
FEDERATING GRIDS: LCG MEETS CANADIAN HEPGRID

R. Walker, M. Vetterli*, Simon Fraser University, Vancouver, British Columbia, Canada

R. Impey, G. Mateescu, NRC Institute for Information Technology, Ottawa, Ontario, Canada

B. Caron†, University of Alberta, Edmonton, Alberta, Canada

A. Agarwal, A. Dimopoulos, L.Klektau, C. Lindsay, R.J. Sobie‡, D. Vanderster, University of
Victoria, Victoria, British Columbia, Canada

* Also TRIUMF, Vancouver, British Columbia, Canada
† Also TRIUMF
‡ Also Institute of Particle Physics

Abstract
A large number of Grids have been developed worldwide.
Despite being mostly based on the same underlying
middleware, the Globus Toolkit, they are generally not
inter-operable for a variety of reasons. We present a
method of federating those disparate grids which are
based on the Globus Toolkit, together with a concrete
example of interfacing the LHC Computing Grid (LCG)
with HEPGrid. HEPGrid consists of shared resources, at
several Canadian research institutes, which are exposed
via Globus gatekeepers, and makes use of Condor-G for
resource advertisement, matchmaking and job
submission. An LCG Computing Element (CE) based at
the TRIUMF Laboratory hosts a HEPGrid User Interface
(UI) that is contained within a custom JobManager. This
JobManager appears in the LCG information system as a
normal CE publishing an aggregation of the HEPGrid
resources. The interface interprets the incoming job in
terms of HEPGrid UI usage, submits it onto HEPGrid,
and implements the JobManager 'poll' and 'remove'
methods, thus enabling monitoring and control across the
grids. In this way non-LCG resources are integrated into
LCG, without the need for LCG middleware on those
resources. The same method can be used to create
interfaces between other grids, with the details of the
child-Grid being fully abstracted into the interface layer.
The LCG-HEPGrid interface is operational, and has been
used to federate 1300 CPU's at 4 sites into LCG for the
ATLAS Data Challenge (DC2).

INTRODUCTION
The LHC Computing Grid (LCG) [1] is being

developed to analyse the enormous amount of data that
will be generated by the LHC experiments starting in
2007. Canadian physicists are participating in one of
these experiments, ATLAS. The ATLAS-Canada
computing model is centred on a large-scale computing
and storage facility at TRIUMF for common computing

tasks, complemented by significant resources in the
universities for physics analysis and Monte Carlo
simulation. The latter facilities are shared with other
fields of research that have their own requirements for
computing and networking. As a result, the Canadian
model is based on a national Grid that uses as generic
middleware as possible to minimize interference with
other disciplines. This national Grid is interfaced to LCG
through the TRIUMF centre. This allows for simpler
management of the shared university centres and for
Canadian control of the load balancing, both across the
Canadian network, and between this Grid and the LCG.
This paper presents two aspects of the Canadian model:
the design of the Canadian Grid, and of the interface
between it and the LCG.

 BUILDING A GRID WITH CONDOR-G
In order to federate non-LCG Canadian resources into

LCG, these resources must first be part of a Grid
themselves, or at least a coordinated distributed
computing environment. This was achieved by the use of
Globus gatekeepers [2], and Condor-G [3]. With
remarkably little development work, these two
components can form a fully functional distributed
computing environment, essentially out-of-the-box. The
deployment of Condor-G in this way [4] is sufficiently
novel to warrant discussion here.

Information System
The Condor ClassAd mechanism is used to advertise

resource characteristics and status to central Collectors.
This is the identical mechanism used within a plain
Condor batch system. The ClassAd consists of attribute-
value pairs, where the attributes can be static or
dynamically probed from the Local Resource
Management System (LRMS). There are several
mandatory attributes in order for Condor to recognize the
resource as a Globus-enabled cluster, rather than a single
execution host (as in the plain Condor LRMS case). The

982

remainder of the ClassAd is free format, i.e. there is no
rigid schema. This allows great freedom to fully represent
the cluster, providing the format is well documented for
the users.

We have developed a script to probe the LRMS,
produce the ClassAd and advertise it to the Collectors.
This is installed on each resource and runs from a non-
privileged crontab process.

