
GFARM V2: A GRID FILE SYSTEM THAT SUPPORTS
HIGH-PERFORMANCE DISTRIBUTED AND PARALLEL DATA

COMPUTING

Osamu Tatebe, Satoshi Sekiguchi, AIST, Tsukuba, Japan
Youhei Morita, KEK, Tsukuba, Japan
Noriyuki Soda, SRA, Nagoya, Japan

Satoshi Matsuoka, Titech / NII, Tokyo, Japan

Abstract

Grid Datafarm architecture is designed for facilitating
reliable file sharing and high-performance distributed and
parallel data computing in a Grid across administrative do-
mains by providing a global virtual file system. Gfarm��

v2 is an attempt to implement a global virtual file system
that supports a complete set of standard POSIX APIs, while
still retaining the parallel and distributed data computing
feature of Grid Datafarm architecture. This paper discusses
the design and implementation of Gfarm v2 that provides
a secure, robust, scalable and high-performance global vir-
tual file system.

INTRODUCTION

Recent research, development and standardization of
Grid technologies make it possible to share resources such
as CPU and storage across administrative domains. Funda-
mental problems for resource sharing such as authentica-
tion, authorization and security has been resolved to some
degree. Problems are gradually shifting to core operating
system functionalities such as process management, pro-
cess scheduling, signal handling, and file systems, in order
to exploit resources that are located in distant locations ef-
ficiently.

Our research group proposed the Grid Datafarm archi-
tecture for Petascale data-intensive computing facilitating
distributed resources in wide area [1]. Main features of
the architecture are to provide (1) a Grid file system that
integrates local disks of compute nodes in Computational
Grid, and (2) parallel and distributed computing associat-
ing Computational Grid and Data Grid.

A Grid file system is a global virtual file system that fed-
erates numbers of file systems (or file servers) in a Grid.
Integration is achieved by a filesystem metadata server that
manages a virtual human-readable namespace. Standard-
ization regarding Grid file systems is ongoing in the Grid
File System Working Group of the Global Grid Forum [2].
Physically, each file or each block in a file would be stored
in some arbitrary file server in a Grid, while users and ap-
plications would access files via a virtualized file system
without being concerned of the file location. As such, a
Grid file system is a shared network file system scaled to
Grid level, allowing easy and transparent sharing of file

data without any modifications to existing applications.
In addition, in the Grid Datafarm architecture, local

disks of compute nodes in a Computational Grid compose a
Grid file system (Fig. 1); every file server provides not only
storage but also computing resources. In other words, stor-
ages of file servers comprise a Grid file system or a Data
Grid, while computing resources of file servers comprise a
Computational Grid.

Client

When submitting a job,
it will be executed
on a file system node
that has a requested file

Gfarm File System

Network

CPU CPU CPU CPU CPU CPU CPU CPU

Job Server

Job

File Sharing via
Gfarm File System

Compute nodes

Figure 1: Grid Datafarm Architecture. Local disks of com-
pute nodes in a Computational Grid composes a Gfarm file
system. A job will be executed on a compute node that has
one of file replicas of the requested file.

When a user submits a job to the Computational Grid, it
will be scheduled and executed on one of the file servers
(i.e., a compute node) that has a copy of the requested file
depending on the CPU utilization. This scheduling pol-
icy is called file-affinity process scheduling, which enables
scalable I/O performance as well as distributed data com-
puting. The key issue is association of Computational Grid
with Data Grid. Having a separate I/O across the network
independent from the compute nodes would be disadvanta-
geous for large-scale distributed system.

Grid Datafarm architecture, moreover, supports high-
performance distributed and parallel computing for pro-
cessing a group of files by a single program, which is a
most time-consuming, but also a most typical, task in data-
intensive computing such as high energy physics, astron-
omy, space exploration, and human genome analysis. Such
a process can be typically performed independently on ev-
ery file in parallel, or at least exhibit good locality. In order
to facilitate this, in Grid Datafarm, an arbitrary group of

1172

files possibly dispersed across administrative domains can
be managed by a single Gfarm file. Each member file will
be accessed in parallel in a new file view called local file
view by a parallel process allocated by file-affinity schedul-
ing based on replica locations of the member files. File-
affinity scheduling and file view feature naturally derives
the owner computes strategy, or move the computation to
data approach for parallel and distributed data computing
of member files of a Gfarm file in a single system image.
This is the key distinction of Gfarm over other distributed
file systems, where the data will be moved to computation
by default.

