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A general programme for an initial theoretical determination of realistic AVF
cyelotron fields has been written in FORTRAN code for the CERN IBM 709 computer under
monitor control. The programme is interesting because it is based on a completely
different method of approach than other existing programmes, and permits a relatively
quick survey of a large number of machines. The results are exact, apart from round-
off, integration and interpolation errors, in the order of 107°.

The calculation is performed and all input and output is presented in eyclotron
units, i.e.

Length c/wo Mass m
Charge q Field m /q
. 2
Time 1w, Energy mo
Velocity ¢ Momentum me

where m and q are the rest mass and charge of the accelerated particle, ¢ the velocity
of light, and w, an arbitrary reference angular velocity. The angular velocity w of
the particle may be chosen as a function of the energy. For an isochronous cyclotron
one chooses conveniently w = 1,

The computation is based on orbit coordinates (p, o) in the median plane, p
being the equivalent radius (closed orbit length divided by 2m) and o the orbital arec
length normalised to unity through one machine period. The curves o = 0 and o = 1 are
the sector edges defining the machine spiral. 1In its most frequent application the
programme determines the spiral which for a given azimuthal field variation B(p,o)
yields a specified variation of the linear vertical betatron frequency Q, versus

equivalent radius or energy.

Orbit Theory
The magnet field for an N-sector machine is presented to the computer in the

form
B = ywF(p,0)/06 , (1)
where © = 2#/N is the sector angle,
]
vy = (1-(wp)?*)? (2)

is the particle energy (or mass), and the specified function F must be periodic in

O with period 1 and have mean value © to give the correct mean field Yw along the

orbit p,
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Considering any equilibrium orbit p the field, Eq. (1), as a funetion of are
length O and the orbit energy, Eq. (2), will together determine the geometry of this
orbit, but not its position in the plane. Introducing dt = © do/w, B = -Bk with B
given in Eq. (1), and the complex variable z = x + iy on the median plane into the

force equation

v &°r / at* = (ar/ dt) x B, (3)
one obtains for determination of the closed orbits

3%z / 9c% = i F(p, o) 9z / 3o, (4)

By a first integration:

9z /oo = ipBh(p, O) , (5)
where
h( p, o) = G(p, o) exp(i &(p)) (6)
is the unit normal pointed outwards from the orbit p, and
G(p, o) = exp(i ’ F(p, o) do). @)
o

The angle d§(p) is introduced as an integration constant. It is the angle between
the x-axis and the normal h(p, 0) at the sector edge o = O where G(p, 0) = 1,
An integration of Eq. (5) finally gives

z(p, ) = pS(p, o) exp(i §(p)) (8)
with

S(p, ) = ©(H(p, o) - E H(p, 1)) ,

E = 3(1 + i cot (w/N)) , (9)

H(p, o) = ifa G(p, o) do.

0

It is here assumed that N > 1, and the integration constant has been chosen such
that the closed orbits z(p, o) for p const. are all centred at the machine centre

z = 0. Notice that 4 in Eq. (8) signifies a rotation of the orbit as a whole. Thus
&(p) defines the spiralling feature of the field and is needed in addition to

Eq. (1) for a complete definition of the field.

Betatron Oscillations

If X, Z denote the normal distances from the orbit in and normal to the median

plane, them the betatron oscillations are described by the equations

d2x / do® + g X F2 (1 - n) ,

0’ gx
(10)

a%z / do* + g, ’ 0, g = F2n,

Z
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where F is the field-defining function in Eq. (1) and n the conventional field index,

which we may here express as

Lo 2B

. (11)
B2 9x

The normal derivative 9B/dX is defined by

9B 1 9B 7 OB
w1 (2., o
ox n op p® 90

which with Eq. (1) gives the coefficients

gx = Fz = gZ ’
(13)
gz :-1-<Tﬂ—pea—w-—9ﬂ>,
n dc 3p

where A = (p/yw) d(yw)/dp is given from Eq. (2).
The scale factors 1 and T are defined by the unit normal (6) and the co-

ordinate function (8):

n + it = h*dz/0p = T(p, o) + U(p, ©) d6/dp , (14)
in which

T(p, o) = G* [S(p, o) - pO(K(p, o) - E K(p, 1))] ,

U(p, o) = ipG* S(p, o) , (15)

K(p, 0) = =-3H(p, o) / 3p ,

and the asterisk denotes conjugate complex quantities. The coefficients (13) are
hereby comple tely determined and the betatron frequencies Qr’ Qz may be found by
integration. It is important to notice that these frequencies do not depend directly
on the spiral-defining angle &'(p), but rather on its derivative dd/dp which determines

the tangent of the edge 0 = 0, i.e. the spiral angle at this point.

Programme Outline

The funetion F(p, o) must be presented to the computer in the following

form (*):

(=]

1
F(p,0) =0 + 3 R.(p) Z

A, . cos(2nM, o + B, . 16
2 o1 M ( ij 1J) ’ (16)

which permits the ridge field and the azimuthal field variation to be chosen independ-
ently. Here I <5, J X 14. The R, are tabular or polynomial functions of p and the

Ay Migr Biy _
immediately stores F, dF/dp and 8F/3c at each value of 0 to be used in the Runge-Kutta

are constants. For each specified orbit p to be computed the programme

integration processes to follow.

