
PRODUCTION DATA EXPORT AND ARCHIVING SYSTEM FOR NEW
DATA FORMAT OF THE BABAR EXPERIMENT

Artem Trunov, Tofigh Azemoon, Adil Hasan, Wilko Kröger
On Behalf of the BaBar Computing Group

SLAC Computing Services, Stanford, CA 94025, USA
Abstract

BaBar has recently moved away from using Objectiv-
ity/DB for its event store toward a ROOT-based one. Data
in the new format is produced at over two dozen institu-
tions worldwide including SLAC. Among new challenges
is the organization of data export from remote institutions,
its archival at SLAC and bringing it to the users for analy-
sis or import to their own institutions. The new system is
designed to be scalable, easily configurable on a client and
server side and adaptive to server load. It is integrated to
work with BaBar’s mass storage system (HPSS) and with
xrootd service [1]. Design, implementation, experience
with the new system, as well as future developments are
discussed in this article.

BABAR DATA PRODUCTION

The BaBar Experiment based at Stanford Linear Accel-
erator Center has been taking data since May 1999. Ini-
tial design of the event store utilized Objectivity/DB [2] as
the database technology [3]. Later, a ROOT-based event
store, called Kanga, was developed and used in parallel in
analysis only. Since the beginning of Run 4 (Nov 2003), a
new ROOT-based event store, was developed and used as
the primary event store of the experiment [4]. Almost all
the data stored in Objectivity/DB has been converted to the
new format.

The volume of data accumulated in Objectivity/DB fed-
erations as of today is 931 TB. Over 161 TB are produced
in the new Kanga format, including converted Objectivity
data, initial reconstruction of Run 4 data, and skimming of
Run 1-4 data.

Over 260 TB of disk space is used for production and
analysis at SLAC.

Distributed Production

Since the beginning of the experiment, data has been
produced not only at SLAC, but at other institutions. Ini-
tially, the Monte Carlo production was done at SLAC and
LLNL. Later, IN2P3 (France) and several other institutions
started to contribute to the Simulation Production. To-
day, with over 1 PetaByte of data, the production runs at
over two dozen institutions in the US, Canada and Europe.
Nowdays, off-site data production is not limited to simula-
tion. INFN (Padova) does all the initial event reconstruc-
tion. IN2P3, INFN and GridKa (Karlsruhe, Germany) con-
tribute to skimming.

Past Experience with Data Management

Distributed production efforts in BaBar brought some
challenges in data management. Initially, data from IN2P3
was shipped to SLAC on tapes via commercial postal ser-
vices. Shipment delays and manual handling of such im-
ported data at SLAC, as well as improvements in net-
work connections, led to switching to network only im-
port/export. To improve transfer speed and network utiliza-
tion bbcp [5], high performance multistream copy utility,
was developed at SLAC.

Another complication of the import/export procedure
was the specifics of Objectivity/DB OODBMS and the
event store design based on it. Database files had to be reg-
istered in the Objectivity federation catalog. During this
process, referred to as attaching a database to a federation,
the database file was scanned by Objectivity/DB adminis-
tration utility and any data corruption halted the process,
requiring intervention of a database administrator. Also,
new collections had to be loaded to the collection tree (ap-
plication level catalog). Both operations required locking
of the federation’s critical metadata, which interfered with
the users’ analysis activities. Sometimes a stubborn lock
from another application prevented the import from com-
pletion until the lock was removed. Scalability problem of
Objectivity federation, which manifested itself in growing
metadata access time as the federation got larger, also af-
fected delivery of data to physicists.

To ease the burden of lock conflicts in analysis federa-
tions, import of off-site data was done in dedicated import
federations, where databases were initially attached. Sub-
sequently, databases were attached to the analysis federa-
tions without a new scan, reducing locking time. Collec-
tions were loaded directly to the analysis federations.

Nevertheless such a procedure was not used for SLAC
production, where delivery time was more critical, and it
was easier to solve all problems within the same site.

As mentioned above, data corruption was one of the ma-
jor issues for data import since Objectivity/DB tools were
limited to checking for corruption at a database level. The
ollections could only be checked with standard physics
analysis applications, which was unacceptable because of
time and resources such operations required.

