
PRACTICAL APPROACHES TO GRID WORKLOAD AND RESOURCE
MANAGEMENT IN THE EGEE PROJECT

P. Andreetto, S. Borgia, A. Dorigo, A. Gianelle, M. Mordacchini, M. Sgaravatto, L. Zangrando,
INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
S. Andreozzi, V. Ciaschini, C. Di Giusto, F. Giacomini, V. Medici, E. Ronchieri, V. Venturi, INFN
CNAF, Viale Berti Pichat 6/2 , I-40127 Bologna, Italy
G. Avellino, S. Beco, A. Maraschini, F. Pacini, DATAMAT S.p.A., Via Laurentina 760, I-00143
Roma, Italy
A. Guarise, G. Patania, INFN Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
D. Koǔril, A. K řenek, L. Matyska, M. Mulǎc, J. Posṕıšil, M. Ruda. Z. Salvet, J. Sitera, J.Škrabal, M.
Voců, CESNET z.s.p.o., Zikova 4, 160 00 Praha 6, Czech Republic
V. Martelli, M. Mezzadri, F. Prelz, D. Rebatto, INFN Sezione di Milano, Via Celoria, 16, I-20133
Milano, Italy
S. Monforte, M. Pappalardo, INFN Sezione di Catania, Via S. Sofia 64, I-95123 Catania, Italy

Abstract

Resource management and scheduling of distributed,
data-driven applications in a Grid environment are chal-
lenging problems. Although significant results were
achieved in the past few years, the development and the
proper deployment of generic, reliable, standard com-
ponents present issues that still need to be completely
solved. Interested domains include workload management,
resource discovery, resource matchmaking and brokering,
accounting, authorization policies, resource access, relia-
bility and dependability. The evolution towards a service-
oriented architecture, supported by emerging standards, is
another activity that will demand attention. All these issues
are being tackled within the EU-funded EGEE project (En-
abling Grids for E-science in Europe), whose primary goals
are the provision of robust middleware components and the
creation of a reliable and dependable Grid infrastructure to
support e-Science applications. In this paper we present
the plans and the preliminary activities aiming at providing
adequate workload and resource management components,
suitable to be deployed in a production-quality Grid.

INTRODUCTION

The aim of the EU funded EGEE (Enabling Grids for E-
science in Europe) project [1] is to build on recent advances
in Grid technology and develop a service Grid infrastruc-
ture in Europe, available to scientists. This also means pro-
viding robust middleware components, deployable on sev-
eral platforms and operating systems, corresponding to a
set of core Grid services.

Workload management is one of these key Grid ser-
vices. In the past few years significant results have been
achieved on the problem of scheduling and efficiently man-
aging a big number of different data-intensive jobs to a
Grid encompassing many and heterogeneous resources.
The Workload Management System implemented within
the DataGrid project [2, 3], the Condor system [4] and

the EuroGrid-Unicore resource broker [5] are some exam-
ples that must be reported. However the problem of Grid
scheduling and resource management can of course not be
considered as completely solved yet since many areas still
require attention.

Taking into account the previous experiences from other
Grid projects, the feedback and requirements coming from
the reference applications, the on-going standardization
specifications, an architecture for the EGEE Workload
Management System has been designed and it is being im-
plemented. It is presented in the rest of this paper.

ARCHITECTURE OF THE EGEE
WORKLOAD MANAGEMENT SYSTEM

The Workload Management System (WMS) comprises a
set of Grid middleware components responsible for the dis-
tribution and management of tasks across Grid resources,
in such a way that applications are conveniently, efficiently
and effectively executed.

The specific kind of tasks that request computation are
usually referred to as “jobs”. In the WMS, the scope of
tasks needs to be broadened to take into account other kinds
of resources, such as storage or network capacity. This
change of definition is mainly due to the move from batch-
like activity to applications with more demanding require-
ments in areas like data access or interactivity, both with
the user and with other tasks. The WMS will broaden its
scope accordingly.

Functionality

The core component of the Workload Management Sys-
tem is the Workload Manager (WM), whose purpose is
to accept and satisfy requests for job management, ex-
pressed via a Job Description Language (JDL) based on
ClassAd [6], coming from its clients. The other fundamen-

899

tal component is the Job Logging and Bookkeeping Ser-
vice, which is described below.

