
USING NAGIOS FOR INTRUSION DETECTION

M. Cárdenas Montes, E. Pérez Calle, F.J. Rodrı́guez Calonge, CIEMAT, Madrid, Spain

Abstract

Implementing strategies for secured access to widely ac-
cessible clusters is a basic requirement of these services,
in particular if GRID integration is sought for. This is-
sue has two complementary lines to be considered: security
perimeter and intrusion detection systems. In this paper we
address aspects of the second one.

Compared to classical intrusion detection mechanisms,
close monitoring of computer services can substantially
help to detect intrusion signs. Having alarms indicating the
presence of an intrusion into the system, allows system ad-
ministrators to take fast actions to minimize damages and
stop diffusion towards other critical systems.

One possible monitoring tool is Nagios
(www.nagios.org), a powerful GNU tool with capac-
ity to observe and collect information about a variety of
services, and trigger alerts.

In this paper we present the work done at CIEMAT,
where we have applied these directives to our local cluster.
We have implemented a system to monitor the hardware
and system sensitive information. We describe the process
and show through different simulated security threads how
does our implementation respond to it.

INTRODUCTION

The construction of the infrastructure necessary for the
system GRID presents new and interesting challenges. A
fundamental aspect to be able to reach the marked aims will
be the implantation of an effective system of security. To
avoid that the GRID is used by not authorized persons, it
will provide confidence to the investigators in his use. In
addition, it is indispensable to prevent that the system is
used to realize attacks against other systems.

In this context, the intrusion detection systems (IDS) ac-
quires special importance. The intrusion detection systems
allow to detect the intruders’ presence in the system as soon
as possible. This quick detection will minimize the dam-
ages produced in the system and avoiding that the platform
is used for further attacks to other systems. There are two
types of IDS, host intrusion detections systems (HIDS) and
network intrusion detections systems (NIDS). A NIDS is a
intrusion detection device, which looks at network traffic
and tries to detect intrusion attempts based on patterns and
specific packets. A HIDS is a intrusion detection device,
which seeks for unauthorized changes in files.

There are basically three ways to detect intruders on a
system: changes in the filesystem, strange entries in the

logfile and strange packets on the network. Our aim has
been the study, evaluation and implantation of a HIDS
based on Open Source software. A system based on
technologies like Nagios, SNMP, Tripwire and Chkrootkit
has been implanted in the CIEMAT, in the University of
Bacelona (UB) and in the University Autónoma of Madrid
(UAM).

NAGIOS

Nagios is a system designed for the monitoring of com-
puters, detection of failures in services and sending no-
tification out to administrative contacts. Nagios is not
specifically an IDS. On the other hand, Nagios possesses
a friendly interface, is easy to use, very flexible and it is
endowed a system of sending alerts.

Nagios has a modular design with a web interface and a
set of plugins to check the different services. To point up
his ability to support consultations on the protocol SNMP.
It can use the checksnmp plugin to check the value of the
various OIDs that the administrator is interested in. For
this is compulsory that SNMP services are running on the
remote host.

There is another way to check local o private services, it
is use checkby ssh. Checkby ssh is a plugin to execute a
script on a remote host using the SSH protocol. Any script
it want to execute on the remore host have to be installed
on the remote hosts beforehand.

What do we monitor?

As soon as an intruder gains access to a system across
a vulnerability, it is frequent that he realizes the necessary
actions to conceal his presence and to create a privileged
access. These actions can be realized by the installation
of a rootkit or manually. In this case, usually the intruder
creates an user with privileges of superuser. To detect this
action has been created a script to notify the number of
users with uid=0 (superuser privileges), sending a alert if
this number is bigger than 1.

Less frequent is that the intruder creates a user without
password. To detect this anomaly another script has been
created.

As soon as the intruder has gained a privileged access
to the system, he will try to capture information of other
computers on the same network (specially users and pass-
words). This task will be executed by a sniffer installed by
the intruder. The activation of the sniffer will mean that the
network interface will be put into promiscuous mode. A



Figure 1: View of Nagios main screen.

script to detect the promiscuous mode in the network inter-
face, also has been created.