After importing into Objectivity/DB federation the data
had to be archived in SLAC mass storage system (HPSS by
IBM.) This system, while offering excellent reliability and
scalability to over 1 PB of data, has its own disadvantages.
HPSS uses a proprietary code, thus tape mount order and
file read and write order could not be controlled. Additional

775



Figure 1: Sharing concerns and responsibilities between subsystems.

disk space had to be acquired to reduce the load on HPSS
and the staging time.

To summarize, import/export problems included:

• Absence of efficient higher level tools to check data
consistency

• Very little automation of import error handling
• Different import procedures for data produced at

SLAC and at remote sites
• Inability to control HPSS to a desirable degree.

Motivation for New Development

Some of the problems metioned above have been ad-
dressed in the design of the new ROOT-based event store.
Since there are no more federations, data files have only to
be put in the mass storage and in the analysis area where
users can access them. There are no corruption issues, be-
cause data consistency is checked with a special tool before
leaving the production site. To take advantage of the new
event store design and resolve remaining issues, new trans-
fer/import tools were needed. Among the requirements for
the new transfer tool were:

• Full automation of data transfer and archiving
• Unification of all export and archiving procedures
• Reduction of human involvement in error handling
• HPSS-friendly system
• Low resource utilization, with focus on disk band-

width
• Protocol level backward compatibility with Objy

transfer/import tools
• Streamlined procedure for further data processing
• Assisting with exporting data to remote institutions

DEVELOPMENT OF A NEW TOOL

During the development of the new tool, focus was
not on designing yet another full-blown Storage Resource
Manager (SRM) or metadata catalog, but on making it as
simple as possible, while implementing the basic ideas dis-
cussed below.

Sharing Responsibilities and Concerns between
Subsystems

The first idea is illustrated on Fig. 1. The goal is to mod-
ularize transfer/import and define responsibilities of each
subsystem. In our schema, theProduction subsystem is
responsible for checking data for quality and consistency.
If data corruption is detected at a later stage, this subsystem
will have to deal with the issue.

Transfer subsystem is responsible for delivering of data
from production site to the import servers. It verifies check-
sum after transfer and keeps the necessary metadata about
transferred files.

Archiving subsystem is responsible for saving files in
the Mass Storage System. It is usually very site-specific
and has its own protocol and policies, making it difficult to
use out-of-box tools.

The role of Import subsystem is very simple in this
schema. It processes files after the transfer, preparing them
for archiving and hands them over to theArchiving sub-
system. Preparation may include changing file ownership,
placing files in migratable space and complying with other
MSS protocols.

It is worth emphasizing, that transfer is detached from
import, making the whole procedure less susceptible to any
failure that might occur during WAN transfers or even at
the remote site.

776



Figure 2: Central management.

Push-Pull model of data transfer

As SLAC is the only site that archives all the produced
data in the Mass Storage, and provides all the data to end
users, it would be natural to have a SLAC-centric data dis-
tribution model. Data management at SLAC is provided by
the Computing Department. All services are expected to be
always available and problems are expected to be solved
in a timely manner. Therefore we have chosen a transfer
model, where remote producers “push” data into SLAC. In
this model, local problems at multiple remote institutions
are no concern for SLAC administration, and only local
administrators are dealing with them. However, a problem
that occurrs at SLAC, would most likely affect all data ex-
porters and would be fixed by an administrator on duty.

On the other hand, the data that needs to be exported
to a remote site for analysis by local physicists is “pulled”
from SLAC. This is again done for the same reasons —
sites initiate transfer when they are ready, and may choose
to implement a protocol at their end that suits them.

Central Management

The idea of central management is illustrated in Fig. 2.
Here import is a web service that provides the clients

with transfer parameters, like target host name and target
directory, choice of the copy program, and login name on a
server. Parameters sent to a client depend on who the client
is, what data it transfers, and on the server load. All pa-
rameters are configurable on the server side. The client can
choose the copy program and its options, and can override
the login name. In this schema, it’s very easy to manage
transfers from the server side. If a server goes down due
to hardware failure or a scheduled maintenance, the system
can be configured to avoid that server. When something
else changes in the import environment, the change can be
made transparent to the users. Thus, reducing down time

and the need for transfer/import outages. The web service
is implemented using the SOAP protocol. Plain CGI is also
supported.

