
DEVELOPMENT AND USE OF MONALISA HIGH LEVEL MONITORING
SERVICES FOR THE STAR UNIFIED META-SCHEDULER

E. Efstathiadis∗, L. Hajdu, J. Lauret, BNL, Upton, NY 11973, USA
I. Legrand, CalTech, Pasadena, CA 91125, USA

Abstract

We study and develop a kernel of tools that allow Meta-
Schedulers to take advantage of a consistent set of shared
information across Resource Management Systems, in both
local and/or Grid scheduler systems. We demonstrate the
usefulness of such tools within the MonALISA monitoring
framework and the STAR Unified Meta-Scheduler. We will
present and define the requirements and schema by which
one can consistently provide queue attributes for the most
common batch systems. We evaluate the best scalable and
lightweight approach to access the monitored parameters
from a client perspective and, in particular, the feasibility
of accessing real-time and aggregate information. Client
programs are envisioned to function in a non-centralized,
fault tolerant fashion. Inherent delays as well as scalability
issues of each approach (implementing it at a large number
of sites) will be discussed. We believe that such develop-
ments could highly benefit Grid laboratory efforts such as
the Grid3+ and the OpenScience Grid (OSG).

INTRODUCTION

While many success stories can be told as a product
of the Grid middleware developments, most of the exist-
ing systems relying on workflow and job execution are
based on integration of self-contained production systems
interfacing with a given scheduling component or portal.
This approach hardly satisfies the Grid concept demand-
ing the use and re-use of inter-operable components. In
fact, such systems are often considered non-grid enabled
that use a specific Local Resource Management System
(LRMS), or fully grid-enabled, but never a hybrid solution
taking advantage of both worlds. This is often due to the
lack of a consistent set of monitoring information usable
and sharable across resource management systems allow-
ing Meta-Schedulers to evaluate the resources and negoti-
ate with heterogeneous workload execution software in or-
der to utilize the right resources to fulfill a high level user
described request.

THE STAR UNIFIED META-SCHEDULER

The STAR Unified Meta-Scheduler (SUMS) project pro-
vides to the users of the STAR collaboration at the Rel-
ativistic Heavy Ion Collider (RHIC) [1] (and beyond) the
ability to submit jobs to a farm, to a site (with multiple
pools or farms) or to the Grid without the need to know

∗stratos@bnl.gov

or adapt to the diversity of technologies and knowledge in-
volved while using multiple LRMS and their specificities.
Additionally, the strategy was adopted to shield the users
against changes in technologies inherent to the emerging
Grid infrastructure and developments.

In its simplest form, SUMS presents itself to the end user
as a wrapper around evolving technologies sitting on top of
one or multiple queue systems negotiating between avail-
able queues and pools. The client wrapper interprets as
input an XML file describing the user’s intend for accom-
plishing a task and its associated work-flow rather than a
traditional ”shell script” code workflow. The XML meta-
job description follows a schema defined by a high level
User Job Description Language or U-JDL [2] and a single
meta-job may be split into many jobs or sub-tasks which
are then dispatched to diverse LRMS. The sub-division of
a meta-job into sub-jobs depends entirely on the user’s in-
put and the available resources. Such job spliting decisions
are based on adaptive scheduling policies which may take
into consideration conditions such as: the computing cycles
available across available resources (via delegation to the
LRMS or based on a statically defined branching ratios for
scheduling to sites RMS or via Condor-G), the availability
and knowledge of statically populated datasets across dis-
tributed pool, the intended user access type and pattern for
a given requested dataset: resources depend on available
access methods for datasets from a given site, a given host
or a given cluster etc.

