, Tsukuba, Japan
S. Honma, H. Kuraishi, T. Nakajima, Fujitsu, Tsukuba, Japan

K. Ishikawa3, ISE, Chiba, Japan
Ma Mei, IHEP, Beijing, China

Abstract

The Belle experiment has accumulated more than 1PB
of raw and processed data stored on tape with the rate of
1TB/day. The processed, compactified data, together with
Monte Carlo simulation data for the final physics analysis
amounts to more than 100TB. The Belle collaboration
consists of more than 55 institutes in 14 countries and at
most of the collaboration institutions, active physics data
analysis programs are being undertaken. To meet their
storage and data distribution demands, we have tried to
adopt a Storage Resource Broker, SRB. We have installed
the SRB system at KEK, Australia, and other
collaborating institutions and have started to share data. In
this talk, experiences with the SRB system is discussed
and the performance of the system when used for data
processing and physics analysis of the Belle experiment is
demonstrated.

INTRODUCTION
The processed data of a huge quantity generated by the

Belle experiment is stored on the storage at the Belle
computing system in KEK which is a very secure network.
The Belle collaboration which consists of about 400

members at 57 institutes in 13 countries, need to access
the storage via many login machines, in order to get the
data. Since the data analysed by each collaboration
institutes is stored their storage, the management of Belle
data is very complex. So they want to make a better file
sharing environment.

The Storage Resource Broker (SRB) from San Diego
Supercomputer Center (SDSC) provides a uniform
interface for connecting to various types of data storage
over a network and accessing replicated data sets. SRB, in
conjunction with the Metadata Catalog (MCAT), provides
a way to access data sets and resources based on their
attributes rather than their names or physical locations.
And we can use it as global file system. It is because we
can always see as the same file system even if we use
various OS, even if we connect from somewhere. It
provides parallel I/O (multiple threads each sending a
data stream on the network) for transferring large files,
and Container (a lot of small files into one larger file)
and/or bulk load and bulk unload for small files.

Before applying to the Belle experiment, we have
measured the performance and tested basic functionality
of SRB on an independent test system.

Figure 1: test environment

DB2
HPSS enabled
SRB server
(single CPU)

MCAT enabled
SRB server
(dual CPUs)

SRB server
(dual CPUs)

MCAT enabled
SRB server
(dual CPUs)

FC
RAID

HPSS
120TB

Internet
KEK

KEK FW

Giga Switch

zone A

zone B

PostgreSQL

1234

BASIC PERFORMANCE MEASUREMENT

Test environment
SRB supports the federation of MCAT to enable access

to resources and data across zones, while a zone consists
of one or more SRB servers along with one MCAT-
enabled server

 We built two zones to test the federation of MCAT in
out test system. Zone A consists of a MCAT SRB server
with Postgres and also a HPSS enabled SRB server. The
other zone, Zone B, consists of a MCAT SRB server with
DB2 and a SRB server with the Fibre Channel RAID as
shown in Figure 1. For all servers, SRB version 3.1 has
been installed. In Zone A, the HPSS system and the HPSS
enabled SRB server are connected by Gigabit Ethernet
with KEK LAN which is always congested, while the
servers in Zone B is connect to the same Giga bits
Ethernet switch. Using this system, performance
measurements for basic file transfer commands in SRB
are carried out and the results are compared with ftp or
pftp as a reference. Here, pftp is the command provided
by IBM as a part of HPSS and supports parallel transfer.

We decided to measure the performance for a large
single file case and also smaller files so that following
two file sets are used for this performance study.

• mixed files: 68files, 928MB in total, from 4.7KB
to 101MB for each file

• larger file: single file in 1GB size
For larger file case, parallel I/O mode in SRB is also

tested, while “Containers” and/or “Bulk load” options are
tested for transferring small files. A “Container” is a way
to put together a lot of files into one large file to improve
performance. And “Bulk load” is designed to improve the
efficiency of ingesting a large number of small files by
registering up to several hundreds files with MCAT with a
single call instead of the normal mode of registering one
file at a time, also separate threads for registration and
data transfer are used. The detail of these two options is
well described in the SRB manual.

