ELECTROMAGNETIC FORM FACTORS OF NUCLEONS

P.E. Beckmann,

Institut fir theoretische Physik der Universitdt, Mainz

I. INTRODUCTION

In these lectures we shall discuss some aspects of the interaction betweeq electrons
and nucleons which go beyond quantum electrodynamics. They arise from the fact that the
nucleon is not just a Dirac particle coupled to the electromagnetic field but a hadron and, as
such, involved in strong interactions. The deviations of the nucleons behaviour in electro-
magnetic interactions from that of a Dirac particle are usually interpreted as being due to a
structure of the nucleon originating in its coupling to pions and other hadrons. Although
the effects of strong interactions are already reflected by the static properties of the
nucleons, namely by their anomalous magnetic moments, they can be studied in more detail by
electron-proton scattering, in particular in processes with large momentum change of the

nucleon.

Since it is impossible in three lectures to give both an introduction and a compre-
hensive survey of the subject, we shall concentrate on those aspects which arise if one

1
evaluates and interprets electron-proton scattering experiments at large momentum transfers ).

II. GENERAL NOTATION

We consider the process of electron-proton scattering according to

e +p->e +p (1)
k+p=k"+p .

k, p, k/ and p’ denote the particle four momenta (ko’E) such that

kz:koz_k’z___mz pzzpoa--].;azMz. (2)

m and M are the masses of electron and proton, respectively. With the process we can asso-

ciate a diagram as that of Fig. 1.

FIGA
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The scattering is described by a scattering amplitude T such that the cross-section can be

expressed as :

3 P’ P/ -n! - K
N — (2m)* d'p’ d’k’ s(p+k B L PIEN (3)
IV1- Uzl 2po  2pJd 2kd (2m)

]31-3}1 is the relative velocity of the incoming particles. T is connected with the

)

S-matrix through2

<p’k’|-s—2_i—]—|pk> = 8(p+k-p' -k )T . (4)

It is more convenient to use variables P, Q, s, t defined as

P=(p+k)=1(p+K); PP =s
(5)
Q= (p-p')=(kK-kK); @ =1t .
Frequently Q> = - t is also used in the literature.

For electron-proton scattering these variables have the following meaning:

P total energy-momentum four-vector
e-p: Q : four-momentum transfer
s ¢ square of c.m.s. energy

t : invariant momentum transfer.

The process of electron-proton scattering through the substitution law is connected
with proton-antiproton annihilation into an electron-positron pair. (Remember that an in-
coming particle with charge e and momentum p corresponds to an outgoing antiparticle with
charge -e and momentum -p.) For p-p annihilation P, Q, s, t have a different meaning and

assume different values:

e-p scattering p—ﬁ annihilation
s ¢ square of c.m.s. energy inv. momentum transfer
t : inv. momentum transfer square of c.m.s. energy
physical region: t<o0 t > 4 M

The connection between e~p scattering and p-ﬁ annihilation has an immediate conse-

quence: the squared matrix elements ITIz, averaged over spin orientations, entering into the
cross-section for unpolarized beam and target and without analysing polarization, is given by
the same function, of course for different values of the variables s and t. 2£=£-B annihi-
lation proceeds through a finite number of angular momentum states with 1< L, ITI2 is of the
form

[IT|?2 = Ao (t) + Ay (t) cos gy * A (t) cos? Gyt een v AL cos: 9, - 6)

The dependence on s is fully contained in cos 0t, where 6t is the angle between p
and e’ in the c.m.s. of p-p annihilation:
2(s-M -m?) + t
1 1
2(t/4-i~12)/2 (t/4-mz)/2

cos ¥, =

(7)
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This implies for e-p scattering a particular dependence on ctg® /2, where 6 is the scattering

angle of the electron in the laboratory system:

YA
0 /2 _ 2
cosﬁt={l+ll1_ctg2-2-} ; ‘r=4—Mt'§-=4%1—2- (8)

T?I'Tzon(t)+{l+ 1 ctgz(%}zA.(t)+...+{l+ ] ctgz-(g-}2 AzL(t).

1+7 1+7

(9)

An interaction proceeding via angular momentum 1 in p-p annihilation corresponds to
the exchange of spin 1 in e-p scattering. 0dd powers of cos 0t appear only if there is inter-

ference between contributions of different parity.

III. STRUCTURE OF THE SCATTERING AMPLITUDE

The electromagnetic interaction between electrons and protons can be described by
the exchange of photons, i.e. of quanta of the electromagnetic field. We decompose the
scattering amplitude into terms corresponding to different numbers of photons being exchanged
(cf. Fig. 2).

Such a decomposition arises if one uses perturbation theory for the electromagnetic
interaction. We shall restrict our discussion mainly to the one-photon exchange contribution,
which seems to describe most experimental data very well. This agreement might be correlated
with the fact that the multiple-photon exchange term contains higher powers of the fine-
structure constant a, which is small (® 1/137). But we shall discuss explicitly methods to

test the validity of the one-photon exchange approximation.