While simplistic, the initial implementation of SUMS
was planned to be enhanced by several additional mod-
ules aimed to provide information such as the ones re-
lated to the available LRMS (status, availability, priori-
ties, queue length and latencies, etc.), available resources
and predicted resource availability. In essence, this kind
of information is provided to the Meta-Scheduler as input
necessary to make high-level resource brokering decisions
allowing, for example, a dynamic load balancing of jobs
between and across available sites. The evolutionist ar-
chitecture of the Meta-Scheduler allows for an easy way
to take advantage of existing information provide plugins,
such as the Monitoring and Discovery System (MDS) [3],
Ganglia [4] and MonALISA [5]. Such information will be
gathered along experiment specific information (FileCata-
log, MetaData or dataset and data collections information)
into scheduling policies that encapsulate the logic by which
the request will be satisfied. Additionally, new policies
may be developed in parallel of production-level policies
without disruption of user’s activities.



THE MONALISA PROJECT

The MonALISA (Monitoring Agents in A Large Inte-
grated Services Architecture) system provides a distributed
monitoring service. It is based on a scalable Dynamic
Distributed Services Architecture (DDSA) that is imple-
mented using JINI/JAVA and WSDL/SOAP technologies.
The scalability of the system derives from the use of au-
tonomous multi-threaded station servers to host a variety of
loosely coupled self-describing dynamic services, the abil-
ity of each service to register itself and then to be discov-
ered and used by other services or clients that require such
information, and the ability of all services and clients sub-
scribing to a set of events (state changes) in the system to
be notified automatically. The framework integrates sev-
eral existing monitoring tools and procedures to collect pa-
rameters describing computational nodes, applications and
network performance. It has built-in SNMP support and
network-performance monitoring algorithms that enable it
to monitor end-to-end network performance as well as the
performance and state of site facilities in a Grid.

The Monitoring Service and the Data Collection
Mechanism

The core of the MonALISA monitoring service is based
on a multithreaded system (the monitoring service) that
performs the many data collection tasks in parallel, inde-
pendently. It is designed to easily integrate existing mon-
itoring tools and procedures and to provide this informa-
tion in a dynamic, self-describing way to other services or
clients. MonALISA services are organized in groups and
their group attribute is used for registration and discovery.

The modules used for collecting different sets of infor-
mation, or interfacing with other monitoring tools, are dy-
namically loaded and executed in independent threads. A
dedicated control thread is used to stop properly the threads
in case of errors, and to reschedule those tasks that have
not been finished. Monitoring modules are dynamically
loaded units that execute procedures to collect sets of pa-
rameters (monitored values). They can be used for pulling
data (and in this case it is necessary to execute them with a
predefined frequency) or to install pushing scripts that send
the monitoring values periodically back to the monitoring
service. Monitoring modules can be loaded dynamically
from a few centralized locations, as they are needed, mak-
ing large monitoring system easy to update. The collected
monitoring values are stored in a relational database, lo-
cally for each service. A normalized scheme is used to
store the result objects provided by the monitoring mod-
ules in indexed tables, which are generated dynamically, as
needed.

Registration and Discovery

Each MonALISA service registers with a set of JINI
Lookup Discovery Services (LUSs), as a member of a
group, and having a set of attributes. The LUSs are also

JINI services and may be registered with other LUSs result-
ing in a distributed and reliable network for registration of
services. Services also provide the code base for the prox-
ies that other services or clients will need to instantiate for
using it. The registration is based on a lease mechanism
that is responsible to verify periodically that each service is
alive. In case a service fails to renew its lease, it is removed
from the LUSs and a notification is send to all the services
and clients that subscribed for such events.

Clients, Proxy Services, Pseudo-Clients and
Repositories

Any monitor client service is using the LUSs to find all
the active MonALISA services running as members of one
or several groups, ”communities”. It is possible to select
services based on a set of matching attributes. The clients
connect directly with each service it is interested in for re-
ceiving monitoring information. They first download the
proxies for the service and they instantiate the necessary
classes to communicate with it.

The architecture also provides a client proxy service
(also a JINI service) which is used by clients to connect to
different services. The mutual discovery between services
and proxies is used to detect when a service runs behind a
firewall. In this case the service initiates a connection to all
available proxies in a community and registers itself with
the LUSs. Any client can now interact with such services
via the proxy services. At the same time, the proxy service
does an intelligent multiplexing of subscribed data for mul-
tiple clients. Multiple proxy services offer redundancy and
load balancing of clients.