SRB also supports parallel I/O and four TCP/IP ports
are used simultaneously as a default and this number can
be changed with the command option. Here we use the
default, four, for this option implicitly.

Transfer mixed files
We measure the performance of file transfer from local

disc to HPSS (Zone A) and to remote local disk (Zone B).
The measurements were done with following 4 types of

transfer: “Bulk load” with “Container” (Sbload –c), “Bulk
load” (Sbload), “Container” (Sput –c) and ftp/pftp. The
measured results are shown in Table 1.

Table 1: Results of transfer mixed files

Zone Commands Avg_rate
(MB/sec)

Sbload –c 30
Sbload 12

Zone B

Sput –c 14

ftp 36
Sbload –c 11
Sbload 3
Sput –c 14 Zone A

Pftp 14

The results show that the “Sbload -c” case gives the
best performance among the SRB commands in Zone B.
It is almost comparable with one with ftp even though
overhead of MCAT handling is expected when data is
stored on a usual UNIX file system.

In the HPSS case, the “Sput –c” case gives the best
result and “Bulk load” are not efficient as the UNIX file
system case. This is due to the characteristic of HPSS
which is designed for storage of larger files. The
performance for the “Sbload” case looks worse. Also even
though we attempted many trials, the measurements were
very fragile. This is due to the HPSS system which used
for this measurement is the busy production system and
many users are accessing it. We need further investigation
on HPSS case in the future.

Transfer larger file
 We also measured the performance for the single larger
file transfer case. In this case, we measured the
performance for two cases, UNIX file system and HPSS
as the storage, with the Sput command with single stream
transfer and also parallel stream transfer mode. The
results are compared with ftp for UNIX file system case,
and pftp for HPSS. The results are shown in Table 2.

 Table 2: Results of transfer larger file

Zone Commands Avg_rate
(MB/sec)

Sput –m 30
Sput 23 Zone B
ftp 34
Sput –m 19
Sput 7 Zone A
pftp 17

As expected, the parallel stream mode gave the better

result than the single stream case. However, it was a bit
slower than usual single stream ftp. For HPSS case, the
result seems slightly slower than the UNIX file system
case because of the same reason as above.

SRB performance consideration
MCAT has the extra time that is required for the

database query. Database performance varies widely
depending upon the tuning (indices that are built). The
sources of decreased performance include:

• Initiation time: This includes the time needed to
access the SRB metadata catalog to map from the
logical name to the physical resource that is being
accessed. This also includes the time required to
authenticate the user and authenticate messages
between SRB servers

1235

MCAT

SCSI-RAID

SRB server
SCSI-RAID

KEK network

B-Inet
Tape
Library

NFS HSM-DISC
HSM server

KEK Belle System

B-Tnet
GbE

GbE

GbE

GbE

SRB client Router

MCAT

Belle FW

Internet

Federation
MCAT enabled
SRB server
at ANU

SRB server
at Melbourne U.

MCAT enabled
SRB server

SRB server
at Tohoku U.

KEK FW

S-SINET

• Transfer time: This is minimized by either use of
parallel I/O streams, or by using bulk load and
bulk registration to minimize the number of
messages.

The time spent in accessing the SRB metadata catalog
is strongly dependent upon whether the database has been
tuned. Typical tuning operations for Oracle include:

• Indexing of the table structures
• Setting memory size
• Setting network parameters
• Caching of intermediate results
We will tune above parameters for our DB2 and also

Postgres to obtain the best performance in our
environment.

