
POOL INTEGRATION INTO THREE EXPERIMENT SOFTWARE
FRAMEWORKS

G. Govi*, R. Chytracek*, D. Düllmann, M. Frank, M. Girone*, V. Innocente, P. Mato Vila, J.T.

Moscicki*, I. Papadopoulos, H. Schmuecker (CERN, 1211 Geneve 23, Switzerland)
K. Karr#, D. Malon#, A. Vaniachine# (Argonne National Laboratory, Argonne, IL 60439, USA)

P. Van Gemmeren (Brookhaven National Laboratory, Upton, NY 11973)
A. C. Schaffer (Laboratoire de l’Accelerateur Lineaire, F-91898 Orsay cedex, France)

W. Tanenbaum (Fermi National Accelerator Laboratory, Batavia, IL 60510, USA)
Z. Xie (Princeton University, Princeton, NJ 08544, USA)
T. Barrass (University of Bristol, Bristol, BS8 1TL, UK)
C. Cioffi (University of Oxford, Oxford, OX13NP, UK)

Abstract
The POOL software package has been successfully
integrated with the three large experiment software
frameworks of ATLAS, CMS and LHCb. This paper
summarizes the experience gained during these
integration efforts and highlights the commonalities and
the main differences between the integration approaches.
In particular, the role of the POOL object cache, the
choice of the main storage technology in ROOT (Tree or
Named Objects) and the approaches to catalogue
integration are discussed.

INTRODUCTION
The POOL project [1] has been created within the LCG

Application Area [2], to provide the LHC experiments
with a common software framework for persisting data.
Its main aim is to provide access to a generic data storage
system for various types of C++ objects, exposing an API
independent of any backend technology. This feature
means that software architectures can be easily adapted in
data handling technology over the LHC lifetime.
POOL has encouraged the concrete involvement of the
experiments in the project, including some experiment
members as a part of the POOL core developer team. This
has been particularly important when defining the specific
requirements (from synthesis of often overlapping use
cases) and to find a solution as common a solution as
possible.
In the first phase, the focus of the project has been
concentrated in addressing a solution for the storage of
event data objects. Typically, the experiment data models
involve complex hierarchal structures, described by non-
trivial object types. A well-suited solution for this use
case has been found in the file-based object streaming
provided by the ROOT [4] framework.
In line with its primary scope, POOL has developed a
specific backend for the ROOT-based persistency [5],
which allows handling the ROOT I/O mechanism through

the generic object storage API.
In the POOL Storage System the functionalities of the
ROOT streaming are fully maintained, offering both Key-
based and Tree-based storage formats. POOL also
provides additional features, like navigation capabilities
among object associations, centralized control of file
opening and a transaction-based access to the storage
system.
The first two years of life of the project have been spent
in the development and consolidation of the ROOT-based
object storage system, and of file catalogues and
collections based on several technologies [6].
In parallel, great efforts have been made by the
experiments to integrate the POOL software into their
frameworks. In fact, the follow up and the validation of
the various POOL releases into the frameworks have
significantly contributed to the consolidation of the
software.
Although a large part of the existing POOL software has
reached a significant level of maturity, important
development activities, like the implementation of an
RDBMS backend, are still underway. Most of the POOL
API has been integrated in the ATLAS [8], CMS [9] and
LHCb [10] software frameworks and widely used in large
production activities. These experiences show different
approaches in the use of POOL and can be seen as a first
large-scale validation test for the API.

Component-based Architecture and API
The POOL architecture is structured as a set of
hierarchically connected Service APIs (see fig. 1). The
I/O for the data objects towards the core POOL Storage
Service can be controlled through more intermediate
layers, depending on the additional feature required.
The lowest-level public interface is represented by the
Persistency Service. This interface allows the storage and
retrieval of data objects through simple non-typed
pointers, leaving the control of the object bookkeeping to
the client.
Over the Persistency Service, POOL exposes an
additional interface, the Data Service. Its main role is to

*funded by Particle Physics and Astronomy Research Council, UK
#work supported in part by the U.S. Department of Energy, Division of

igh Energy Physics, under contract W31-109-Eng-38 H

479

act as an object store, allowing efficient object re-use and
loading-on-demand. The Data Service interface is based
on smart pointer classes called References, which wrap
the individual data objects and enables for type-safe
storage or retrieval.