Files used by the intruder (binaries of sniffer, configu-
ration files, information captured files) are usually hidden
in /dev the directory. Another script has been created to
ensure that no regular files have been hidden there.

These four scripts are executed using the plugin
checkby ssh. The information gathered by the plugin is
sent to the Nagios monitor. With this set of scripts the suf-
ficient information is covered as to detect quickly the pres-
ence of an intruder, so much if he realizes actions to conceal
his presence as if not. If an intruder change the ifconfig bi-
nary for other one that does not show that the interface is
in promiscuous mode, then will not be possible to detect
with this command if the interface is in this mode. So it is
necessary to prevent that our binaries being replaced into
otherstrojanized.

The detection of rootkits and trojans is an aspect not cov-
ered by these scripts.

TRIPWIRE AND NAGIOS

A knowledgeable malicious user will try to modify cer-
tain binaries of the system. Some of those binaries it will be
ifconfig, ls, find, netstat, ps, top... Those binaries modified
conceal the signs of presence of the intruder.

For example, the binary ps modified will conceal the ex-

ecution of the sniffer installed by the intruder. Or in case of
ifconfig, it will hide that the network interface is in promis-
cuous mode. It is in the detection of these alterations of
files where the use of tripwire turns out to be strategic. Fi-
nally, if the binary ls is altered it will not show the directory
where the intruder have installed their files.

Tripwire is an intrusion detection tool able to detect and
pinpoint changes to files. In the Open Source version, Trip-
wire is a command-line tool. On Unix systems, Tripwire is
able to detect changes affecting the following properties:

• File additions, deletes and modifications.
• File permissions and properties.
• Inode number and number of links.
• User id of owner and group id of owner.
• File type and size.
• Device number of the disk on which the inode associ-

ated with the file is stored.
• Device number of the device to which the inode

points.
• Number of blocks allocated to a file.
• Modification, access and creation timestamp.
• Inode creation and modificacion timestamp.
• Hash checking: RSA, MD5, MD4, MD2, SHA and

Haval code.

To detect these changes, tripwire establishes a ciphered
database of monitored files. Periodically the consistency



Figure 2: View of a computer services state screen.

of files is checked against the reference information in the
database. A report is created with the more relevant infor-
mation. It is necessary to incorporate the own binaries of
Tripwire to the database for assure the self-integrity.

Using the Tripwire database, the administrators can
check all the critical files for tampering. Now, how do
you know if someone has tampered with yours Tripwire
binaries or Tripwire database? After all, if the intruder can
modify the Tripwire database, any changes could not be
detected.

Several different methods exist. The easiest one is to
place Tripwire database on a read-only floppy disk. Since
most Linux machines have a floppy drive and few are in
use all the time, it’s a good match. Other possible schemes
include: remote mounting the Tripwire database from an-
other more secure machine read-only (for exemple NFS
read-only mount it from a remote, more secure machine
with a floppy), putting it on a write-protected Zip disk, or
even getting an old, small hard drive that has been jumpered
to hardware enable read-only and put it on that. The idea
is to put it on some media that you can make read-only in
hardware. It does you no good to place Tripwire database
where an intruder can mess with it.

At CIEMAT and the other institutes, we have chosen a
different strategy. A checksum of database file is executed,
and this information is inserted in the MIB tree. The hash

is checked by SNMP request against information resident
in a central platform.

What do we monitor?

To analyze routinely the consistency between the mon-
itored files and the stored information in the base of in-
formation, a script has been created that is thrown for Na-
gios. This script initiates the execution of triwpire, ana-
lyzes the generated report, and sends the resultant informa-
tion to agios. Based in this information Nagios generates
the necessary alerts.

In order to avoid that the execution of tripwire monopo-
lizes too many resources, the checking has been restricted
to a few binary of the system. These binaries have been
chosen for being the principal targets of the intruders: ls,
ps, top, netstat, su, find, ...

This script is executed by checkby ssh, as the four pre-
vious scripts.