For a computation job there are two main types of re-
quest: submission and cancellation (the status request is
managed by the Logging and Bookkeeping Service).

In particular the meaning of the submission request is
to pass the responsibility of the job to the WM. The WM
will then pass the job to an appropriate Computing Ele-
ment (CE) for execution, taking into account the require-
ments and the preferences expressed in the job descrip-
tion. The decision of which resource should be used is
the outcome of amatchmakingprocess between submis-
sion requests and available resources. The availability of
resources for a particular task depends not only on the state
of the resources, but also on the utilization policies that
the resource administrators and/or the administrator of the
Virtual Organization (VO) the user belongs to have put in
place.

Scheduling Policies

A WM can adopt a more or less eager or lazy policy in
order to schedule a job. At one extreme, eager scheduling
dictates that a job is bound to a resource as soon as possible
and, once the decision has been taken, the job is passed to
the selected resource for execution, where, very likely, it
will end up in a queue. At the other extreme, lazy schedul-
ing foresees that the job is held by the WM until a resource
becomes available, at which point that resource is matched
against the submitted jobs and the job that fits best is passed
to the resource for immediate execution. Varying degrees
of eagerness (or laziness) are applicable.

At matchmaking level the main difference between the
two extremes is that eager scheduling implies matching a
job against multiple resources, whereas lazy scheduling im-
plies matching a resource against multiple jobs.

The WM internal architecture will accommodate appli-
cation of the different policies, implemented as easily in-
terchangeable plugins, depending first of all on the require-
ments and preferences expressed in the job description, but
also on the overall state of the Grid, according to appropri-
ate heuristics. Such knowledge can only come from proper
investigation (including the evaluation of relevant metrics,
covering both resource utilization and user satisfaction),
with the purpose to understand strengths and weaknesses
of the different scheduling policies in different scenarios.

The Information Supermarket

The mechanism that allows the flexible application of
different policies is the decoupling between the collection
of information concerning resources and its use. The com-
ponent that implements this mechanism is dubbedInfor-
mation Supermarket(ISM) and represents one of the most
notable improvements in the WM as inherited from the EU
DataGrid (EDG) project.

The ISM basically consists of a repository of resource in-
formation that is available in read only mode to the match-

making engine and whose update is the result of either
the arrival of notifications or active polling of resources or
some arbitrary combination of both. Moreover the ISM can
be configured so that certain notifications can trigger the
matchmaking engine. This functionality will not only im-
prove the modularity of the software, but will also support
the implementation of lazy scheduling policies.

The Task Queue

The second most notable improvement in the WM inter-
nal design is the possibility to keep a submission request
for a while if no resources are immediately available that
match the job requirements. This technique is used, among
others, by the AliEn [7] and Condor [4] systems. Non-
matching requests will be retried either periodically (in an
eager scheduling approach) or as soon as notifications of
available resources appear in the ISM (in a lazy scheduling
approach). Alternatively such situations could only lead to
an immediate abort of the job for lack of a matching re-
source.

The component that implements this feature is dubbed
Task Queue(TQ) and, as for the ISM, provides a necessary
mechanism for the support of lazy scheduling policies.

Job Logging and Bookkeeping

The Logging and Bookkeeping Service (L&B) tracks
jobs in terms ofevents—important points of job life, e.g.
submission, finding a matching CE, starting execution
etc.—gathered from various WMS components as well as
CEs. The events are passed to a physically close compo-
nent of the L&B infrastructure (locallogger) in order to
avoid network problems. This component stores them in
a local disk file and takes over the responsibility to deliver
them further.

The destination of an event is one ofbookkeeping servers
(assigned statically to a job upon its submission). The
server processes the incoming events to give a higher level
view on the job states (e.g.Submitted, Running, Done)
which also contain various recorded attributes (e.g. JDL,
destination CE name, job exit code, etc.). Retrieval of both
job states and raw events is available via legacy and WS
querying interfaces.

Besides querying for the job state actively, the user may
also register for receiving notifications on particular job
state changes (e.g. when a job terminates). The notifica-
tions are delivered using an appropriate infrastructure.