Clients can get any real-time or historical data by using
a predicate mechanism for requesting or subscribing to se-
lected measured parameters. These predicates are based
on regular expressions to match the attribute description of
the measured parameter a client is interested in. In case
of requests for historical data, the predicates are used to
generate SQL queries into the local database. Subscrip-
tion requests result in the creation of dedicated threads to
serve the client. These threads are responsible to perform
the matching for all the predicates submitted by the client
with the measured parameters. The same threads send the
selected results back to the client as compressed serialized
objects. Requests for monitoring data are also possible us-
ing the WSDL/SOAP binding. The class description for
predicates and the methods to be used are described in
WSDL and any client can create dynamically and instan-
tiate the objects it needs for the communication.

A generic framework for building pseudo-clients for the
MonALISA services was developed. This has been used
for creating dedicated web service repositories with se-
lected information from specific groups of monitoring ser-
vices. The pseudo-clients use the same LUSs approach to
find all the active MonALISA services from a specified set
of groups and subscribes to these services with a list of
predicates and filters. These predicates or filters specify



the information the pseudo-client wants to collect from all
the services. Pseudo-clients store all the values received
from the running services in a local MySQL database, and
is using procedures written as Java threads to compress old
data. A Tomcat based servlet engine is used to provide a
flexible way to present global data and to construct on the
fly graphical charts for current or customized historical val-
ues, on demand. Multiple Web Repositories can easily be
created to globally describe the services running in a dis-
tributed environment.

PROVIDING MONALISA MONITORING
DATA TO SUMS

Monitoring information is essential for developing the
required higher level services and components of the Grid
system that provide decision support (and eventually some
sort of automated decisions) to help maintain and optimize
workflow. As SUMS needs to reliably access monitor-
ing information for complex decision making mechanisms,
the MonALISA monitoring system appears to be a natural
match.

We have currently deployed three separate MonALISA
monitoring services for the Grid needs of the STAR col-
laboration: one for the resources at the RHIC Computing
Facility (RCF) at BNL, one at the Information Technology
Division (ITD) also at BNL, and a third one at PDSF, at
NERSC/LBNL. All three monitoring services join a group
that has been defined to automatically discover the mon-
itoring services that provide relevant monitoring data. A
Web Repository has also been set up to provide real time
and historical aggregate monitoring data for our group of
services.

The Queue Monitoring Module

Custom monitoring modules have been developed to
serve our monitoring needs, always focusing on the exten-
sibility and reusability of such work. The queue monitor-
ing module provides aggregate status information for the
most popular queuing systems (CONDOR [6], LSF [7],
PBS [8]) using the same attributes, making the use of
such information easy and self-contained into a defined
schema. Initially, we make the provided information com-
patible with the Grid Laboratory for a Uniform Environ-
ment (GLUE) [9] schema. In particular, the Computing
Element (CE) of the GLUE Schema represents the entry
point to a queue, with one CE per queue. The attributes
of the Status object of the CE Element are the most rele-
vant: the number of currently running jobs (RunningJobs),
the number of jobs that are in a state other than running
(WaitingJobs), total number of jobs (TotalJobs), states a
queue can be in (Status), worst time between job submis-
sion till the job starts its execution (WorstResponceTime),
estimated time between job submission till when the jobs
starts its execution (EstimatedResponseTime), and number
of free CPUs available to the Scheduler (FreeCPUs). In de-

veloping the queue monitoring module similar work [10]
has been taken into account.