(*) 1t has been found that a tabular presentation versus o of the second sums might
be more convenient.
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Fig. 1 Field map of 8-sector, 846.7 MeV isochronous cyclotron, Q = 2 and spiral
angle = 60° at final orbit. Closed orbits p and field confours B shown in
cyelotron units.

An initial integration is first performed whereby the functions G, H and K are

determined from the system:

9G/dc
9K /0o

1]

ifFG , 9H/d0
g6 , dg/dc

1]

i 6,
9F/3p ,

(17)

using the initial conditions G=1, H=K =g =0 at 0 = 0, The functions S, T and U
defining the orbits z and n + iT are then computed and stored at each 0 necessary for
the subsequent integration of the system (10), (13), (14) for the determination of the
frequencies Qr and Qz.

The programme may be set for three different modes of operation: In "Mode 1" the
spiral-defining function §(p) is specified as input on tabular form. Its derivative

df/dp is determined by a six-point Lagrange formula, whereafter the betatron frequencies
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are computed from the Eq. (10) by the usual matrix method. Two types of output are
available from this mode of operation. The first is a field map showing the sector

edges 0 = 0 and 0 = 1, the closed orbits, and a selected set of constant field curves.

An example is shown in Fig. 1. The map may be drawn automatically by a special magnetic
tape output for an x-y plotter. Secondly, the field may be specified on a pre-chosen
polar mesh within the sector (0, ©). This output is used as input for our general cyelo-
tron programmes where one can investigate non-linear effects, integration through
resonances, e te.

"Mode 2" is a little used procedure in which the frequencies Qr and Qz are
computed and listed at each p for a given F and a sequence of values of the derivative
dd/dp.

In "Mode 3" the value of df/dp is determined and listed at each p by an iteration
process such that a specified Qz is obtained. The Qz is input as a table in p.

Notice that the iterative process only involves the final integration of the last of
Eq. (10) since the T and U are unaffected by the value of df/dp. Having determined
the funetion df'(p)/dp by computation at many radii throughout the machine, the

computer automatically integrates this to obtain §'(p), whereafter a "Mode 1" opera-

tion is performed.

Illustrative Example

As an example-consider the N = 8 sector isochronous cyclotron meson factory
defined by

F(p, o) = R(p) 8(o) , (18)

where
8
8(c) = I A, cos (2m (2j-1) o) (19)
=1

*
and the harmonic amplitudes A. are determined( ) such that the 15 first derivatives
of S vanish at o= 0 and 0 = 0.5

A; = 1.23409090 A, = 0.31994943
Ay = 0.11518194 A, = 0.03739665
A5 = 0.00969542 Ag = 0.00183060
A, = 0.00022128 Ag = 0.00001279

This ensures completely flat and symmetrie hills and valleys as illustrated in Fig. 2,
A "Mode 3" computation was performed using a function Qz(p) as shown in Fig. 3.

It rises sharply to the value 0.2 where it remains for all p > 0.2. The function

R(p) in Eq. (18) was chosen such that the sector edge o = 0, here situated at mid-

ridge, should be approximately a circle of a certain radius r. R(p) was in fact

(*) I am indebted to Mr. Werner Joho, ETH, Ziirich, who has written a special programme
for providing Fourier polynomials of the type here mentioned.
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Fige 2 Shape of field encountered by particle on closed orbite
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Fig, 4 Maximum, mean and minimum fields versus equivalent
radius for cyclotron mapped in Fig. 1.
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calculated from the approximate formula

Nz
N2-1

Q = 1-v*+

£2 (1 + 2 tan®¢) (20)
with N = 8, £2 = <B?>/<B>® - 1 = R(p)? <8(0)%> = 0.82 R(p)?, and for a circular edge
sin € ® p/2r, € being the conventional spiral angle. The edge radius r was chosen at
the val ue 0.48825, which according to interpolation on previously obtained results
would give a reasonable spiral angle of exactly 60° when Qr reaches the value 2
convenient for resonant extraction.

The result is the meson factory mapped on Fig. 1. Its final orbit character-

istics are as follows

Equivalent radius p 0.85075 or 4.33 m

Max orbit exeursion 0.8591 or 4.37 m

Energy ¥y 1.9025 or 846,7 MeV (protons)
Max field 3.1611 or 19.47 kG

Min field 0.6443 or 3.97 kG

Radial frequency Qr 2

Vertical frequency Q, 0.2
Spiral angle 60°

The metric units are obtained by choosing the reference angular velocity Wy = 5.9 x
107 rad/s corresponding to an orbital frequency of 9.4 MHz. The ridge and valley

fields are described as functions of p in Fig. 4.

DISCUSSION

REISER : Are your plans now to convert the synchro-cyclotron into an 850 MeV machine,
or are your investigations presented here independent of this problem?

VOGT~-NILSEN : This is completely independent.
KHOE : What is the next step when you want to find the steel configuration?

VOGT~NILSEN : The next step would be to hand maps like the one I showed over to our
magnet people for comments. One has certainly to do more computer runs to try to
conform to their wishes, and then perhaps finally find a suitable design.,

LAPOSTOLLE : How much computer time is necessary to get such map.

VOGT-NILSEN : For this one I used about an hour and a half, but this was the first
one tried, and I had to search a little to find the methods I would say half-an-hour
on the next case.

VERSTER : Does this programme also allow you to specify the tolerances on the flutter
so the magnet group could know how accurately they should try to realise the field?

VOGT-NILSEN : Not directly. I have a second output from this programme, which is
used as input for general orbit programmes; on these we could introduce small errors
to see what they do.