Persistency
Service

Persistency
Service

Data ServiceData Service

ClientClientClient

R
ef<T>

R
ef<T>

R
ef<T>

Storage
Service
Storage
Service

ClientClientClient

Persistency
Service

Persistency
Service

Data ServiceData Service

ClientClientClient

R
ef<T>

R
ef<T>

R
ef<T>

Storage
Service
Storage
Service
Storage
Service
Storage
Service

ClientClientClient

Figure 1 Hierarchical structure of the POOL Storage
Service package, with the main Service APIs.

Both the Persistency Service and the Data Service
provide access to the Session object, which can be used to
control the transaction management, and the explicit
handling of Database and Container objects.
The integration of POOL in a software framework can
follow different methods, depending on which POOL
components are involved and in which configuration.
From the early stage of the POOL developments, the need
to produce a minimal impact on the existing experiment
code was an important influence on the design of the
POOL API.
The three LHC experiment (ATLAS, CMS and LHCb)
who have adopted POOL have chosen three integration
approaches which differ for the POOL components used
and/or the configuration.

INTEGRATION IN ATLAS

The ATLAS offline software is based on the Athena
framework [11]. Athena provides the common services
needed by simulation, reconstruction, and analysis, and in

particular includes persistence services. The Athena
architecture, constructed on the GAUDI kernel
framework [12], provides access to a generic I/O
protocol. The POOL object storage system is seen by
Athena as a particular I/O technology. A dedicated
Conversion Service manages the POOL-specific aspects
of object storage through an interface that is independent
of POOL or any other specific technology choice.

Algorithm

Transient
Data Store

Data
Service

Persistency
Service

PoolSvc

AthenPoolCnvSvc

ROOT
files

POOL::DataSvcPOOL::FileCatalog
Athena services

POOL-specific
Athena services

POOL services

Algorithm

Transient
Data Store

Data
Service

Persistency
Service

PoolSvc

AthenPoolCnvSvc

ROOT
files

POOL::DataSvcPOOL::FileCatalog
Athena services

POOL-specific
Athena services

POOL services

Algorithm

Transient
Data Store

Data
Service

Persistency
Service

PoolSvc

AthenPoolCnvSvc

ROOT
files

POOL::DataSvcPOOL::FileCatalog
Athena services

POOL-specific
Athena services

POOL services

Figure 2 Integration of the POOL components into the
Athena framework.

In the Athena framework, object bookkeeping is managed
by dedicated transient data stores. When an object storage
or retrieval operation involves POOL, the POOL Service
is invoked. This component accesses the POOL Data
Service using the Reference interface. In this case,
however, the lifetime of the objects is not controlled by
the POOL Reference, being explicitly managed by the
Athena Data Store. Separate POOL Data Services are
instantiated for input and output, with the POOL Service
managing shared POOL configuration and access to
catalogues.
In this approach, the functionality of the POOL Data
Service cache duplicates some of the functionality already
present in the Athena/GAUDI object store machinery.
In Athena, both Tree-based and Key-based ROOT
streaming format are supported and they can be selected
in a job configuration file or script (JobOptions file).
The other POOL domains adopted by ATLAS and
integrated in Athena are File Catalogues and Collections.
The POOL File Catalogue interface has been integrated,
and specific backends have been selected to serve
different use cases: the XML Catalogue for local data
access, EDG-RLS as a master catalogue. In controlled
production, writing is separated from publication: output
files are first registered in XML catalogues, and later
published (often, after a QA step) in the master catalogue.
ATLAS is also using POOL ROOT and MySQL
Collections to build tag databases, integrating them into
Athena via Registration Services on output, and Event
Selectors on input.

