
Conditions Databases: the interfaces between the different ATLAS systems

A.Amorim, D.Klose, L. Pedro, N.Barros, T.Franco
Faculty of Sciences of the University of Lisbon (FCUL), Lisbon, Portugal

D. Burckhart-Chromek, J. Cook, M. Dobson, J. Flammer, R. Hawkings, R. Jones, D. Liko, L. Mapelli
European Organization for Nuclear Research (CERN), Geneva, Switzerland

A. Perus, A. Schaffer, Laboratoire de l’Accelerateur Lineaire (LAL), Orsay, France
D. Malon, Argonne National Laboratory (ANL), Argonne, Illinois, USA

E. Badescu, M. Caprini
National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania

A. Kazarov, I. Soloviev, Y. Ryabov
Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg, Russia

I. Alexandrov, V. Kotov, M. Mineev
Joint Institute for Nuclear Research (JINR), Dubna, Russia

S. Kolos∗, University of California, Irvine, USA

Abstract

Conditions Databases are beginning to be widely used in
the ATLAS experiment. Conditions data are time-varying
data describing the state of the detector used to reconstruct
the event data. This includes all sorts of slowly evolving
data like detector alignment, calibration, monitoring and
data from Detector Control System (DCS).

In this paper we’ll present the interfaces between the
ConditionsDB and the DCS, Trigger and Data Acquisition
(TDAQ) and offline control framework (Athena).

In the DCS case, a PVSS API Manager was developed
based on the C++ interface for the ConditionsDB. The
Manager links to a selection of datapoints and stores any
value change in the ConditionsDB. The structure associ-
ated to each datapoint is mapped to a table that reflects this
structure and is stored in the database.

The ConditionsDB Interface to the TDAQ (CDI) is a
service provided by the Online Software that acts as an
intermediary between TDAQ producers and consumers of
conditions data. CDI provides the pathway to the Condi-
tionsDB information regarding the present or past condi-
tion of the detector and trigger system as well as all the op-
erational and monitoring data. It provides the link between
the Information Service (IS) and the ConditionsDB

Conditions database integration into the ATLAS Athena
framework is also described, including connections to
Athena’s transient interval-of-validity management, con-
version services to support conditions data I/O into Athena
transient stores, and mechanisms by which the conditions
database may be used for timestamp-mediated access to
data stored in other technologies such as NOVA and POOL.

INTRODUCTION

Conditions Databases [1] are beginning to be widely
used in the ATLAS experiment. The Conditions Database

∗On leave from PNPI

contains conditions data, that is, data describing the state
of the detector for a given time and that are necessary to
reconstruct the event data. Conditions data are typically
time-varying data which evolve slowly and include detec-
tor alignment data, calibration data, monitoring data and
Detector Control System (DCS) data. Since all this data
is provided or required by other systems, it is necessary to
provide interfaces to each client and provider system. In
the following sections we describe the existing interfaces
between the conditions database and the DCS, Online Soft-
ware and ATHENA framework.

THE DCS INTERFACE

The DCS [3] is controlled and managed by the PVSS [5]
SCADA (Supervisory Control And Data Aquisition) sys-
tem. The PVSS structure consists of an Event Manager
which is the core manager and of specific managers for
each task, such as Data Manager, Control Manager and
Archive Manager. There are several other managers pro-
vided by PVSS for other tasks such as for hardware con-
trol. For specific tasks, for which no manager is provided
by PVSS, there is the possibility to create a custom made
API Manager which can integrate the PVSS system seam-
lessly. Since DCS data are conditions data, it was necessary
to come up with a way to export this data from PVSS to the
Conditions DB. After studying the different possibilities to
export data from PVSS, the best solution found, that is,
the most efficient and easiest to use, was the creation of a
custom API manager developed in C++, based on the C++
interface for the Conditions Database.

The manager requires a special datapoint1 from which
it reads the configuration. This configuration can be done
through PVSS using PVSS graphic panels (see figures 1
and 2). One of these panels allows to configure the database
connection (host, user, password) and the parent folder

1”datapoints” are special structures in which PVSS stores the data in-
ternally

575



Figure 1: Panel for manager configuration

Figure 2: Panel for datapoint selection

(which allows to divide data in a hierarchical way). It
also allows to start and stop the manager and data storage.
The other panel allows to define the set of datapoints to be
stored as structures and the set of datapoints to be stored as
structures with channel Id. When running, the API man-
ager connects to each of the defined datapoints and stores
the initial value in the database, defining a time interval
from sincet to till t. The sincet is set to the timestamp of
the PVSS message and the tillt is set to infinite. When a
value change occurs, the time interval of the previous value
is updated by setting the tillt of the previous entry to the
timestamp of the new PVSS message, and the new value
is stored in the database in the same way as the first value.
If the datapoint is a structure, this structure is stored in the
database as a table which reflects the structure. Supported
datapoint types are: int, long, float, double, bool, string and
dynamic arrays of each of these types (except bool). In case
anything goes wrong with the database connection, or the
data storage, the API manager sends the respective error
message to the PVSS system. The PVSS API manager is

available on the web [6] in a package which includes the
binary, the PVSS panels and a quick guide.

THE CONDITIONS DB INTERFACE TO
TDAQ

The Conditions Database Interface CDI is a service pro-
vided by the Online Software [2] that allows interfacing
between the components of the Online software and the
ATLAS Conditions Database. The system can be seen as
having two main objectives:

• to act as an intermediary between some TDAQ pro-
ducers and consumers of conditions data, the goal be-
ing to provide the interested systems information re-
garding the present or past condition of the detector
and trigger system that is required for their correct op-
eration;

• to provide a pathway between the TDAQ system and
the Conditions Database repository that will allow
TDAQ clients to register permanently conditions in-
formation that is required for later analysis of raw
data.