Gfarm�� v1 is a prototype implementation of the Grid
Datafarm architecture1. It provides a subset of the POSIX
standard API required for data-intensive computing. Gfarm
v1 has demonstrated its architectural advantages and ease
of programming for data-intensive applications [3]. How-
ever, we found that there are several weaknesses in the sys-
tem, some from the lack of feature typically found in dis-
tributed file systems, some being robustness and depend-
ability, and some more fundamental to the architecture it-
self.

This paper discusses the design and implementation of
Gfarm v2 that attempts to overcome such weaknesses.
Gfarm v2 aims to provide a POSIX-compliant global vir-
tual file system facilitating features of Grid Datafarm ar-
chitecture for Petascale data-intensive computing. It can be
used as a general-purpose network file system for Grid or
virtual organization, allowing existing applications to share
files securely and dependably, and to access files efficiently
across administrative domains.

RELATED WORK

There are several high-performance file systems that
support more than a thousand clients and/or file system
nodes. Lustre [4] supports more than a thousand clients in
a cluster system. Lustre consists of numbers of file servers
or Object Storage Targets (OSTs), metadata servers, and
numerous clients. Between file servers and clients, high-
speed interconnects such as Gigabit Ethernet, Elan3, and
Myrinet are assumed. Each file (or object) can be placed
in any OST. Lustre does not facilitate replica management;
instead, it uses writeback cache to improve write perfor-
mance. Collaborative read cache is being planned to im-
prove read performance. The major difference from the
Grid Datafarm architecture is that Lustre separates file sys-
tem nodes from clients (or compute nodes). This reflects
the fact that Lustre assumes an operating environment of
large clusters and intra-enterprise high bandwidth connec-
tivity, where moving data to computation makes sense, in
contrast to Gfarm where data may reside distributedly in
wide area, making exploitation of local high bandwidth by
moving computation to data essential.

The Google File System [5] supports more than a thou-
sand storage nodes. All files are divided into fixed-size

1Gfarm is a registered trademark in Japan.

chunks, and each chunk can be placed in any storage node
(chunkserver). All chunks have three replicas by default to
prevent data loss on failures. All I/O operations are imple-
mented by user client library with no client or server cache.
Google File System does not provide complete POSIX
API, but tunes itself to operations that support Google’s
data processing needs. The difference from the Grid Data-
farm architecture is that Google File System also separates
I/O from clients, and it divides a file into fixed-size chunks.
The latter is disadvantageous for parallel and distributed
data computing since data access cannot be localized.

OVERVIEW OF GFARM V1

Gfarm v1 is a prototype implementation to realize the
Grid Datafarm architecture. It is an open source soft-
ware available at http://datafarm.apgrid.org/. It consists of
Gfarm I/O library, an I/O server; gfsd, and a set of metadata
servers; gfmd and slapd.

Gfarm I/O library provides interfaces for accessing the
Gfarm file system. It includes Gfarm file read/write, file
replication, parallel I/O, parallel file transfer, and file-
affinity process scheduling. Parallel I/O provides the file
view feature: index file view and local file view, for dis-
tributed and parallel data computing.

A system call hooking library is provided for existing
binary programs to access Gfarm file system as if it were
mounted at /gfarm. By loading the system call hooking
library before program execution, necessary system calls
of existing programs can be trapped without any modifi-
cation. The system call hooking library determines from
the access path or a file descriptor whether it is a file in
Gfarm file system or not. If it is a file in Gfarm file system,
the corresponding Gfarm APIs are called to access the file.
Otherwise, it call the system call as usual.

Gfsd is an I/O daemon running on every file system
node. It facilitates file access and file replica creation for
the file system nodes. In Grid Datafarm architecture, a file
system node is also assumed to be a compute node, and
gfsd has the ability to execute a remote program on the file
system node. Moreover, gfsd manages status information
and CPU load average of the file system node for schedul-
ing.

The metadata server consists of gfmd and slapd. Every
file system metadata including directory, file status infor-
mation, replica catalog, is managed by slapd, which is an
ldap server developed by the OpenLDAP project [6]. Gfmd
is a process manager that is used by the Gfarm remove ex-
ecution commands.

Gfarm file system can be accessed by not only the
Gfarm I/O library but also standard protocols such as scp,
GridFTP, and SMB using the system call hooking library.

