- 479 -

A MICROPROCESSOR-BASED SINGLE BOARD COMPUTER FOR
HIGH ENERGY PHYSICS EVENT PATTERN RECOGNITION

H. Bernstein, J.J. Gould, R. Imossi, J.K. Kopp, W.A. Love,
S. Ozaki, and E.D. Platner
Brookhaven National Laboratory*
M.A. Kramer

City College of New Yorkt

A single board MC 68000 based computer has been assembled and bench marked
against the CDC 7600 running portions of the pattern recognition code used at the
MPS. This computer has a floating coprocessor to achieve throughputs equivalent
to several percent that of the 7600. A major part of this work was the construc-
tion of a FORTRAN compiler including assembler, linker and library. The intention
of this work is to assemble a large number of these single board computers in a
parallel FASTBUS environment to act as an on-line and off-line filter for the raw
data from MPS II and ISABELLE experiments.

Introduction

Anticipated computing requirements at ISABELLE are in the range of 20 to 100 CDC 7600
equivalents. Efficient development of event processing programs requires the facilities
and sophisticated software of a large computing center. However, once such a program exists
it should be possible to run it on a smaller, simpler computing system. The 168E and PUMA
approaches achieve this goal by emulating the target machine instruction set. We believe
that when the computing requirement grows as anticipated, the scale is such that it becomes
feasible to develop software to translate a working higher level program on the target ma-
chine into an executable module on the simpler system. This allows the use of microproces-
sor-based single board computers. We set out to find how practical it was to go in the di-
rection of minimizing the hardware cost at the expense of having to write a FORTRAN compiler.

It is well known that IC memory densities have doubled ¥ every year for many years.
This trend is likely to continue for several more years. Thus it becomes practical to put
250-500K word RAMS on a single PC board. It is also known that similar trends have
occurred in IC microcomputers, i.e., both increased complexity and increased speed. Two
years ago when we started this project, three 16-bit micros were just being announced, the
28000, 8086 and MC68000. We took a close look at these three processors and chose the
MC68000 as the best choice for the sort of number crunching required by our pattern recog-
nition software. It was obvious that to have any chance to meet our computing speed goals
that a hardware floating point unit was required. At that time only the AM9511 was avail-
able, so for these benchmarks we assembled a computer centered around the MC68000 coupled
to a 9511 with on-board dynamic RAMs. This paper discusses the hardware and software
approaches, gives timed benchmarks and projects future developments made possible by the
continuing advances in IC technology.

Preliminary to putting together a full-scale single board computer, two benchmark
tests of the MC68000 were done. The first test was to do an effective mass calculation
from data presented by five PWC's in a magnetic field. The MC68000 was programmed in
machine language and only those instructions requiring ten or less micro-cycles were used.

The pattern recognition was done by lookup tables as were all squares and square root



- 480 -

calculations. As a comparison, the same routine (lookup table approach) was programmed in

FORTRAN on the CDC 7600. It ran only 4 times faster on the 7600 than on the 4 Mhz MC68000.
As a second benchmark, a Queens chess game excercise was run using PASCAL programs

on the respective machines. Only fixed point calculations were involved. The reference

machine in this case was the DEC KL10. The 68000 ran half as fast as the KL10. It is

apparent from these results that when the strength of the 68000 is utilized, it is a rather

powerful microcomputer. In this work it was our purpose to see how well one could do with

a configuration suited to full-blown pattern recognition in high energy physics.

Hardware Description

A Motorola 68000 Design Module, a 9511 Arithmetic Processing chip, memory, a Floating
Point Timing device and a 90K byte per second link to a DEC PDP10 were interconnected as
shown in Fig. 1. Pattern recognition programs were compiled on the PDP10, down-loaded into
the 68000 memory and executed. Floating point operations were performed in the 9511

Arithmetic Processing chip.

Motorola 68000 Design Module

The design module contains a 68000 16-bit processor, 32K bytes of RAM, an 8K byte
debug monitor program in PROM, a terminal connection, a host computer connection, and an
interface to a Motorola standard bus. The debug monitor provides a means of controlling
program execution. It also contains a variety of useful IO and conversion routines. The
standard bus has arbitration capability so that external devices can reference memory on
the design module. It also provides a RESET line that is used to force the 68000 into the
debug monitor initialization. In additionm, priority interrupt request signals are avail-
able. These are used by the PDP10 to force execution of the code that has been loaded into

the modules memory.