Resource Brokerage
The Condor Negotiator is responsible for matching jobs

to resources. It does this by periodically taking job
ClassAds and resource ClassAds from the Collector, and
using the Rank and Requirements therein to choose the
best resource. The Requirements form a logical
expression which in the case of the job ClassAd describes
the user’s requirements, e.g. OS, memory, wall-time. The
Requirements would also be used to ensure the user is
authorized to use a particular resource. In the case of the
resource ClassAd this could express the site requirements,
e.g. no jobs accepted during office hours, or setting to
FALSE to prevent any job matching there at all. Both the
job and resource Requirement expressions must evaluate
to TRUE for the resource to be considered in the next
stage of match-making.
Then the Rank expression is evaluated to a floating-point
number for each job-resource combination. The pair with
the highest Rank is matched, and the job will go to this
resource. The Rank is used to express user and resource
preferences. A typical user Rank would be the negative
estimated waiting time until the job runs. This would
ensure the job starts running as soon as possible. The
CPU SI2k rating or the available RAM might also be used
in the user Rank. The resource Rank is less obvious, but
may be used to prefer certain user groups, or maybe
discourage big memory usage.

INTERFACE TO LCG
The LCG Computing Element (CE) consists of a

Globus gatekeeper, with a JobManager to interface to the
Local Resource Management System (LRMS), and an
information provider. The LRMS is most often PBS,
although other batch systems are supported, e.g. the plain
Condor batch system. The information provider probes
the LRMS to provide the queue status in MDS GLUE [5]
format.

In order to use Condor-G as our LRMS, we must
provide both the Condor-G JobManager, and the
information provider. In both cases, this is greatly helped
by the existence of the plain Condor equivalents.

The Condor-G client allows us to submit and monitor
jobs just as if they were on a local batch system, but there
is one important difference – the submission to Grid-
Canada (GC) nodes proceeds via the GRAM protocol and
hence a ‘full’ user proxy is required. The proxy that
arrives with the job, from the LCG Resource Broker
(RB), is ‘limited’, i.e. it can be used for gridftp transfers,
but not for a further GRAM submission. Full proxy

delegation via the GRAM protocol is possible, however
this may be a security concern. We also considered using
a shared proxy that can be picked up from the interface
machine, but then accountability would be lost. In any
case there is a straightforward solution, making use of the
LCG proxy renewal service.

How to get a ‘Full’ proxy
The LCG proxy renewal service ensures that a user’s

proxy does not run out during a long Grid job. The user
first stores his full proxy in a MyProxy [6] server.
Normally the LCG RB would use the user’s proxy, which
is about to expire, to authorize the delegation of a new
one from the MyProxy server. The same thing can be
done on the interface machine, but unlike the RB we have
no way of knowing which MyProxy server was used.
Inside the Condor-G JobManager, we search known
MyProxy servers until the correct one is found. This is not
satisfactory, and is the result of too little information
being passed with the LCG job – a recurring theme.

Building the Condor-G job description file
As with several batch systems, and LCG itself, a

Condor-G job is described in a job description file (JDF).
This is prepared by the JobManager, using information in
the GRAM Resource Specification Language (RSL) [7].
The RSL attributes are rather limited, but the required
wall-time, cpu-time, and memory are provided.
Unfortunately LCG chooses not to set these attributes,
and assumes that the entire LRMS resource is
characterised by the information published in MDS. This
is often not the case for current farms, where a variety of
CPU speeds and memory sizes may exist due to partial
upgrades. In our case, the LRMS is itself a heterogeneous
sub-Grid and we are particularly affected by this lack of
information.

In fact, many batch systems, and certainly Condor-G,
can deal with a wide-range of job requirements and
ensure that the best worker node (WN) is selected. For
example, OS, experiment software, and WN disk-space
could all be accommodated, were they available to the
JobManager, and hence JDF.

In the controlled environment of ATLAS DC2 it was
possible to enforce homogeneity on the different clusters.
In general, this will not be possible and some mechanism
to pass the job requirements to the LRMS will be
necessary.

Requirements on the Worker Nodes
The LCG job arriving at the GC interface is simply

passed on to GC without modification. In fact, it would be
possible do to many things to make the job suitable for
the sub-Grid. We chose not to change the job, but rather
make the WNs look and feel like genuine LCG WNs. The
principal attributes the LCG expects are:

• Outbound IP connectivity
• Gridftp client and trusted Certificate

Authorities
• LCG data handling tools

983

• Experiment software
Each of these could be satisfied in a non-intrusive way

by a combination of reasonable requests to the system
administrators, and the use of a shared NFS area managed
by a non-privileged user. The lack of a data handling
system on Grid-Canada led us to use the LCG tools,
which were found to be quite portable.