Import jobs use the same import configuration. Thus, the
whole system has a single global configuration file, man-
aged by the administrators at SLAC.

KanTransfer: What This Tool Is

New transfer/import tool, called KanTransfer, is a set of
client and server side applications written in Perl. It sup-
ports the transfer and import of both ROOT-based files and
objectivity databases, as a set of files or tar archives. It
has built-in support for bbcp and bbftp — two major WAN
copy applications used in BaBar, optionally verifies file
checksum, and can update BaBar’s bookkeeping database
after archiving the imported files.

FUTURE DEVELOPMENT

Load adaptive transfer

In order to use the network and server resources effi-
ciently, the transfer parameters need to match the network
and server conditions. Nowdays, wide area networks are
capable of high speed transfers, but disk speed is not grow-
ing as fast. As a result, it doesn’t make sense to accelerate
network transfer if data cannot be written to import server’s
disk with the same speed.

There are a number of standard tools for network tun-
ing, which probe the network between specified end points,
and provide options, such as the number of TCP streams,
or TCP buffer (window) size that provide the best per-
formance. The problem, however, is that those tests are
rather artificial, taking into account only network (i.e. test-
ing memory to memory transfers), and not taking into ac-
count possible concurrent activity on the network and end

777



servers.

Our idea is to set such network options so that overall
WAN copy performance is optimized, i.e. the criterion is
high file transfer rate between given servers, disk to disk.
Network options are supplied to a client’s copy application
and are not fixed. Instead, they are adjusted after transfer-
ring each file in order to “discover” the best combination,
providing optimal transfer rate. Thus, transfer options are
tailored to theactual load on the network and servers.

Reporting failures

Failures and problems are unavoidable, and are com-
pounded by the peer-to-peer nature of the transfer. Most of
the time, users do not properly report failures, nor do they
mention all necessary details, possibly due to frustration
caused by the failure. Sometimes, long email exchanges
are necessary to find out what actually happened. Ideally,
the developers and administrators should seeexactlywhat
a user sees on his screen.

Extending the idea of import as a web service, all the
errors should be reported to the import server. KanTrans-
fer is internally logging all the output to the screen, as
well as many other parameters of the application and trans-
fer, such as the version of KanTransfer, location where it
was called from, command line options, configuration file
options, timestamps, and all error and warning messages.
When a failure occurs, KanTransfer attempts to send this
information to the import side, if this is possible. Thus,
the administrator has full information about the failure, as
determined by the transfer tool, which greatly improves de-
bugging and feedback.

SUMMARY

A simple tool has been created to facilitate BaBar’s data
transfer and import. The tool is in production since the end
of 2003, running smoothly after usual startup difficulties.
All BaBar data is archived with this tool, logging about 0.8
TB daily on average (see Fig. 3).

Figure 3: BaBar’s monthly production of data in new
Kanga format.

ACKNOWLEDGEMENTS

The authors wish to thank the following people who
contributed to BaBar Data Distribution: Jean-Noel Albert,
Cristina Bulfon, Lawrence Mount, Hammad Saleem, Andy
Hanushevsky, Bill Weeks.

REFERENCES

[1] A. Hanushevsky, “The Next Generation Root File Server”,
CHEP’04, Interlaken, September 2004.

[2] http://www.objectivity.com

[3] J. Becla et al, “On the Verge of One Petabyte - the Story
Behind the BaBar Database System”, CHEP’03, San Diego,
March 2003.

[4] Matthias Steinke et al, “How to build an event store - the
new Kanga Event Store for BaBar”, CHEP’04, Interlaken,
September 2004.

[5] A. Hanushevsky, A. Trunov, L. Cottrell, “Peer-to-Peer
Computing for Secure High Performance Data Copying”,
CHEP’01, Beijing, September 2001.

778