Arithmetic Processing Unit, 9511

The 9511 provides fixed and floating point operations and a variety of trigonometric
and mathematical operations. All transfers, including operands, results, status and com-
mand information, take place over an 8-bit bidirectional data bus. Operands are pushed
onto an internal stack and a command is issued to perform an operation on the stack.
Results are removed from the stack. The 68000 addresses the 9511 as memory address T7FFC
for data transfers, and as memory address 7FFF for commands. Only 16-bit word addressing
modes are allowed.

The 68000 after issuing a command to the 9511 enters a software wait loop until the
9511 returns a signal indicating that it has finished. The time needed to execute a
command is operation and argument dependent. A 32-bit floating add can take from 20 us to
115 us. It is anticipated that the 9511 processing chip will be replaced by the ten times
faster National chip NS16081 when it becomes available later in the year. In order to
calculate how fast pattern recognition programs will run with the NS16081 doing the float-
ing point, a floating point timing module was connected to the bus. This module measured
how long it takes to execute a program and how much of that time was spent doing floating

point operations.



- 481 -

Link to the PDP10

The PDP10 is connected to the Motorola standard bus via a 90K byte per second serial
link. All communication between the PDP10 and the 68000 is via the 68000 memory. The
PDP10 can do the following:

1. Read/write the 68000 memory.
2. Reset the 68000.
3. Generate an interrupt on channel 7.

To read a 68000 memory address, the PDP10 transmits a 36-bit word containing the
memory address and a read bit. The word is assembled in the interface hardware and a bus
request generated. After a u-second or so the 68000 will release the bus. The address
and control signals are then gated onto the bus and the read of the 68000 memory is com-
pleted. The interface hardware then sends a 36-bit word back to the PDP10 containing the
memory address and the data at that address. An interrupt is generated at the PDP10 when
the word is assembled there.

A write of 68000 memory is similar to a read except the word sent from the PDP10 con-
tains the 16 bits of write data as well as the memory address and write bit. The interface
hardware sends a write complete signal back to the PDP10 indicating it is ready for another
command.

To force the 68000 into a known state before loading a program, the PDP10 sends a
36-bit word containing the reset bit. A reset forces the 68000 to start execution at the
beginning of the debug monitor. The monitor writes into memory the interrupt processing
vectors as part of an initialization procedure. The PDP10, as a way of controlling the
68000, changes the channel 7 interrupt vector so that it points to the starting address of
a program that it wants the 68000 to start executing. It then sends a 36-bit word con-
taining the channel 7 interrupt request bit which results in the 68000 jumping to starting

location contained in the channel 7 interrupt location.

Software
Background

The Motorola MC68000 software available in the summer of 1980 consisted of a non-relo-
cating cross-assembler, a cross-PASCAL subset, a resident relocating assembler, linker, and
PASCAL. The resident software was not acceptable for our application, in that it would
have required a full host MC68000 system, which would have greatly diminished the cost-
effectiveness of the hardware, and only postponed the need to provide full support from a
host with full access to the experiment. Further, PASCAL was not a satisfactory choice of
higher level language. Most of the interested physicists are familiar with FORTRAN, not
PASCAL, and the loss of time and confusion involved in learning a new language seemed
likely to weigh too heavily against any possible advantages of PASCAL.

This left us with the need to obtain a cross-FORTRAN compiler with support software
for the MC68000. Our reasonable expectation was that such commercial software would be-
come available in late 1981 or early 1982, not soon enough for this project. Funds were
not available to commission a special effort from a software house. We decided to make an

effort at providing a minimal FORTRAN system ourselves.



- 482 -

Overview
The software required consisted of:
1. A relocating cross-assembler,
2. A linker,
3. A FORTRAN compiler,
4. A subroutine library,
5. A host support program.
The linker, the subroutine library, and the host support program had to be written from
scratch. The relocating cross-assembler was made by modifying the Motorola cross-assembler.
The FORTRAN compiler was made by adding code generation to Ryder and Hall's "PFORT Veri-

fier."

Cross-Assembler

In M68KASM, Motorola provides a macro-assembler for the MC68000. The assembler is
written in FORTRAN, allowing for simple modification. To implement relocation, addressing
was extended from 24 to 32 bits, with the high order 8-bits used to designate a relocation
base. The base 255 was reserved to flag external references. New assembler directives

were added to direct code to the desired blocks.