PERFORMANCE
It was found that the bug fixes and enhancements to

Globus 2.4.3, which are in the VDT [8] packaged
software, were necessary to have the system scale. In
particular, the grid-monitor tool provided by CondorG,
and the associated Globus hooks, were essential to keep
the load down on the gatekeeper machines. Many of these
fixes were discovered and implemented by the LCG team,
which highlights the degree of technology re-use.

 In practise, this system has been quite effective while
running the ATLAS DC2. Over the course of DC2, the
success/failure ratio of jobs on HEPGrid has been similar
to that on the entire LCG. The flexibility of the system
has been demonstrated when problems have arisen at a
specific cluster. In this situation, the Requirements
expression is easily modified to exclude the problematic
cluster from the matchmaking process.

Fig.1: Performance of Grid-Canada interfaced to LCG

through TRIUMF. The success/failure rate is consistent
with that seen on regular LCG nodes.

CONCLUSIONS
We have demonstrated a working solution to the

problem of federating Grids. This has made available to
the ATLAS DC2 some 1300 CPUs at 4 sites in Canada,
interfaced through the TRIUMF LCG node. These sites
were otherwise unable to contribute resources to LCG.
This was achieved by combining and deploying a number
of off-the-shelf tools with a small amount of development
work. Preparing a resource to run LCG jobs in this way is
much easier than becoming an LCG site, and was
achieved with minimal manpower. In production use, the

system has successfully executed ATLAS DC2 jobs,
initially submitted to LCG, on Canadian HEPGrid
resources.

In addition to its lightweight installation and the
resulting need for only modest manpower, this solution
has the advantage of providing load balancing on the
child-Grid at the interface machine and therefore under
the control of “local” administrators. Furthermore the
middleware on the child-Grid does not have to be
upgraded whenever there is an upgrade of LCG. Only the
interface machine needs to have the latest LCG release,
aside from details of the data handling. This greatly
simplifies the management of the shared facilities on
Grid-Canada.

Further work will incorporate improved measures of
cluster performance and error handling into the resource
brokering process. Deployment of a data handling
mechanism will make this Condor-G based system a fully
functional Grid on its own. Finally, we plan to move
some of the Canadian resources currently configured as
separate LCG sites into the Grid-Canada/LCG interface
mode, perhaps for the last phase of DC2.

ACKNOWLEDGEMENTS
The modifications to Condor-G to enable Grid resource

brokerage are the result of collaboration between the
SAMGrid (Dzero) and Condor teams. Clearly the work
relies heavily on the Condor software, and we thank them
for many useful private communications. We also thank
the Grid Canada collaborators and acknowledge the
support of the Natural Sciences and Engineering Research
Council of Canada, the National Research Council of
Canada, WestGrid, and CANARIE Inc.

REFERENCES
[1] LHC Computing Grid Project, see
 http://lcg.web.cern.ch/LCG/.
[2] Globus Toolkit, see http://www.globus.org/.
[3] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S.

Tuecke, “Condor-G: A Computation Management
Agent for Multi-institutional Grids” in Proceedings
of 10-th International Symposium on High
Performance Distributed Computing (HPDC-10),
IEEE Press, July 2001, San-Fransisco, CA

[4] I. Terekhov, G. Garzoglio, A. Baranovskii, S. Patil,

A. Rana, H. Kouteniemi, L. Lueking, R. Walker, A.
Roy, T. Tannebaum, “Grid Job and Information
Management for the FNAL Run II Experiments”,
CHEP 2003, La Jolla, California, March 2003.

[5] GLUE Schema, see
 http://www.cnaf.infn.it/~sergio/datatag/glue/
[6] J. Novotny, S. Tuecke, and V. Welch, “An Online

Credential Repository for the Grid: MyProxy”.
Proceedings of the Tenth International Symposium

984

http://www.globus.org/

on High Performance Distributed Computing
(HPDC-10), IEEE Press, August 2001.

[7] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, S. Tuecke. “A Resource
Management Architecture for Metacomputing
Systems”. Proceedings of IPPS/SPDP '98 Workshop

on Job Scheduling Strategies for Parallel Processing,
pg. 62-82, 1998.

 [8] Virtual Data Toolkit, see
 http://www.cs.wisc.edu/vdt/.

Fig.2: A schematic of the Canadian model for participation in ATLAS DC2. Non-LCG resources were
incorporated using a CE at TRIUMF running Condor-G, which acts as a gateway to Grid Canada.

985

http://www.cs.wisc.edu/vdt/