The Overall Architecture

Figure 1 shows the overall architecture of the Workload
Manager, together with the interactions with external en-
tities. Among these the most coupled with the WM is
the Logging and Bookkeeping Service, which keeps events
generated by different components as a job traverses them.
Such events contribute to the generation of the status of a

900

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

Data
Management

Logging
& Bookkeeping

Access
Policies

Management

Information
System

� � �
� � �
� � �

submit
/monitor

notify
availability

submit

update

job request

Queue
Task

Job
Submission
& Monitoring

ISM
Updater

Information
Supermarket

Maker
Match

Web Service Interface

WM

Computing Element

Figure 1: Internal architecture of the Workload Manager.

job. Other entities are the Information System, used, for ex-
ample, to fill the Information Supermarket, the Data Man-
agement services, assisting the WM when the scheduling
involves knowledge concerning location of data on the Grid
and the Access Policies infrastructure.

Both the WM and the other services are expected to offer
a Web Service interface.

COMPUTING ELEMENT

The Computing Element (CE) is the service representing
a computing resource. Its main functionality is job man-
agement. In particular it must provide facilities:

• to run jobs (which includes also the staging of all the
required files).
Characteristics and requirements of jobs that must
be executed are specified relying on the same Job
Description Language (JDL), used within the whole
Workload Management System;

• to get an assessment of the foreseen “quality of ser-
vice” for a given job to be submitted. This reports,
first of all, if there are resources matching the require-
ments and available according to the local policies. It
then might provide an estimation of the local queue
traversal time, that is the time elapsed since the job
entered the queue until it starts execution;

• to cancel previously submitted jobs;

• to suspend and then resume jobs, if the local resource
management system allows these operations;

• to get the status of some specified jobs, or of all the
active jobs “belonging” to the user issuing the request;

• to be notified on job status, for example when a job
changes its status or when a certain status is reached.

For job submission, the CE will be able to work inpush
model(where the job is pushed to a CE for its execution)
or pull model(where the CE is asking the Workload Man-
agement Service for jobs).

When a job is pushed to a CE, it gets accepted only if
there are resources matching the requirements specified by
the user, and which are usable according to the local poli-
cies set by the local administrator. The jobs gets then dis-
patched to a worker node matching all these constraints.

In the pull model, instead, when a CE is willing to re-
ceive a job (according to policies specified by the local
administrator, e.g. when the CE local queue is empty or
it is getting empty) it requests a job from a known Work-
load Management Service. This notification request must
include the characteristics and the policies applied to the
available resources, so that this information can be used by
the Workload Management Service to select a suitable job
to be executed on the considered resource.

Various scheduling mechanisms within the pull model
must be investigated to determine which provide the best
performance in various situations when a CE willing to re-
ceive a job for execution, has to refer to multiple Workload
Management Services. Possible mechanisms include:

• The CE requests a job from all known Workload Man-
agement Services. If two or more Workload Manage-
ment Services offer a job, only the first one to arrive
is accepted by the CE, while the others are refused.

• The CE requests a job from just one Workload Man-
agement Service. The CE then gets ready to accept a
job from this Workload Management Service. If the
contacted Workload Management Service has no job
to offer within a certain time frame, another Workload
Management Service is notified. Such a mechanism
would allow supporting priorities on resource usage:
a CE belonging to a certain VO would contact first a
Workload Management Service referring to that VO,
and only if it does not have jobs to be executed, the
Workload Management Services of other VOs are no-
tified, according to policies defined by the owner of
the resource.

The CE, exposing a Web Service interface, may be used
by a generic client: an end-user interacting directly with
the Computing Element, or the Workload Manager, which
submits a given job to an appropriate CE found by a match-
making process.

The architecture of the Computing Element is repre-
sented in Figure 2.

TheMonitor (MON) Service deals with notifications. It
can be customized in particular to:

• asynchronously notify users on job status events, ac-
cording to policies specified by users (e.g. when a job
changes its status, when a job reaches a certain status,
etc.).

• notify about the CE characteristics and status. In par-
ticular, for a CE working in pull mode, this service
is used to request jobs to the Workload Management
Service.