IDENT Name

PSECT Name, attributes
GLOBL Name, ---, name
XFER Expression

IDENT provides a name for a module, which is also the name of the first block. PSECT
allows the creation of additional blocks, or code generation in a previously defined block.
A PSECT could have attributes of "CON", for concatenate, "OVR" for overlay, "LCL" for
local, "GBL" for global, "REL", for relocatable, or "ABS" for absolute. Code would nor-
mally be placed in a "REL,CON,LCL" block, and common in "REL,OVR,GBL" blocks. GLOBL iden-
tifies both entries and external references. If the named symbol is defined in the cur-
rent module it is an entry, else an external reference. XFER specifies the starting ad-
dress of a main program.

For operational convenience, the assembler was modified to allow multiple modules to

be stacked in one input file.

Linker

The linker was written in FORTRAN as a simple three-pass linker. On the first pass
block definitions are extracted and absolute origins assigned. On the second pass code
and data are stored in their final positions in a random file with address fields reloca-
ted as necessary. The final pass copies the random file to a sequential file in Motorola's
load image format. For subroutine libraries, an optional preliminary pass copies needed

routines.

FORTRAN compiler
The PFORT verifier, QCPE#374, accepts ANSI FORTRAN 66 programs, parses them for

violations of the language specificatioms, and provides detailed cross-reference maps

both within routines and between routines. The verifier generates an internal symbol



- 483 -

table, but no code. We used the symbol table and the parsing to "tokens'" as input to a
compiler. This relieved us of the need to provide error messages or listings from the
compiler, and guaranteed that we would only have to compile valid programs.

In code generation we attempted to avoid redundant stores and fetches with statements
by flagging current register assignments. In the absence of statement labels, those
assignments are retained between statements. To maximize the use of such optimization the
calling sequence was specified so that the called routine is responsible for saving and
restoring registers. No attempt was made to identify common subexpressions more complex
than a subscripted variable.

DO loop control variables are bound to registers by the same mechanism. Arithmetic
statement functions are implemented by generating code at the point of definition and
transferring parameters by value in the dummies as variables. Register binding is cleared
on the ASF call, so ASF code generation is ekactly the same as assignment statement code
generation.

Storage allocation is partially static and partially dynamic. All variables in common
blocks and all variables in statements are given static definitions. All local variables
not defined in DATA statements and all temporaries are allocated on a stack. This mini-
mizes storage requirements without violating the natural user assumptions about DATA ini-
tialized local variables. A side effect is that all subroutines are inherently recursive.

Floating point is implemented via internal function calls rather than in-line. With
our current floating point chip, this represents a penalty for each operation. With a
faster chip, in-line code will be essential.

Constants and FORMATS are generated in a spacial PSECT, @QCHARC, with no attempt to
merge redundant constants. However, most integer constants are placed directly in instruc-
tions, so no great loss of memory is expected in that case. When we change to in-line

floating point, the same should be true of those constants.

Fortran Run-Time Library

On the MC68000 side, IO and FLOP respectively handle I/0 requests to the PDP10 host

machine, and communicate with the Floating-Point Processor. On the PDP10 side, the host
program TENDER translates between the MC68000 I/0 requests and DEC's versatile FORTRAN
package FOROTS. TENDER also converts between PDP10 and MC68000 number formats: the
MC68000 sends and receives data in its own format, so on its side the Run-Time Library is

independent of the host machine.

Input/Output
By using FOROTS on the PDP10 side, the MC68000 can use all I/0 services and devices

available in PDP10 FORTRAN. In particular, we let FOROTS do all our formatted 1/0,
avoiding tricky format-scanning routines that would have been a nuisance to code on the
MC68000. To read or write a record, only three FOROTS calls are needed:

1. One call to initiate the operation, which provides the device number and
(for formatted transmissions) a pointer to the format description and its length.

2. TFor each word to be transmitted, a call to a standard entry which is the
same for all types of data and for transmission in either direction.

3. Finally, a call to terminate the operation.



- 484 -

In the MC68000 module IO, we have entries exactly corresponding to these, and the
FORTRAN program supplies the same calls and parameters as would a PDP10 program. Other
than copying the parameters and data to fixed locations in lower memory, all IO needs to
do is count the characters in the Format description.