With the use of Tripwire, an intruder will not be able to
change the monitored binaries. The attacker cannot to hide
his presence with modified binaries.

CHKROOTKIT AND NAGIOS

With the popularization of the automated tools of assault,
gaining privileged accesses and to conceal them has be-



come an extremely simple task. After the phase of explo-
ration and the phase of obtaining a privileged access, the
worry of the intruder centres on the installation of a rootkit
that conceals his presence and supports the obtained privi-
leges.

Chkrootkit is a command line tool that detects the pres-
ence of rootkits. It uses different methods:

• Checking the promiscuous mode in network inter-
faces.

• Existence of differences between the processes run-
ning in the system according to the command ps and
the information of /proc.

• Elimination of entries in the file wtmp, where the login
records are stored.

• Checking the opened connections.
• Checking the fingerprints of known rootkits.

Chkrootkit uses some system’s binaries for detect rootk-
its. So Chkrootkit will be trusted if those binaries are
trusted. The main group of these binaries are monitored
by Tripwire alread. So the responsibility is translated to
Tripwire.

What do we monitor?

In the integration of chkrootkit with Nagios a different
strategy has been followed that the one used with tripwire.
There has been created a script that is executed for snmpd
(Simple Network Management Protocol Daemon) and that
inserts state information in the tree MIB. This informa-
tion is gathered by a consultation SNMP. This consultation
SNMP is implemented in Nagios using his proper check,
checksnmp.

This strategy has been motivated in the long time of ex-
ecution that uses the test of chkrootkit. The consultation
snmpd of Nagios is implemented across a check for consul-
tations SNMP. In this check, it is only necessary to specify
the Object Identificator (OID), the machine target, and the
name of the community.

The use of Chkrootkit allows to detect the most modern,
sophistacated and popular systems of instruders’ conceal-
ment. Together with Tripwire and the scripts created by
authors, Chkrootkit establishes a HIDS capable of recog-
nizing the subtlest signs of instruders’ presence.

CONCLUSION

The implantation of a HIDS system formed by several
GNU technologies is possible. In the facilities imple-
mented at Ciemat, UAM and UB we monitor to the detail
the computing nodes, being capable of detecting the pres-
ence of an intruder from his initial steps. This model has
proved to be highly effective in the simulated assaults car-
ried out by the authors. Likewise it is of great help for
the administrators since the examination periodic and auto-
mated with these tools, it allows to save time in the security
tasks.

REFERENCES

[1] N. Murillo and K. Steding-Jessen, “Ḿetodos Para Detecçao
Local De Rootkits E Ḿodulos De Kernel Maliciosos Em Sis-
temas Unix”, Anais do III Simṕosio sobre Segurança em In-
formática (SSI’2001), (S̃ao Jośe dos Campos, SP), pp. 133–
139, Outubro de 2001.

[2] “Know Your Enemy: III, They Gain Root”, The Honeynet
Project, http://www.honeynet.org/papers/enemy3/, March
2000.

[3] “Know Your Enemy: II, Tracking The
Blackhat’s moves”, The Honeynet Project,
http://www.honeynet.org/papers/enemy2/, March 2001.

[4] “Know Your Enemy: A Forensic Analysis”, The Hon-
eynet Project, http://www.honeynet.org/papers/forensics/,
May 2000.

[5] Daniel J. Barrett, Robert G. Byrnes and Richard Silverman,
“Linux Secutiry Cookbook”, O’Reilly, June 2003.

[6] Reto de Ańalisis Forense. Rediris.
http://www.rediris.es/cert/ped/reto/index.ex.html

[7] E. Pérez Calle, M. Ćardenas Montes, F.J. Rodrı́guez Ca-
longe, “Using Tripwire to check cluster system integrity”,
CHEP’04, Interlaken, September 2004.

[8] Tripwire project.
http://www.tripwire.org

[9] Tripwire commercial page.
http://www.tripwire.com

[10] Chkrootkit.
http://www.chkrootkit.org

[11] Nagios monitoring tool.
http://www.nagios.org/