480

INTEGRATION IN CMS

The main offline analysis in CMS is driven by the
Cobra framework [13]. POOL was adopted by Cobra at
an early stage in POOL’s development, and Cobra
continues to integrate new releases.
POOL has been integrated in Cobra by replacing the
functionality previously provided by Objectivity-based
code. With respect to Objectivity [14], the ROOT-based
POOL system has some limitations due to the file-based
storage: it does not allow the concurrent update of a
database from two processes, and it requires an additional
mechanism (like RFIO [15] or dCache [16]) for remote
access. However, the POOL system is less intrusive in
the Data Model (it does not require a base class), it
provides native support of STL Containers and enables
the declaration of ‘transient’ specific object attributes.

Algorithm Context
(Event) pool Refs

Local transient store

Persistent store

POOL

DataSvc
(Object cache)

Reconstruction on demand

Algorithm Context
(Event) pool Refs

Local transient store

Persistent store

POOL

DataSvc
(Object cache)

POOL

DataSvc
(Object cache)

Reconstruction on demand

Figure 3 General approach adopted in the COBRA
framework for the use of the POOL object storage
system.

In Cobra the data related to a specific detector is retrieved
through the current Event object. Objects in use are kept
in the local Transient Store, which creates on demand and
populates the object requested using POOL References.
The access to and from the storage system is controlled
through the POOL Reference, which also manages the
object lifetime. In practice, since the object associations
are defined through the POOL references, Cobra fully
relies on the POOL navigation feature provided by the
Data Service, with no other access mechanism.
In Cobra the POOL Session is only used for Transaction
management, with no explicit handling of Database and
Containers; the ROOT format adopted in Cobra is Keyed
Objects.
Cobra has also adopted the POOL File Catalogue, mainly
through the XML implementation in the physics
application. In addition, both RLS and MySQL catalogues
have been extensively used in production activities.

INTEGRATION IN LHCb

The LHCb core software is based on the Gaudi
framework [12].

The integration of POOL in Gaudi has been implemented
without changing the existing architecture or event model
description.
In Gaudi transient data objects reside in Data Stores,
which are sources for conversion to persistent or
graphical representation. The client algorithms access
objects by logical name from a data store.
The Data Store processes the storage and retrieval
requests through the Gaudi Persistency Service, which
acts as a technology dispatcher towards the underlying
POOL Persistency service.

Data
Service

Algorithm

Data Store
Conversion

Service

POOL Persistency
Service

Persistency
Service

Storage
Service
Storage
Service

Conversion
Service(s)

Conversion
Service(s)

Persistency
Service

Data
Service

Algorithm

Data Store Data Store
Conversion

Service
Conversion

Service

POOL Persistency
Service

Persistency
Service

Storage
Service
Storage
Service
Storage
Service
Storage
Service
Storage
Service
Storage
Service

Conversion
Service(s)

Conversion
Service(s)

Persistency
Service

Figure 4 Integration of the POOL storage service
components in the Gaudi framework.

In this approach, since the object bookkeeping is already
performed by the Gaudi object cache, the POOL Data
Service is not used.
Up to now, the focus of Gaudi persistency has been
essentially Event data, stored with ROOT-Tree
technology.
The POOL File Catalogue interface has been also
successfully integrated in Gaudi, and used in production
through the XML implementation.

 COMMONALITIES AND DIFFERENCES

The main approach adopted by the three experiments in
POOL integration has been driven by the need to
minimize the impact on already existing offline code,
taking care in some cases of preserve the ability to read
data already written with previous technologies.
The requirements set by the three offline software
architectures on the persistency framework are largely
overlapping for the main tasks of the core Data Storage,
while some diversity appears at higher level on how data
is presented and exchanged. Some requirements are
different in the area of Object Navigation and Object
Lifetime Control, mainly because are imposed by the
different offline framework architectures.