Weaknesses of Gfarm v1

Being the first prototype/experimental implementation
of the Grid Datafarm architecture, there are several weak-
nesses of Gfarm v1 with respect to functionality, robust-

1173

ness, security, and flexibility. Gfarm v1 has been developed
to investigate the requirements of large-scale data-intensive
computing, and to show the effectiveness of the Grid Data-
farm architecture. As such functionalities found commonly
in a distributed file system but were considered not impor-
tant for those specific purposes, including file open in read-
write mode, and advisory file locking were not designed
or implemented2. On the other hand, as we expanded the
application fields, it became clear that some traditional dis-
tributed file system feature, as well as some enhancements,
were necessary.

In Gfarm v1, it is the role of the Gfarm I/O library to
generally maintain consistency between metadata and the
corresponding physical file. Since it is a user-level library,
however, unexpected application crash can easily break the
consistency. Another case is that a file owner can modify or
delete physical files directly on file system nodes bypassing
the Gfarm I/O library. This also causes the inconsistency
between metadata and the physical file. Although Gfarm
v1 provides a maintenance command to check and fix the
inconsistency, this is cumbersome and error-prone.

Gfarm v1 does not impose sufficient access control for
metadata access. Also, there is no access control for a
group since there is no group management.

Grid Datafarm architecture supports managing a group
of files (collection, or container) as a single Gfarm file for
parallel and distributed data computing. To support this
feature, Gfarm v1 has a special type of metadata for a group
of files that has any number of member files. On the other
hand, for every type of grouping, we have had to construct
support for it internally, which lacked flexibility and was in
fact quite cumbersome.

DESIGN AND IMPLEMENTATION OF
GFARM V2

The goal of Gfarm v2 is to provide a POSIX compli-
ant, robust, dependable and secure network file system as
well as to support more than ten thousand clients and file
server nodes with scalable file I/O performance. POSIX
compliance includes supporting read-write file open mode
and advisory file locking. It also aims to be a substitute for
NFS and AFS, while retaining the parallel data processing
capability.

Opening Files in Read-write Mode

When a file has several file replicas, consistency among
the file replicas needs to be maintained when it is modified.
Semantics of consistency among file replicas supported by
Gfarm v2 is the same as AFS.

1. If there is no advisory file locking, updated file content
can be accessed only by a process that opens it after a
writing process closes.

2Read-write mode has been supported since the version 1.0.4.

2. Otherwise, up-to-date file content can be accessed in
the locked region among processes that lock it. Note
that this is not always ensured when a process writes
the same file without file locking.

To ensure the semantics of consistency, file replicas to be
accessed are selected as follows when opening a file.

1. When opening a file in read mode,

(a) select any file replica of the file.

2. When opening a file in write mode,

(a) if there is a process that opens the file in write
mode, select the file replica already opened in
write mode,

(b) if there are several processes that open the file in
read mode, select any file replica or one of file
replicas opened in read mode,

(c) if there is no process that opens the file, select
any file replica.

The selection is done by the metadata server. This selection
ensures two different file replicas cannot be opened in write
mode at the same time.

Metadata server deletes all invalid metadata and all in-
valid file replicas when closing a file that is opened in write
mode. The reason why all possible invalid metadata and
all possible invalid file replicas are not deleted at file open
time is that there is a case such that a file is not modified
even though it is opened in write mode. Regarding dele-
tion of file replicas whilst one of them is still held open by
some process, there is no particular problem since it is still
accessed by a valid file descriptor.

Advisory File Locking

Gfarm v2 supports advisory file locking in POSIX. A
read lock and a write lock are supported for the whole file
or a region of a file.

The basic policy to implement the advisory file locking
is that all processes access the same file replica when the
file is locked. Moreover, to ensure access to the up-to-date
file content, client cache is disabled in the locked region.

Fig. 2 describes mechanism to implement advisory file
locking with an example. There are two file system nodes;
FSN1 and FSN2. A file /grid/jp/file2 has two file replicas
stored on FSN1 and FSN2. Process 1 running on FSN1
opens a file /grid/jp/file2 in read-write mode. Since one
of file replicas is stored on the same node, the local file
replica is selected to be accessed. Process 2 running on
FSN2 opens the same file in read-only mode. Since one of
the file replicas is stored on the same node, the local file
replica is selected to be accessed. Note that the modifica-
tion of file replica on FSN1 does not need to be reflected
on to the file replica on FSN2 since Process 2 opens the file
before Process 1 closes it.

