
Supporting the Development Process of the DataGrid Workload Management
System Software with GNU autotools, CVS and RPM∗

A. Gianelle, R. Peluso† , M. Sgaravatto, INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
F. Giacomini, E. Ronchieri‡ , INFN CNAF, Viale Berti Pichat 6/2 , I-40127 Bologna, Italy
G. Avellino, B. Cantalupo, S. Beco, A. Maraschini, F. Pacini, DATAMAT S.p.A., Via Laurentina 760, I-00143 Roma, Italy
A. Guarise, R. Piro, A. Werbrouck, INFN Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
D. Kouril, A. Krenek, Z. Kabela, L. Matyska, M. Mulac, J. Pospisil, M. Ruda., Z. Salvet, J. Sitera, M. Vocu, CESNET z.s.p.o., Zikova
4, 160 00 Praha 6, Czech Republic
M. Mezzadri, F. Prelz§ , INFN Sezione di Milano, Via Celoria, 16, I-20133 Milano, Italy
S. Monforte, M. Pappalardo, INFN Sezione di Catania, Via S. Sofia 64, I-95123 Catania, Italy
D. Colling, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2BW, UK

Abstract
Supporting the development of the Workload Manage-

ment System in the context of the European DataGrid was
a challenging task as the team was characterized by a high
geographic and administrative dispersion, with developers
distributed in various institutions and countries. Further,
software dependencies were complex as it was required
to integrate and interface a significant number of external
software packages. In this paper, we discuss how a combi-
nation of Concurrent Version System, GNU autotools and
other tools and practices was organized to allow the devel-
opment, build, test and distribution of the software. With
the proposed solution, we managed to combine ease-of-use
for distributed developers while preserving the central co-
ordination needed by the project-wide steering.

INTRODUCTION
The distributed development model of the European

DataGrid (EDG) project had to deal with several issues.
A large number of persons spread all over Europe had to
write software packages that are inter-dependent, therefore
called for frequent integration. In particular, the Workload
Management System (WMS) [1] development was rather
complicated because the team was both geographically and
administratively dispersed (four institutions with develop-
ers at nine different locations in three countries). More-
over, the software dependencies were numerous and com-
plex. Therefore, the Workload Management Architecture
was divided into components under the responsibility of
local development teams.

The fundamental requirement for concurrent develop-
ment directed us to the use of Concurrent Version System
(CVS) [2], which is the most common solution in the open
software community. CVS allows developers to separately
modify a file and to keep track of the changes made by the
others. Moreover, it allows for several software versions in
one repository.

∗This research was partially funded by the IST Program of the Euro-
pean Union under grant IST-2000-25182 (DataGrid project)

† rosario.peluso@pd.infn.it
‡ elisabetta.ronchieri@cnaf.infn.it
§ francesco.prelz@mi.infn.it

The EDG WMS package contains daemons, libraries,
test programs, documentation, etc. It is divided into com-
ponents that encapsulate independent functionalities part
of the package. The whole package is organised in a sin-
gle directory tree. Each component is identified by a sub-
directory and the main directory name is “workload”. Fur-
ther levels are present inside each component sub-directory.
These inner levels do not have a common structure, as com-
ponents are quite different: some of them are daemons,
while some others are libraries. The lack of a common
structure makes even more difficult to have a simple and
common build strategy for each of them. Clients of the
daemons, for example, are claimed to be compiled even
by different components than the current one. This is
the main source of inter-dependency between components
themselves.

In the remaining part of the paper, we show the EDG
WMS dependency categories, we discuss how to configure,
release and distribute the EDG WMS using GNU autotools
and other tools and practices.

THE EDG WMS DEPENDENCIES

In this section we show a simplified version of internal
dependencies present in the WMS components (see Fig-
ure 1) for the sake of simplicity.

thirdparty
ssl_utils bypasstrio loki

common interactive

loggingpurger

planning

proxydgas

jobcontroller checkpointing

network server

user interface

Figure 1: The WMS dependency graph.

647

Each box represents one of the WMS components.
Sometimes part of the internal structure of a component is
shown with a small box. The direction of the arrow means
that the destination object depends on the source one.