481

For this reason, while the POOL core object storage
system has been adopted by the three experiments, the
POOL components concretely integrated are not the same.
For the storage of Event data, the three experiments have
adopted the ROOT-based streaming, focusing on Tree
technology (ATLAS and LHCb) or on Named Objects
(CMS).
As seen above, the integration of the POOL object storage
system has been implemented through different
components.
ATLAS has integrated the POOL Data Services API
(POOL Reference) in the Athena framework, adapting the
loading-on-demand feature to the existing Data Store. In
this way, the higher level POOL API is fully integrated,
but the feature provided by the corresponding layer are in
part not used.
CMS approach was essentially meant to replace the
existing Objectivity-based services with POOL. Therefore
the Reference based POOL API integrates neatly into the
code, because it provides similar rules for object rending
and navigation.
LHCb has chosen to integrate POOL through a lower
level component, the Persistency Service. The main
reason is that the Gaudi framework has its internal Object
Store, which provides object bookkeeping, and
navigation. Therefore, the functionality of the POOL
Data Service is not required and the object I/O is handled
through the inner layer.
Other POOL components have been integrated in the
three experiment frameworks. The File Catalogue
interface has been mostly adopted through the XML
implementation, although the other backends have been
also used in production activities (EDG-RLS by ATLAS
and CMS, MySQL by CMS).

SUMMARY

During the last year the POOL persistency framework has
been adopted by three LHC experiment (ATLAS, CMS
and LHCb), integrated into their offline software and used
in large-scale production activities. The transition of the
pre-existing software to the POOL technology has been
facilitated by the direct involvement of each experiment
in the project. The POOL API has been fully validated
and it has been demonstrated to provide a suitable
solution for most of the requirements for production. The
three integration approaches differ in the object
bookkeeping area, because of the different requirements
set by the existing frameworks.

All the POOL core components are currently used by at
least one experiment.

REFERENCES
[1] The POOL Project,
 http://pool.cern.ch
[2] The LHC Computing Grid
 http://lcg.web.cern.ch
[3] D. Duellmann,
“The LCG POOL Project General Overview and Project
 Structure”, CHEP 2003 Proceedings, MOKT007
[4] R.Brun and F.Rademakers, “ROOT-An Object
Oriented Data Analysis Framework”,
 Nucl. Inst.& Meth. in Phys.Res.A389(1997)81-86.
 see also: http://root.cern.ch
[5] M.Frank et al., “The POOL Data Storage, Cache and
Conversion Mechanism”.
CHEP 2003, proceeding, MOKT008
[6] Z.Xie at al., “POOL File Catalog, Collection and
Meta Data Components”,
CHEP 2003, proceeding, MOKT009
[7] D. Duellmann et al, “POOL Development Status and
Plan”, CHEP 2004 Proceedings
[8] The ATLAS experiment,
 http://atlas.web.cern.ch/Atlas/Welcome.html
[9] The CMS experiment,
 http://cmsinfo.cern.ch/Welcome.html/
[10] The LHCb experiment,
http://lhcb-public.web.cern.ch/lhcb-public/
[11] The Athena framework,
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO
/architecture/index.html
[12] The Gaudi framework,
http://lhcb-
comp.web.cern.ch/lhcbcomp/Frameworks/Gaudi/
[13] V.Innocente at al., CMS Software architecture:
Software framework, services and persistency in high
level trigger, reconstruction and analysis,
Computer Physics Communication, 140 (2001) 31-44
See also http://cobra.web.cern.ch/cobra/
[14] Objectivity database systems,
 http://www.objectivity.com/
[15] The CERN Castor project,
 http://castor.web.cern.ch/castor/
[16] The dCache project,
 http://www.dcache.org/

482

http://pool.cern.ch/
http://lcg.web.cern.ch/
http://root.cern.ch/
http://atlas.web.cern.ch/Atlas/Welcome.html
http://cmsinfo.cern.ch/Welcome.html/
http://lhcb-public.web.cern.ch/lhcb-public/
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/index.html
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/index.html
http://lhcb- comp.web.cern.ch/lhcbcomp/Frameworks/Gaudi/
http://lhcb- comp.web.cern.ch/lhcbcomp/Frameworks/Gaudi/
http://cobra.web.cern.ch/cobra/
http://www.objectivity.com/
http://castor.web.cern.ch/castor/
http://www.dcache.org/