The one-photon contribution, according to the Feynman rules, turns out to be

u(k’) vy, U(k) (_; <J >
I u (=i) 1 . T
T =57 (D@ e —E5s Gy @ Ve G
. (10)
1 e  G(n/ 1
T g oo 0O) Y U) g <3 > .

<J”> is the matrix element of the electromagnetic current between the states of the particle

by which the electron is scattered:

<Ju > = (2n)3<;’s’|Ju(0)|Bs> . (1)
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Here, s and s’ are the spin quantum numbers of the proton. The electric charge e appearing
as coupling constant in Eq. (10) is normalized such that €*/4m = a.

Usually one works with unpolarized electron beams and does not analyse the polari-

zation of the outgoing electrons. The appropriate spin average of IT]Z can be written as:

1
a

T - 2
2 (2n)

*
{(k’+k)y (k’+k)v+ (tguv-Q#Qv)}< J”><Jv> . (12)

If also the target is unpolarized and if the polarization of the outgoing target
particles is not observed, the corresponding spin average entering into the cross-section can

be written as:

_'_ * - a2 ’ 7 -
e z <3,><3,5% = e al)p +p), (' +p), + b(L(ts,, - €0 )} . (13)
spins
This general form is independent of the magnitude S of the spin of the target particle. For

a spin O and for a spin Y particle, coupled only to the electromagnetic field,a(t) and b(t)

according to the Feynman rules turn out to be:

o,

spin 0 : < Ju> e(p’ + p)u »a(t) =1 b(t)

(14)
1.

n
1

spin Y4 : < JN> e U(p’) Y“U(p) +a(t) =1  b(t)
Here, of course, it has been assumed that the spin Dé particle has no anomalous magnetic
moment . Particles with couplings to the electromagnetic field, as those indicated in Eq. (14),

we shall call particles with point-like electric charges.

From Eq. (13) we obtain for |T|%:

|T|? =-1‘:—;;-?2; f2[t(s-m®) + (S-M -n®)] a(t) + t(t+2m®) b(t)} . (15)
3)

This gives for the cross-section ’:

do = (do)yg [a(t) N t(t+ 2u’ ) b(t) } i (16)

t(s-m?) + (S-M-m?) 2

Here (da)NS is the cross-section for the scattering of electrons by a target with no spin and
electric point charge. The differential cross-section in the laboratory system can be

expressed as:

%% = (g—g—) (a(t) v 27 t& %b(t)) , a7
NS
with
cos? 2
<9£> - <£’£> N B <d_<1> _e® T 2 (18)
= ; = .
*)/ns 9ot t I+i_lE sin® % d Mott 4E° sin® %
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E is the laboratory energy of the incoming electron. E>> m has been assumed. The functions
a(t) and b(t) can be determined as follows: (da/ﬂﬂ)/(dc/dQ)NS for fixed t plotted versus
tg® 0/2 gives a straight line. Slope and intercept give a(t) and b(t).

If in Eq. (15) we express the dependence on s in terms of cos 0t we obtain

|T]? = -‘:r—z U:Mt (1+7) a(t) + t(t+2m®) Eﬂzi)_:l,, <1% - Mz> <£- - m2> a(t) cos® ﬁt} .

(19)

This is just the form expected for an interaction through angular momentum 1 with definite

parity. This reflects that the photon has spin 1 and parity minus.

IV. STRUCTURE OF THE VERTEX FUNCTION, FORM FACTORS

We now turn to the discussion of <J >. The current Jﬂ(x) plays the role of a

source of the electromagnetic vector potential A“(x) as can be seen from the familiar equation

[]A#(x) = - JH(X) .

If we compute the amplitude for the scattering of electrons by an external field,
<J” > entering into the expression corresponding to Eq. (10) is the Fourier transform of the
charge-current distribution producing the external field. If we have a static charge dis-
tribution only <Jo > £ 0.

For a point source <J, > = e, while for a charge distribution

iQex

<Jo>=¢e [p(;) e dx = ef(t) . (20)

The function f(t), i.e. the Fourier transform of the static charge distribution, is

called "form factor". The scattering cross-section can be written as
do = (da)p [f(t)|? , (21)

where (do)p is the cross-section for the scattering by a fixed point charge.

The transition to the scattering by a particle with finite mass will produce modifi-

cations due to recoil and associated acceleration. Even in classical physics we expect that:
a) the movement of the charge will in general make'<3> % 0,

b) the acceleration will make the charge distribution vary during the scattering process.
The effect a) can be eliminated by going to an appropriate co-ordinate system such that the

contributions to <:f> cancel for a particle without magnetic moment.

Consider a spin zero particle with point charge. We have <j > = e(p’*—p)“. Ve
require <3:> = 0. This corresponds to a frame of reference where E’ = - ;. Such a system
is well known in scattering theory. It is called the "Breit system" or "brickwall system".