The components contained in the WMS have a complex
dependency structure. The dependencies can be divided
into four categories:
1. Non-EDG packages: packages that are developed out-
side the EDG project, such as MySQL, Boost libraries,
Condor libraries and executables.
2. Non-WMS EDG packages: packages that are devel-
oped by other EDG work-packages. For instance, in this
category we can find the Data Management and Informa-
tion Service libraries.
3. Modified non-EDG packages: packages developed
outside the EDG project that needed to be modified by
WMS work-package. Bypass, trio and the Globus FTP
server belong to this group. They needed to be customised
to meet our requirements and they are managed and dis-
tributed by the WMS work-package.
4. WMS components: software components devel-
oped entirely by the WMS work-package. The cross-
dependencies among these components make it rather dif-
ficult to cleanly structure them as separate packages. How-
ever, the internal dependencies were identified in order to
provide several WMS RPMs and not just a single monolith.

These constraints specifically affect the semantics of the
package configuration options, which must have the ability
to scan and resolve the dependencies needed by either a
single WMS component or the entire system.

GNU autotools AND THE EDG WMS CODE

One of the requirement for the EDG WMS software was
to build and run on the architecture RedHat Linux 7.3.
Since we wanted to easy the port to possibly new platforms,
we decided to adopt a generalized approach in all soft-
ware packages and components by using GNU autotools
[3], which refer to GNU Autoconf [3], Automake [3], and
Libtool [3] packages.

GNU autotools provides developers and maintainers a
set of prepackaged and flexibly modifiable tests for various
conditions that may differ across systems. GNU autotools
also simplify the build and distribution of source code pro-
grams, as the building is organised in a simple, standard-
ised two step process (configuration and build), which
does not require the instantiation of any special tool in or-
der to compile the code. The configuration step gen-
erates Makefile’s and perhaps other files, which are then
used during the build step. The build step uses the stan-
dard Unix make program, which reads a set of rules in a
Makefile and use them to build the program.

GNU autotools also allow to cleanly address a specific
requirement of the WMS, namely the configuration of in-
dividual components inside the same package, and the han-
dling of numerous and diverse external or third-party pack-
ages and libraries. In addition to this, they can be easily

used to obtain the configuration even of sub-packages. Fi-
nally, the handling of external or third part software and
libraries is quite easy.

In the EDG project it was decided to release and dis-
tribute the code using the RPM Package Manager [4], as
it provides extensive and accessible package management
services. We directed RPM in the build process by creating
a spec file. In order to accomplish this task we needed to
follow simple DataGrid rules [5] and added some internal
procedure to quickly check the WMS RPMs.

Configuration, Release and Distribution of the
EDG WMS Structure

Each dependency affects the configuration of the whole
package. The main goal of our configuration system is to
allow the developers of a single component to compile as
little as possible instead of compiling the whole package.
The build of the entire package can take up to 90 minutes
on a commodity PC, e.g., give a footnote such as ”Pentium
IV, 1.6 GHz, 512 MB RAM”. Furthermor, not all external
dependencies are required by every component. Capturing
the complex component interaction pattern shown in Fig-
ure 1, has proven to be difficult and, in some specific cases,
impossible with the available tools.

We have found necessary to develop some sort of au-
todep tool that allows to express and manage both internal
and external dependencies in a fashion similar to the “com-
mon” autotools.

This work has been started but not finished due to lack of
time, and it has become a future work. In this situation, the
“fast and furious” way has been to hardcode enabling op-
tions and conditionals directly into the configure.in file.
Each conditional was tied to a submodule (or part of it) and
its (de)activation has been obtained with a large number of
‘‘if’’ statements hardcoded in the configure.in .

The effect of enabling some components or parts
of them is the possibility to allow the building of
specific programs/libraries or to include entire direc-
tory trees necessary for that part. The compila-
tion of each component is enabled by default: it
can be explicitly disabled by using the appropri-
ate configure option (--enable-submodulename=no or
--disable-submodulename) or by enabling another
module that does not depend on it. Each enabled submod-
ule will also trigger the check for the presence of any other
external package related to it.

As previously mentioned, EDG WMS depends on var-
ious packages that are provided either by the DataGrid
project or externally. In order to correctly detect the pres-
ence and the position of such packages, it is necessary to
create a large number of specific tests and set a number
of variables. These tests may be put directly inside the
configure.in file, but this would make this file diffi-
cult to read. For this reason, we decided to create a specific
M4 [3] file for every package that does not already provide
one. These M4 files define just one macro called for in-

648

stance AC PACKAGE. In general they take three arguments:
the version of the package (when applicable), the action to
perform if the correct package is found, and the action if
it is not. The purpose of such macros is to check whether
(and where) the include files and libraries are available (if
the package is a library), or to try to understand the path in
case of executables (for example for Perl). Sometimes
they perform both operations (for example for Swig). The
macros of the first type define two (or more, in some special
cases) Makefile variables, usually called PACKAGE LIBS

and PACKAGE CFLAGS. The first one will contain the path
and the name(s) of the library(ies), while the second will
contain the path for the include files (if present). Some of
these macros will also define C macros containing other
information useful to the compiler. The second kind of
macros, instead, defines Makefile variables usually called
RUNPACKAGE, which will contain the full path for the re-
quired executable.