BELLE SRB SYSTEM
SRB system at Belle

After the tests of functionally and performance
measurements in the CRC system, SRB was implemented
into the Belle computer system. Those two systems are
operating completely independently. In Belle SRB
system (see Fig.2), there are two SRB servers and one
SRB client at KEK, and one SRB server at Tohoku
University connected by Super SInet which provides
1Gbps DWDM. One of them at KEK is PostgreSQL
based MCAT enabled SRB server. Other SRB server
along with it. A part of HSM disc which is used as Belle
storage system is registered as SRB resource in this
MCAT. These are connected by Giga bits Ethernet .

We used the Grid Security Infrastructure (GSI)

authentication. GSI is based on public key encryption,
X.509 certificates, and the Secure Sockets Layer (SSL)

communication protocol. It is also secure against network
eavesdropping and somewhat less vulnerable against
compromised hosts as only temporary delegation
certificates are stored in files.

Federation with Australian SRB system
The SRB server is also working at the Melbourne

University which is one of the Belle collaboration
institutes. This SRB server constitutes one SRB system
with MCAT enabled SRB server in Australian National
University (ANU). It is federated with Belle SRB system
at KEK. Thereby, while each SRB system maintained
control of the data and resource registered in local SRB
system, it became possible to share the data and resource
registered in remote SRB system.

Belle software with SRB
The primary application for the Belle experiment is the

Belle Analysis Software Framework (BASF). This
application is used for simulation, filtering of events, and
analysis. Belle has extended BASF to dynamically load
I/O subsystems as C++ objects. It was quit simple to add
SRB support as a new I/O class using the following SRB
client APIs: srbConnect, srbObjOpen, srbObjCreate,
srbObjStat, srbObjRead, srbObjWrite and srbobjClose.
They then tested and compared I/O performance using
SRB, Belle’s own TCP/IP protocol, and NFS.

Belle test results
We have tested the mechanisms on a small scale test

bed. It seems this test is the preliminary examinations for

using SRB in Belle analysis.
Table 3: Belle test results (preliminary)

Figure 2: Belle SRB system

1236

Protocol Resource Elapsed
time Utilization

SRB Local
SCSI-RAID 10:22 53.3%

SRB Remote
HSM (NFS) 13:13 41.8%

UNIX read Local
SCSI-RAID 5:44 90.0%

Belle TCP/IP Remote
HSM (NFS) 6:24 86.1%

This result showed that there is no problem reading and

writing remote data by SRB client APIs within Belle
software. Belle’s own (simple) TCP/IP transfer is about
40% faster then SRB. If it just blocking, double buffering
can fix the problem, otherwise more detailed tests are
necessary. GSI authentication and MCAT federation look
promising in order to share data with collaboration
institutes and management its own resources.

SUMMARY
SRB is now working in the Belle experiment with

BASF, the Belle analysis software framework, and
performance measurements have been done. Zone
federation to Australian institution has been established
and distributed file sharing over the Internet with Grid
authentication is established.

We have also built the independent test environment for
SRB at KEK before deployment in the Belle experiment,
and measured the performance using different options for

SRB commands. The functionally of SRB is very
promising for any HEP experiments. Also the preliminary
results show that SRB is efficient even for transferring
smaller size files, however, we need further study to
understand the situation and improve the performance.

ACKNOWLEDGEMENT
We would like to thank S. Chen, G. Kremenk, A.

Rajasekar and R. Moore at San Diego Super Computer
Center for providing us SRB and their great support on
installing and using it.

Also we are grateful to W. Kreoger and A. Hasan at
SLAC for helping us to start over SRB at KEK. They
stayed at KEK and helped us very much.

We also thank G. Moloney for his enthusiastic work in
Australia side.

We wish to thank S. Yamamoto at IBM Japan for
supporting construction of HPSS enabled SRB server.

We express our thanks to National Institute of
Informatics for their supporting SuperSINET and to KEK
Computing Research Center for HEPnet-J, which enabled
efficient data sharing among collaborators.

REFERENCES
[1] http://www.npaci.edu/DICE/SRB/index.html
[2] http://www.globus.org

1237