The MC68000 is master in each transaction dialogue. When ready with a request, IO
sets a bit in a "mailbox" memory location which TENDER constantly reads through the data
link by stealing memory cycles; this reading slows up the MC68000 by about 7%. On finding
the bit set, TENDER transfers the parameters or data, converts to PDP10 number format where
necessary, and generates a call to the counterpart FOROTS routine. If the request is to
read, TENDER will convert the datum to MC68000 number format and send it to a fixed memory
location, then in all cases clear the request bit.

Meanwhile, on the MC68000 side IO is waiting in a holding loop until the request bit
is cleared. Thus I/0 is completely unbuffered on the MC68000, but at present that is not
a serious problem. Any buffering scheme would depend very heavily on the host computer's
operating system, and so it would be best not to worry about this until we are well past
the present experimental stage.

FOROTS provides the usual "END" and "ERROR" return options for recognizing I/0 excep-
tions. TENDER uses these to record any error conditions and when IO requests termination
of the operation, sends a report back to the MC68000, where IO stores it in a table indexed
by device number. The FORTRAN program must check for errors or end-of-file by calling
functions GOF(n) or UNIT(n) which return the table entry for device n and also reset it to

llOK" .

Startup and Synchronization
The MC68000 program is downloaded from a PDP10 disc file. Then TENDER is loaded in
the PDP10. On startup, TENDER sends an interrupt to the MC68000, initiating execution at

the address in the trap pointer. This address was set in turn by the XFER pseudo-op gene-
rated on compiling the main program. The entry INITIO in IO has the job of initializing
the stack pointer and then waiting to make sure the PDP10 is actually up and monitoring

the "mailbox." To do this, INITIO sets the appropriate bit in the mailbox word, and waits
in a holding loop until it is cleared by the PDP10. There are no problems of timing per se,
since FOROTS is completely buffered and does not care what happens between calls; but we do

have to be sure both machines are in the proper phase of the request-processing cycle.

Floating Point Operations

Five steps are necessary to perform a floating-point operation using the 9511:
1. One or two 32-bit operands are pushed onto the 9511 stack, in 8-bit bytes.
2. An operation code is sent.
3. The service routine FLOP waits in a holding loop until the operation is
complete.
4. TFLOP must check the 9511 Status Bits for error conditions - overflow,
underflow, illegal operands, etc.
5. The 32-bit result is unloaded in bytes and reassembled into a 32-bit

doubleword.



- 485 -

These steps consumed a good fraction of the total running time in our test, but only
because of details that can be readily improved in our next system. Rather than discussing
these details in isolation, therefore, we would like to combine a description of what we
did with recommendations for the next development stage, based on our experience.

1. The 9511 data bus is only 8 bits wide, but it must be addressed as a 16-bit
word. On the MC68000 this introduces irrelevant data shuffling operations. Using a chip
with a 16-bit bus would eliminate most of that waste, but it would be even better to inter-
pose a hardware register that could be addressed as a 32-bit doubleword and automatically
unpack or pack bytes without further intervention by the MC68000. Such a register would
also simplify the compiler and the generated coding. At present, it is necessary to call
a subroutine to execute floating operations, with attendant overhead. It would be faster,
and actually take less memory, to 'store'" the operands and op. code by sending them to
special addresses (just as we use addresses 7FFC and 7FFF for 9511 registers), then fetch
the result as if from memory. This would be coded in line.

2. An additional instruction would be needed in this sequence, namely a call to
a holding routine to wait for completion of the operation and check for error conditions.
One immediately sees that some useful computation could be done in the time between sending
operands to the FP Chip and checking for completion. The 7600 FORTRAN compiler FIN does
this very elegantly, but we believe even a relatively simple algorithm could save much
time by, say, overlapping subscript calculations with floating operations. Another way to
deal with "software floating point" is to generate interpretive code. This is not very
promising because so much of the code deals not with floating operationms, but with sub-
script calculations and loop indexing.

3. There is no need to unload a result from the FP Chip's internal stack if it
will be an operand in the following operation. The compiler can easily recognize this
situation.

4. The few masking and testing operations now required to check the chip's
Status Register for error conditions will become a significant cause of delay. Therefore
it would be efficient to use special hardware to generate an interrupt if any error bits

are found to be set on completion of the operation.

