CMD-3 PROJECT OFFLINE SOFTWARE DEVELOPMENT

A. Zaytsev*, Budker Institute of Nuclear Physics', Novosibirsk, Russia
E. Algaer, S. Pirogov, N. Stuly, Novosibirsk State University*, Novosibirsk, Russia

Abstract

This contribution contains the general design overview
and a status of implementation of the CM D-3 project of-
fline software for detector simulation and event reconstruc-
tion. Software design standards of the project are ob-
ject oriented programming techniques, C++ as a main lan-
guage, modular approach and XML/Schema usage for con-
figuring software components. The dedicated software de-
velopment framework (Cmd3Fwk) was implemented in or-
der to be the basic integration solution for building offline
reconstruction code, simulation tools and the 3rd level trig-
ger for the CM D-3 detector. The framework and a set of
modules are currently supported on Linux (Fedora Core 1
and 2) with gcc 3.3 compilers for x86 and x86_64 archi-
tectures. We also look forward to achieve high level of
integration with the ROOT framework and Geant4 toolkit.

VEPP-2000 COLLIDER AND
CMD-3DETECTOR

The CMD-3 is the general purpose cryogenic magnetic
detector [1, 2] for the VEPP-2000 electron-positron col-
lider [3, 4], which is being commissioned at the Budker
Institute of Nuclear Physics (BINP, Novosibirsk, Russia).
The main aspects of the physical program of the exper-
iment are the study of known and the search for a new
vector mesons, study of the pp and n#n production cross
sections in the vicinity of the threshold and search for ex-
otic hadrons in the region of center-of-mass energy below
2 GeV. The VEPP-2000 collider also is going to perform
the first test of round beam technique [5, 6].

The essential upgrade of the CM D-2 detector (designed
for the VEPP-2M collider at BINP) production farm and
distributed data storage management software is required
to satisfy new detector needs and scheduled to perform in
near future.

CMD-3 SOFTWARE DEVELOPMENT
FRAMEWORK

General Overview

The CMD-3 Software Development and Data Process-
ing Framework (officially named as CMD-3 SD/DP Fwk
or Cmd3Fwk) is based on the following assumptions about
typical HEP data treatment procedure:

*E-mail: zaytsev@star.inp.nsk.su
T Main Web Site: http://www.inp.nsk.su
¥ Main Web Site: http://www.nsu.ru

e The data analysis procedure is well represented by
a directed acyclic graph with the modules and da-
ta instances at the nodes, therefore the reverse call
method of building self-organizing modules chain can
be used.

e The input data is divided into so called ”runs” con-
sisting of so called "events” with the similar structure
withing the certain run, thus the cycle over the events
and runs for the data set being analyzed can be orga-
nized by the framework tools themselves, not by the
user-written code.

e The data instances are produced by the modules and
only the creator module of the certain data instance is
intended to modify it, so all the intermediate stages
of the data processing are preserved during the certain
event reconstruction.

Core Components

The CMD-3 framework distribution consists of
Cmd3Fwk_Share, Cmd3Fwk_Core and Cmd3Fwk_MDTC
shared libraries, cmd3fwk (“on demand” data processing
manager) and cmd3dmtc (code templates generator).

The data set processing sequence can be started by
passing modules chain XML configuration and input da-
ta sources list to cmd3fwk executable. The layout of
cmd3fwk usage is shown in Fig. 1.

XML Config

file (by user via .
web iface) On-line DB
cmd3fwk Server
standalone executable
Off-line DB
Server
Input Data
URI’s Command line DataFarm
config XML parameters
file (by user) (by user) Server

Figure 1: Cmd3Fwk core executable (cmd3fwk) configu-
ration and usage via command line interface.

Module instances factory is created during the dynamic
loading of libraries specified in the configuration and used
for building of requested instances. Modules and data in-
stances are registered in so called ”proxies” and accessed
via unique string identifiers. All data instances are regis-
tered by the modules during initialization. An example of
event processing modules chain is shown in Fig. 4.

518

The configuration of the module includes a complete
list of proxy input/output data instances parameters, exter-
nal input/output links names, additional module parameters
names and values, module status flags as shown in Fig. 2.

List of
Proxyl Links List of
name
actual_name Ft:o;.(IyO Links
p " ib_filename
awessjm'; CmdModule name
with local actual_name
i CmdModuleConfig cache_depth
List of iSFOG
Parameters |:> name |:> isActive
name type o
value lib_filename creator_priority
' isFOG
ngt of isActive List of
Extl Links ExtO Links
name name
URI URI
isActive
access_priority

Figure 2: Cmd3Fwk module basic interface.