For each new release, the procedure adopted was the fol-
lowing. First of all, the set of bugs and new features to be
addressed (as extracted by the project bug-reporting sys-
tem) is defined, and communicated via e-mail or on the
IRC channel (where most of the communication within the
WMS work-package occurred). When all the related devel-
opment issues are resolved, an e-mail is sent to the work-
package WP1 mailing list, communicating the start time
of the test session. Before this time, developers have to
commit all pending changes with respect to the upcoming
release. When the announced time arrives, a CVS branch
called test <version> is created. Software is entirely
rebuilt starting from that branch and various tests are per-
formed, including the execution of the work-package WP1
specific regression test suite. If errors are found, these are
fixed and committed to the branch. When the test results
are satisfactory, the release is tagged on the branch and all
the applied fixes are merged to the main trunk.

Example of enabling/disabling a component

We show an example of how we allow the enabling of
a component and how its dependencies are handled inside
the configuration. We have chosen a “simple” case where
few dependencies need to be handled: the proxyrenewal
- a standalone daemon that retrieves renewed user proxies
from an external service -.

- Put some M4 macros in the configure.in - In
the configure.in file, we add a conditional variable
‘‘opt enable renewal’’ and put it equal to the value
‘‘yes’’. Together with it, we need to add the correspond-
ing Autoconf M4 macro in order to have the correct con-
figuration switch in the configure script:

AC ARG ENABLE(renewal,

[--enable-renewal build proxy renewal

[default=yes]],

enable renewal=‘‘$enableval’’,

enable renewal=no)

Note that if the option is not supplied to the configure
script, the default value of the enable submoduleoption

is ‘‘no’’.
In the configure.in file, after the declaration of all

the configure options and variables, an articulated ‘‘if’’

statement is used to disable the submodules not explicitely
enabled in the configure invocation:

if test ‘‘x$enable opt1’’ = ‘‘xyes’’ \

-o ‘‘x$enable renewal’’ = ‘‘xyes’’ \

-o ‘‘x$enable optN’’ = ‘‘xyes’’ ; then

opt enable opt1=$enable opt1

opt enable renewal=$enable renewal

opt enable optN=$enable optN

fi

The net effect of this test is that if one or more options are
enabled, only the corresponding ‘‘opt enable *’’ vari-
able is set to the value ‘‘yes’’. Once all these variables
(e.g ‘‘opt enable opt1’’ and ‘‘opt enable optN’’)
have the correct value, several tests are done in or-
der to check what external dependency has to be
tested for. The values of the ‘‘opt enable *’’

variables are then copied to another variable (e.g.
‘‘have renewal=$opt enable renewal’’). These
have * variables are then tested together with the con-
ditions on external dependencies in order to understand
which of the (selected) submodules have to be built. This
set of tests will result in having all the have * variables
set to ‘‘yes’’ or ‘‘no’’. They are then used to enable
the appropriate Automake [3] conditionals, using the
construct AM CONDITIONAL(AMC BUILD RENEWAL,.). In
this example the have renewal variable may also en-
able other conditionals, such as AMC BUILD COMMON,
AMC BUILD THIRDPARTY and others on which
proxyrenewal depends. The system is made in a
way such that by enabling another component that depends
on proxyrenewal, all these conditionals are automatically
enabled too, together with any other one specific to that
component.

Inside the configure.in file, M4 macro called
AC MYPROXY is used. That is, if one of the components that
depend on the MyProxy external package is enabled, the
test for its presence is carried on. In this specific example,
we were interested in this test if the opt enable renewal

variable was set. In order to be sure that the value of the
have * variables is something like ‘‘yes’’ or ‘‘no’’

their values are set by default to ‘‘no’’ before actually
performing all these tests.

if test ‘‘x$opt enable w renewal’’ = ‘‘xyes’’ \

AC MYPROXY([],have myproxy=yes,have myproxy=no)

fi

- Put some conditions in the Makefile.am - These
conditionals are used in the Makefile.am [3] files by the
automake tool to understand which programs, libraries and
subdirectories have to be included in the build process. In
the main Makefile.am (the one in the workload direc-
tory) we will find something like:

649

if AMC BUILD RENEWAL

WL RENEWAL = proxyrenewal

endif

...