901

LRMS

Client

Nodes
Worker

WEB

CE

Notifications

Job requests

jobGetStatus
jobResume
jobSuspend
jobKill

jobAssess
jobSubmit

MONCE

Figure 2: Architecture of the Computing Element.

OTHER SERVICES

Job Provenance (JP) is another Workload Management
System service. The purpose of the Job Provenance Ser-
vice is keeping track of the definition of submitted jobs, ex-
ecution conditions and environment, and important points
of the job life cycle for a long period (months to years).
Those data can be used for debugging, post-mortem anal-
ysis, comparison of job execution within an evolving envi-
ronment, as well as assisted re-execution of jobs. Only data
of completed (either successful or failed) jobs are handled;
tracking jobs during their active life is the task of L&B.

In general, gathered data are stored (i.e. copied) within
the JP storage in order to really conserve a partial snapshot
of the Grid environment when the job was executed, in-
dependently of changes of other Grid services. Obviously
there are practical limitations of the extent to which it is
feasible to record the entire job execution environment (in
the ideal case this would encompass a snapshot of the en-
tire Grid!). We restrict the recorded data to those that are
processed or somehow affect processing of the Workload
Management and Computing Element services.

Another service relevant with the Workload Manage-
ment System is the Accounting Service. The Accounting
Service accumulates information about the usage of Grid
resources by the users and by groups of users, including
Virtual Organizations as groups of users. This informa-
tion allows preparation of statistical reports, to track re-
source usage for individual users, to discover abuses and to
help avoid them. Accounting information could be used to
charge users for the Grid resources they have utilized. The
information available from the Accounting Service can also
be used to implement submission policies based on user
quotas or on resource usage (fair share). In principle it also
allows the creation of a real exchange market for the Grid
resources and services. The subsequent economic competi-
tion should result in market equilibrium, thereby promoting
load balancing on the Grid.

More details on these services can be found in [8].

CONCLUSIONS

In this article the planned architecture for the EGEE
Workload Management System has been presented. It
consists of several services (Workload Manager, Logging
and Bookkeeping, Computing Element, etc.) interacting
among them and also with other services outside the Work-
load Management System.

The architecture is now being implemented by integrat-
ing and revising existing Grid software components. In
particular the WMS implemented in the framework of the
DataGrid project, which is currently deployed and used in
the LCG Grid, is being revised in order to comply with the
EGEE midlleware architecture.

ACKNOWLEDGMENTS

EGEE is a project funded by the European Union un-
der contract INFSO-RI-508833. We also acknowledge the
national funding agencies participating in EGEE for their
support of this work

REFERENCES

[1] Home page of the EGEE project, http://www.eu-egee.org

[2] C. Anglano et al., “Integrating Grid tools to build a Comput-
ing Resource Broker: activities of DataGrid WP1”, in Pro-
ceedings of the 2001 Computing in High Energy and Nuclear
Physics Conference (CHEP01), Beijing, China, September
2001

[3] G. Avellino et al., “The first deployment of workload man-
agement services on the EU DataGrid Testbed: feedback
on design and implementation”, in Proceedings of the 2003
Computing in High Energy and Nuclear Physics Conference
(CHEP03), La Jolla, Ca, USA, March 2003.

[4] M. Litzkow, M. Livny and M. Mutka, “Condor - A Hunter
of Idle Workstations”, in Proceedings of the 8th International
Conference of Distributed Computing Systems.

[5] M. Romberg, “The UNICORE Grid infrastructure”, in “Sci-
entific Programming”, volume 10, pages 149–157, 2002.

[6] R. Raman, M. Livny and M. Solomon, “Matchmaking: Dis-
tributed Resource Management for High Throughput Com-
puting”, in Proceedings of the Seventh IEEE International
Symposium on High Performance Distributed Computing
(HPDC7).

[7] P. Buncic, A.J. Peters and P. Saiz, “The AliEn system, status
and perspectives”, in Proceedings of the 2003 Conference for
Computing in High-Energy and Nuclear Physics (CHEP 03).

[8] EGEE Design Team, “EGEE Middleware Architecture”,
https://edms.cern.ch/document/476451.

902