Process 2, then, requests a read lock to the metadata
server. Since Process 1 already has the file replica open
on FSN1 of the same file in read-write mode, it needs to

1174

/grid

ggf jp

file1 file2

Process 1 Process 2

fopen(“/grid/jp/file2”, “rw ”) fopen(“/grid/jp/file2”, “r”)Metadata server

FSN1 FSN2

File access

file2 File access
Read lock request

File access

Cache flush
Disable caching

(1) (2)

(3)

Figure 2: Advisory file locking. Process 1 opens
/grid/jp/file2 in read-write mode. Process 2 opens the same
file in read mode, and requests a read lock. In this case,
Process 2 flushes and disables the client cache, and changes
the file replica to be accessed from FSN2 to FSN1, since the
file replica on FSN1 is already opened in read-write mode.

change the file replica to be accessed. Before changing the
file replica, it flushes the client file cache, and disables it in
the locked region to ensure access to the up-to-date content.

Consistent Update of Metadata

Gfarm v1 maintains consistency between metadata and
the corresponding physical file using the Gfarm I/O library.
Since it is a user-level library, when application unexpect-
edly crashes before closing a file, file status information
including file size cannot be updated.

Gfarm v2 changes this metadata update mechanism. In
Gfarm v2, Gfarm I/O library basically does not update
metadata directly. Instead, it is updated by gfsd. When
a file is closed, Gfarm I/O library sends a close request
to gfsd. Gfsd updates the metadata after closing the file.
Gfsd also updates the metadata when the connection from
a client is broken. This ensures the consistent metadata up-
date even on unexpected application failure.

The other possibility that breaks the consistency between
metadata and the corresponding physical file is direct ac-
cess and modification of the physical file without notifying
the metadata server. In Gfarm v1, the access to physical
files is allowed by a file owner in the Gfarm file system.
Because of this, the file owner is able to modify the physi-
cal file accidentally, which would cause the inconsistency.

In Gfarm v2, every physical file is owned by gfsd. This
disables direct file modification by users. Access permis-
sion is only controlled by the metadata in Gfarm file sys-
tem.

Generalization of File Grouping Model

Gfarm v1 introduces a special type of metadata to man-
age a group of files. Although introducing a special type
enabled the management of group of files, it lacked flexi-
bility in many ways. For example, it had a restriction such
that a specific member file should belong to only one group

not multiple groups. Moreover, it is not possible to have a
group of groups of files.

In the case of astronomical data analysis for the Subaru
telescope [3], image data of the prime focus camera con-
sists of �� � � files in � shots since it is a mosaic CCD
camera consisting of 10 CCD detectors. During the data
analysis, there are three cases; 10 files can be executed in
parallel, � files can be executed in parallel, and �� � �

files can be executed in parallel. Because this, we need
three kinds of grouping for the same physical files.

For flexible grouping, Gfarm v2 does not introduce a
special metadata type but exploits the filesystem directory
structure to manage a group of files. All files under a di-
rectory including its subdirectories form a group of files.
Moreover, exploiting symbolic links and hard links, it is
possible to realize the above three kinds of grouping for
the same file set using standard file operations.

SUMMARY AND FUTURE WORK

Gfarm v2 aims at being a global virtual file system hav-
ing scalability up to more than ten thousand clients and file
system nodes. It also aims to be POSIX compliant, secure,
robust, and dependable. This paper discussed its design and
implementation.

We are still implementing the Gfarm v2, and have a plan
to release the first version in March, 2005. We would like
to evaluate it especially regarding the scalability up to more
than ten thousand nodes. We need to investigate several re-
search issues including data preservation and efficient al-
gorithm of automatic replica creation.

ACKNOWLEDGEMENTS

We thank the members of the Gfarm project of AIST,
KEK, Tokyo Institute of Technology, and the University of
Tokyo for taking the time to discuss many aspects of this
work with us, and for their valuable suggestions. We also
thank the members of Grid Technology Research Center,
AIST, for their cooperation in this work.

REFERENCES

[1] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda and S. Sekiguchi,
“Grid Datafarm Architecture for Petascale Data Intensive
Computing”, Proc. 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (2002)

[2] https://forge.gridforum.org/projects/gfs-wg/.

[3] N. Yamamoto, O. Tatebe and S. Sekiguchi, “Parallel and
Distributed Astronomical Data Analysis on Grid Datafarm”,
Proc. 5th IEEE/ACM International Workshop on Grid Com-
puting (2004).

[4] http://www.lustre.org/.

[5] S. Ghemawat, H. Gobioff and S. Leung, “The Google File
System”, Proc. 19th ACM Symposium on Operating Systems
Principles (2003).

[6] http://www.openldap.org/.

1175