SUBDIRS = config m4 $(WL SUBDIR1) ... \

$(WL RENEWAL) ... $(WL SUBDIRn)

...

The WL * variables represent the subdirs to be included
in the build process.

In the Makefile.am relative to the proxyrenewal sub-
dir we will find something like folow:

if AMC BUILD RENEWAL

bin PROGRAMS = edg-wl-renew

...

endif

That is, we will compile the edg-wl-renew command
line.

Example of automatically delivering WMS RPMs
In this section we show an example of how we automat-

ically deliver WMS RPMs. We describe how we check
spec files before build WMS RPMs.

- Put some M4 macros in the configure.in - We
added the M4 macro AC EDG RPMS, which sets the direc-
tory where WMS RPMs must be built. Its default is ‘pwd‘.
We also added another M4 macro AC RPM, which defines
the variables RPM LIBS, RPM CFLAGS, and RPM BIN PATH.
These variables are used in the Makefile to build a simple
piece of code that reads spec files and returns the ones that
go in the RPMs.

- Put rpm target in the Makefile.am - The main
Makefile.am (the one in the workload directory) in-
cludes the rpm target. As a consequence, it is enough to run
the command make rpm to build the WMS RPMs. In our
package we have organized the code in four spec files. The
main one covers the WMS services and APIs: two of them
apply to a couple of external packages that needed mod-
ifications, the last one just includes the testsuite descrip-
tion. In addition, we have added another target called make

rpm-check DESTDIR=<install location>, in order to
avoid the full time-consuming command make rpm in case
of errors in the package (e.g. when a new header file was
added in the code but not included in the Makefile.am).
This target builds the program checkfiles which reads
the spec files and extracts the list of files that goes in the
RPMs, which is saved in a file called rpmfiles.tmp. Then
it runs the commands make apidoc, and make install

DESTDIR=<install location>. The following piece
of code produces two files: installedfiles notin-

thespecfile.txtand specfiles notinstalled.txt.
Once obtained such files the file specfiles notinstal-

led.txt can be edited to check wheather the spec files
contain some old files. By viewing the file installed-

files notinthespecfile.txt it is possible to verify if
the spec files need to be upgraded.

CONCLUSION
WMS is developed by a group of persons working for

different institutions in different European countries. The
support of the development activity in such situation re-
quire both an appropriate choice of tools and organizational
guidelines. In our case, the role of the packager was intro-
duced, with the task of organizing the code tree structure,
providing templates for the packaging of new components,
overseeing on the application of project-wide rules [5] and
on the uniformity of build procedures. While this role en-
tailed was called to solve many build and installation issues
for any component, it also allowed all developers to con-
verge towards common formats for the Makefile.am and
M4 files, and a configure.in organized for all needed
tasks. Finally, it allowed developers to concentrate just on
code development without worrying about its overall orga-
nization.

We have summarised our experiences, the limits found
and the extensions added to standard code management and
packaging tools adopted by the EDG project, in order to ac-
comodate the needs of the Workload Management. A num-
ber of problem related to the integration of a very complex
set of internal and external dependencies were succesfully
identified and solved. The main tools used are: the CVS
repository, the GNU autotools to manage the building of
the package, and RPM for package management. The main
missing functionality discovered was related to the descrip-
tion of dependencies at the GNU autotools level, for which
a dedicated “autodep” tool was felt to be useful.

ACKNOWLEDGEMENTS
The authors wish to thank the WMS team for their

help and support in developing a better organization of the
WMS package. We also thank the EU and our national
funding agencies for their support of this work.

REFERENCES
[1] G. Avellino et al, “The EU DataGrid Workload Manage-

ment System: towards the second major release”, 2003 Con-
ference for Computing in High-Energy and Nuclear Physics
(CHEP03), La Jolla, California, 24-28 Mar 2003.

[2] K. Fogel et al, “Open Source Development with CVS”, Cori-
olis Group, October 2001.

[3] G.V. Vaughan et al, “GNU Autoconf, Automake, and
Libtool”, New Riders, October 2000

[4] D. Barners, “RPM HOWTO. RPM at Idle”, Free Software
Foundation, November 1999.

[5] Quality Assurance Group, European DataGrid Developers’
Guide (2003).

650