The code template generation tool cmd3dmtc was intro-
duced to the framework in order to simplify the process of
adding new modules by users. The user module code tem-
plate and a complete code of optional intermediate classes
designed to hide low level proxy interfaces could be ob-
tained by calling cmd3dmtc executable with the modules
XML description filename as one of the command line pa-
rameters. The layout of cmd3dmtc usage is shown in Fig. 3.

New modules
header files

New modules
implementation
template files

MTL = Module Type List

cmd3dmtc
standalone executable

cmd3fwk
config schema

Figure 3: Cmd3Fwk code template generator (cmd3dmtc)
configuration and usage via command line interface.

Command line
parameters
(by user)

The low level (command line) user interfaces of core
tools are suitable enough for advanced developers, never-
theless the high level web interface would be more pre-
ferred for analysis job submission and modifying of exist-
ing XML configurations by users. The technical details of
implementation of such an interface are still under consid-
eration.

Current Satus of Implementation

The implementation of the core tools, configuration
parsers and basic code generation library of the framework
has been finished a few months ago (during summer 2004).
The implementation of the common logger to be used by
modules is in progress. We expect a few small changes of

module and proxy interfaces in the near future due to the
feedback from the users.

Framework integration with ROOT and Geant4

The simulation and reconstruction event data layout
which is shown in Fig. 5 includes various external compo-
nents. In order to test the compatibility of the framework
with extensively used ROOT data processing framework,
CLHEP library and Geant4 detector simulation toolkit we
have introduced a few interface modules to Geant4 and
ROOT TFile and TTree based output module as shown in
Fig. 6. We observed no performance or stability issues dur-
ing the test runs within that configuration.

CONCLUSION

The dedicated software development framework was im-
plemented in order to be the basic software integration so-
lution for building offline reconstruction code, simulation
tools and the 3rd level trigger for the CM D-3 detector.

Although the main area of application of the framework
is supposed to be HEP data processing, it also can be used
in any activities related to sequential data processing.

ACKNOWLEDGEMENTS

The authors are grateful to all the members of CMD-3
online and offline software development groups for fruit-
ful discussions during the design stage and also for useful
testing and debugging feedback.

REFERENCES

[1] D.N. Grigoriev, CM D-2 Detector Upgrade. hep-ex/0106009
[2] CMD-3 Collaboration Web Site: http://cmd.inp.nsk.su
[3] I.A. Koop, VEPP-2000 Project. physics/0106013

[4] VEPP-2000 Collaboration Web Site:
http://vepp2k.inp.nsk.su

L.M. Barkov et al., Proc. of the IEEE Particle Accelerator
Conference, San Francisco (1991), p.183

V.V. Danilov et al., Proc of the Asian Particle Accelerator
Conference, Tsukuba (1998), p.257

(5]

(6]

519

CMDMODULE 1

/ Data processing module.

_______ T \ CMDMODULE2

Data processing module.

CMDDATAIMODULE
Input module.

CMDMODULE3
Data processing module.

CMDDATAOMODULE
ROOT based output module.

Figure 4: Example of modules and data instances dependency graph. Data instances are created by modules during the
initialization. Modules called in the reversed direction from output module to input module and data instances updated
only once per event reconstruction cycle. External links (ExtLink) are specified by string resource identifiers (URI) and

interpreted by modules.

CLHEP based PG N1

CLHEP based PG N2

4{ AnipkoPak PGIface ‘

—

Fortran PGSlIface

Cmd3PG2Geant4

based on G4HepMClnterface

SimEventGenerator
I

Simulation &
Reconstruction
Event Data Flow

CLHEP::GenEvent
Secondary Particles

std::vector

G4VTrajectory™

Tracks &
Clusters

G(S) — Primary Generator (Set)

EventlO (ROOT)

Figure 5: General layout of the data types to be used in CM D-3 event reconstruction procedures.

CMDPHYSICSLISTIMODULE
Create Gent4 physics list according to
user XML config.

CMDGEOMETRYIMODULE
Create new world volume and fill it with
detector components according to user
XML config (materials and components
properties are taken from dedicated DB),
create also active volumes and

register digitizers.

CMDEVENTIMODULE

Generate primary event in the
CLHEP::GenEvent format with selected
primary generator, XML configured as well.

CMDG4MODULE
Inherited from G4RunManager and CmdModule

(override standard G4RunManager::BeamOn()
functionality).

Register physics list, geometry, digitizers and
transport primary event (converted to G4Event)

CMDEVENTOMODULE
ROOT based output module.

to particle tracer. Perform the reverse conversion
from traced G4Event to CLHEP::GenEvent.

Figure 6: Cmd3Fwk and ROOT, CLHEP & Geant4 integration test configuration overview.

520