Using WSDL/SOAP Bindings

In order to provide easy access to monitoring data, the
MonALISA system has included WSDL/SOAP bindings
for all the distributed objects. A Web Service Client has
already been integrated with the SUMS code and a policy
has been implemented that uses the retrieved monitoring
data in decision mechanisms. Predicates are used to se-
lect the parameters that are relevant to the Meta-Scheduler
policy specified by the end user. Accessing, though, mon-
itoring data that are stored locally at each individual re-
mote monitoring service in a sequential order has a num-
ber of disadvantages: the direct invocation of individual
remote web service functions completely bypasses all the
advantages the JINI technology offers including the mech-
anism to automatically discover new monitoring services
that have joined our ”community”, there is no fail-over pol-
icy in case the connection to a remote services is lost, the
data retrieved using WSDL/SOAP were delayed or histor-
ical, and finally, there is an extra overhead to translate the
web service methods invoked into SQL queries. Regard-
less of the above disadvantages, using this simplistic mech-
anism of accessing monitoring data from each individual
remote site turned out to be a good debugging tool when
comparing data retrieved using different mechanisms.

The same WSDL/SOAP bindings that are available at
each individual monitoring service are also available at the
Web Repository. Accessing monitoring data via the Web
Repository eliminates many of the above disadvantages.
Monitoring services that are part of a group are automat-
ically discovered via the LUSs provided by the JINI tech-
nology. New web service methods were provided by the
MonALISA project developers to access data directly from
the data cache of the Repository, instead of translating such
requests into SQL queries, returning the latest available
monitoring data. Only one invocation of the web service
client is necessary to retrieve the monitoring data from all
services in the group, instead of the many required to ac-
cess each individual service. Currently, the only disadvan-
tage of this method is that the web repository may be a
single point of failure. We are looking however into having
replicas of the same repository with fail-over capabilities.

In order to provide SUMS with lightweight access to
monitoring data we have deployed a pseudo-client locally.
Pseudo-clients discover and access each monitoring service
via one of the four available proxy services with fail-over
capabilities. This way monitoring data from all services in
the group are collected into a local data cache instead of the
remote one at the repository.

Initial Testing

The implemented monitoring policy in SUMS accesses
the locally cached queue monitoring data and uses them to
select the most appropriate queue for job submission. The



Response Time is the parameter that is used in ordering all
the discovered queues. This parameter takes into account
the number of pending jobs, the average job pending time,
the number of running jobs and the average job run time.
The queue with the smallest Response time is selected. We
are currently testing this mechanism using only two local
LSF queues on separate clusters. A passive policy is used to
submit jobs alternating between the two queues, while the
monitoring policy uses the queue monitoring data to select
a queue with the minimum response time. Preliminary re-
sults indicate that the monitoring policy was very effective
in choosing the appropriate queue for the job submission
reducing significantly the turn around time. However, there
were situation in which our queues were being saturated
by jobs submitted by another batch system submitting jobs
that preempted our testing jobs. Since our policy did not
have any information about the second batch system, the
monitoring policy became ineffective. Although our first
testing results are incouraging, we clearly need to continue
polishing our monitoring policy.

CONCLUSIONS

We work on the development and deployment of a
set of high-level services and solutions aimed to enhance
scheduling capabilities of Resource Brokers, Grid enabled
schedulers or Meta-Schedulers. We demonstrated that
the MonALISA monitoring framework provides consistent
monitoring information that has been successfully imple-
mented in the STAR Unified Meta-Scheduler.

REFERENCES

[1] Nucl. Inst. and Meth. A499 (2003), 624-813

[2] http://www.star.bnl.ogv/STAR/comp/Grid/scheduler/rdl/

[3] The Monitoring and Discovery System (MDS) is the
information services component of the globus toolkit:
http://www.globus.org/mds/

[4] For a description of the Ganglia project see
http://ganglia.sourceforge.net/

[5] H.B. Newmanet al., Proceedings of the Computing in High
Energy Physics (CHEP) 2003 conference, La Jolla, CA,
March 25-28, 2003.

[6] http://www.cs.wisc.edu/condor/

[7] http://www.platform.com/products/LSF/

[8] http://www.openpbs.org/

[9] For more information on the GLUE Schema, see:
http://www.hicb.org/glue/glue-schema/schema.htm

[10] The European Data Grid (EDG) project has developed an
MDS Information Provider that reports similar queue infor-
mation.