Further Compiler Improvements

Next to handling floating point operations, the compiler's main problem seems to be
calculating subscripts. Much time and space would be saved by including some well-known
(and well understood) optimizations:

1. Detecting common subscript expressions in statements (or groups of state-
ments) so that indices can be calculated once for all variables with the same combination
of subscripts and dimensions.

2. Converting subscript calculations in DO loops to simple incrementing of an
initial value that is calculated before entry to the loop.

Finally, one point is related to saving the users' time. Our present compiler is
based on the Bell Telephone Laboratory's PFORT Verifier, which accepts only a rigorously
standardized version of FORTRAN. In principle, this is very desirable, as programs
written in this language are very easily moved to other machines. In practice, we will

want to transfer many programs to the MC68000 system, and these will inevitably contain



- 486 -

nonstandard expressions, in particular those from CDC7600, DEC PDP10, and perhaps some
IBM Fortrans. Therefore, it would probably be more desirable to have our compiler accept
the widest possible range of nonstandard expressions, though without allowing new non-—

standard elements.

GETX Benchmark Test

To obtain a realistic comparison we developed a sample program around the central
algorithm we have used in our "]ocal" pattern section of our drift chamber analysis pro-
gram. This subroutine (GETX) receives packed data from the drift chamber readouts, un-
packs it and looks for associated hits in each module (a set of three drift planes). The
data is normally communicated to this routine via common blocks. For the test, the full
program was run on actual data and the appropriate information needed by GETX was written
on a disk file for each event.

The KA-10 version was compiled using the standard DEC compiler. The bulk of the com-
pilation of the 68K version was done by a FORTRAN cross-compiler based on PFORT, however,
at the present state of that compiler, some hand corrections and coding was needed. (No
attempt was made to optimize the speed however.)

A small driver program was then written to read the disk, load the common blocks, and
then run GETX. To minimize the effects due to I/O timing, each event was processed 100 or
1000 times. Outputs were compared to be sure the 68000 program was working correctly.

The result was that the 68000 took 9 times as long to run as the PDP KA-10.

Future Prospects

A newer version of the 68K is available that operates at 2-1/2 times the current
speed (10 MHz). That processor, combined with obvious compiler improvements, notably in
subroutine argument list handling, should gain a factor of 4 in the 68000 time.

A new floating point processor is also available that is 10 times as fast and can be
loaded 16 bits at a time (the current processor requires eight 8-bit loads to load two
floating point operands). Thus we confidently expect that the new system should operate
at 5-10 times the current version, which would then be equivalent to about the processing
speed of the KA-10.

Further improvements, such as special register hardware for interfacing the 68K and
the floating point processor and further compiler improvements could further improve this

ratio.

Conclusion

We have shown that with a 2-year-old microcomputer and an even older floating point
coprocessor, it is possible to run a FORTRAN pattern recognition program at a throughput
1/9 that of the KA-10 (Ka-10 & 1/30 CDC 7600). It is expected that with an improved com-—
piler, the fast version of the MC68000 and the new National floating point coprocessor,
that these programs can run at speeds very close to that of the KA-10. Unfortunately,
this is % 30 times slower than that of our target machine, the CDC 7600. However, this
factor should be gained by the micro-computer industry within the next 3 to 4 years. In
the meantime we plan to concentrate our efforts on developing a bus structure such that

large numbers of these single board computers can operate in parallel processing different



- 487 -

events. The prime candidate for this structure is the NIM "FASTBUS", on which an intelli-
gent controller would control the event downloading into available processors and the out-
loading of those events that pass the pattern recognition constraints. Once this "network"
is operational as a system, the precise choice of processor and coprocessor can be made on

the basis of the hardware available at that time.

References

* This research was supported by the U.S. Department of Energy under Contract No.
DE-AC02-76CH00016.

+ Research supported by the National Science Foundation and the City University of New

York PSC-BHE Research Award Program.

68000 DESIGN

ODULE FLOATING POINT
MEMOR
HEMERY 9511 ARITHMETIC T
PROCESSING UNIT ’
\
\ \
MOTOROLA EXOR BUS §

\ 7

[
PDPIO
INTERFACE

90 KBYTE PER SEC
TO/FROM PDPIO

Fig. 1