In its current implementation, the CDI establishes an in-
terface to the Online Software Information Service (IS),
providing all the necessary operational mechanisms that al-
low data retrieval from IS and storage in the ConditionsDB
(see figure 3. This is done by implementing the function-
ality to store data published in subscribed IS servers into
the conditions database. The subscription method from the
CDI is based on a quasi-dynamic process: the CDI sub-
scribes for the RunParams.Conditions information which
contains a multi-string value. This information provides to
the CDI the IS data sources that will be used to gather infor-
mation. If the RunParams.Conditions is updated, the CDI
will automatically re-configure itself in order to update the
IS data sources.

Figure 3: How CDI works

For storage, the CDI creates a CondDBTable for each
data source, with the proper structure that is provided by
the IS meta-information repository. If this information is
not available, a generic CondDBTable with a blob will
be created. Each time theRunParams.Conditionsis up-
dated with a new value, the CDI will re-create the Cond-
DBTables for each IS source and create a folder in the

576



Table 1: Example of table structure
Name Type
sincet bigint(20)
till t bigint(20)

run number bigint(20)
max events bigint(20)
rec enable bigint(20)

trigger type bigint(20)
detectormask bigint(20)

beamtype bigint(20)
beamenergy bigint(20)
filenametag text

conditions database that reflects the structure from the IS
source. When a new value from one (or more) of these
IS data sources arrive, the CDI stores a new value in the
database in the proper folder. For example the informa-
tions fromRunParams.RunParamswill be stored with the
following structure in the database in folder/tdaq/partition-
name/RunParams.RunParams:

At storage, the tillt is always infinite, but when an up-
date for each Information occurs, a new entry will be stored
in the database and the time interval for the previous en-
try is closed, i.e. the tillt of the previous entry is set to
the sincet of the new entry. Through the CDI all IS data
considered to be conditions data is stored in the conditions
database.

THE ATHENA INTERFACE

ATHENA is the ATLAS Common Framework. It is
based upon the GAUDI framework which was initially de-
veloped by LHCb but is now a common project with AT-
LAS. ATHENA [4] is a part of the ATLAS Offline Comput-
ing project and requires access to the conditions database
for the offline computing algorithms. Therefore, since
ATHENA is a client for conditions data, it became neces-
sary to read the conditions data from ATHENA, especially
data stored from DCS and IS. The data access in ATHENA
is made in two steps:

• The IOVSvc handles the Interval of Validity (IOV) of
the required object asking IOVDbSvc for the address
of the object for the valid time.

• The data is retrieved by the Conversion Service and
sent to the Transient Detector Store.

When a request is sent to the StoreGate the IOVSvc is
responsible to define the IOV of the object requested. In
order to do this it uses the IOVDbSvc which connects to
the ATLAS Conditions Database and retrieves the IOV of
the object and the address to it’s data.

In the address fetched by the IOVDbSvc there is infor-
mation for the Conversion Service that is responsible to get

the object data. To retrieve data stored in the ATLAS Con-
ditions Database the responsability is from the CondDB-
MySQLCnvSvc (see figure 4).

The IOVDbSvc sends the information about the location
of the CondDBtable to the CondDBMySQLCnvSvc. Then
the data pointed by the IOVDbSvc is read by the CondDB-
MySQLCnvSvc which has also the responsability to copy
the data from the Conditions Database CondDBTable to an
ATHENA object.

In order to be able to access this data from ATHENA,
a new object was created in ATHENA, called Gener-
icDbTable. This object is the equivalent of the Cond-
DBTable used in the Conditions DB API and has all the
methods necessary to access the data contained in it. Since
this object is polymorphic, it has a very versatile structure
which allows to use it for all objects stored in the Condi-
tions Database. in other words the GenericDbTable is a
transient table wich has a structure very similar to the per-
sistency table that contains the data.

The GenericDbTable uses the same technology of the
CondDBTable having the same methods to retrieve the
object structure and its contents. However the Gener-
icDbTable can’t handle the interval of validy of the data,
unlike the CondDBTable. This comes from the fact that in
the ATHENA framework the object IOV and data are han-
dle by different services.

The CondDBMySQLCnvSvc is a conversion service that
can link to the Conditios Database and interpret the Cond-
DBTable from the Conditions Database API and store this
data to the transient Athena object. This conversion ser-
vice acts as an intermediate layer between the Persistency
and Transient Stores.

Using the ATHENA StoreGate pointers, any Conditions
Database data can be read from the ATHENA framework
in a way transparent to the user.

Figure 4: How the Athena interface works

ACKNOWLEDGEMENTS

We thank all of our ATLAS collaborators and, in par-
ticular, the developers from the online and offline software

577



domains. We also thank the users of our software for the
valuable feedback that helps us improve it. Our special
thanks to R.D. for his valuable help on the development
of the CondDBMySQLCnvSvc. Our thanks go also to Ser-
guei, for his help on the development of the CDI and Mihai
for the valuable and constructive comments .

REFERENCES

[1] A. Amorim, J. Lima, L. Pedro, D. Klose, C. Oliveira, N. Bar-
ros. IEEE-NPSS: An Implementation for the ATLAS Con-
ditions Data Management Based on Relational DBMSs. In
Proceedings of the 13th IEEE-NPSS Real Time Conference,
pp. 591- 595, May 2003.

[2] ATLAS Online Software
http://cern.ch/atlas-onlsw

[3] ATLAS Detector Control System
http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DCS/dcshome.html

[4] ATLAS Offline Computing
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/

[5] http://www.pvss.com

[6] http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DCS/CONDDB/CondDBhome.html

578