The momenta in the Breit system can be represented as in Fig. 3 (see next page).
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Quantities in the Breit system we shall mark with a subscript B. We have

>
<Jo > = e(pd + po); <i>p = 0 (22)
for spinless point charge.

The general structure of <ju > in the Breit system for a spinless particle follows
from invariance considerations [which the limited space does not permit us to give in detail,

c.f. reference 4)]:

<jo >p = e(pd + po) GE(t), <:;>B =0 spin 0 . (23)

The function GE(t), which reflects the deviation from a point charge, is called the electric

form factor of the particle,

Although the transition from Eq. (22) to Eq. (21) looks similar to the transition
from a fixed point charge to a fixed extended charge, some caution is necessary when interpret-
ing GE(t) as the Fourier transform of a charge distribution. The charge-current distribution

pu(x) for a state ¢ is the expectation value, i.e. the diagonal matrix element of ju(x):
pu(x) = <¢|J”(x)|¢ >, (24)
whereas into the scattering amplitude there enters the Fourier transform of
<j#(x)> = <¢'|ju(x)hp> , (25)

where ¢’ moves relative to ¢. Therefore in general <Ju(x)> A pu(x); only for ¢’ = ¢, i.e.
in forward scattering, we have <JM(X)> = pu(x). This quantum mechanical argument can be
supplemented by a classical consideration: during scattering the charge distribution is acce-
lerated and therefore - unless the charge distribution is rigid, which relativistically is
impossible - GE(t) reflects the influence of a varying charge distribution. We therefore
shall refrain from taking the Fourier transform of GE(t) literally to be "the" charge distri-

bution of the particle.

Next, we turn to particles with spin % We remember that j corresponds to a
source of photons, i.e. of particles with spin 1. For real photons (@2 = 0) only two spin
orientations are possible with spin projections onto 3 S h = * 1, corresponding to right-
and left=handed circular polarization. Virtual photons (Q? # 0) also permit Sph = 0. Now
let 6 be parallel to the 3-axis. Then circularly polarized photons carry a 3-component of
angular momentum, Therefore a term corresponding to the interaction of circularly polarized
photons will also exhibit a change of the spin projection of the particle (i.e. spin flip).

The, interaction with Sph = 0 on the other hand will occur only without spin flip.
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The four components < ju > are not independent as can be seen from current conser-
vation:

-> ->
9 <J =0~ <J >=0~ <Jo>=-Qex<JI> =0 . 26
u #(X)> Q“ u Qo o Q ( )

With our choice of 3-axis this means that

<J3>B=0 . (27)

Of the remaining terms < Jg >B corresponds to the interaction of photons with

Sph = 0. <J,,2> represent the source of transversely polarized photons. It is more con-
+
venient to work with circular polarization, i.e. with <J > :

B
<3 =<l s, - i< ] . (28)
B~ 207 7B 2B
We now have
<Jo>p=ed, GE(t)
(29)
s = G, (t)
<J >B-e8 rgt, ONM .

The term with EI corresponds to the source of the field produced by the magnetic
moment . We return to < j > and express the result in terms of matrix elements between Pauli

spinors Xls’ Xg'#

+ ~
<Jo>p =€ x, Xg GE(t)
(30)

_ de + >
<3>B = on Xg 3>< o'xsam(t) o

~

Now we normalize the functions EE and GM

ticle without structure they become equal to one. We have for such a particle:

appearing in Eq. (30) such that for a par-

- +
<Ju> = e U(p’',s’) YHU(p,s) »<Jo>p =€ 2Mx,, xg

(31)
-> _ 5 + >
<J>p =5 M x7, Ox ox, -
Therefore our general result for spin '/2 becomes:
+
<Jo >p =€ 2M Xgr Xg GE(t)
(32)

ie + ->
<:f>B o 2M xg. Gx oXg GM(t) .

The normalization is such that GE(O) = static charge in units of e, GM(O) = static

magnetic moment in units of e/2M, i.e. with anomalous magnetic moment g : GM(O) = 1+ K.

The general expression for < jll > can now be written in terms of a covariant matrix
between Dirac spinors:
G.(r) . G, (t)
- (p’ + p) E i M D]
- / 7 — s |
<J,>=eUlp,s ){ M H a7 T Ty T JU("’S)

(33)
r =§{Q'Yvu(p'+p)-v - (p’+p)-YY,J Q’Y} .



If we use that

U r# U= -12MTUY”U- U o#vaU ,

(34)
’ oy - 1 17 s 17
(p +p)uUU = 2MU Y#U+ 1UoquvU R
the expression (33) can be rewritten as
_ ! of - A
<33 = e Up,s') {Yup,u) LoQ, Fz(t)} U(p,s)
(35)
- 7
- e 00,50 [, 04(0) - Ll (0] Upis)
Here,
G.+T1G G,-G
F, = E M , F, = M E
1+7 1+7
(36)
CE=F1-TF2, GM=F1"’F2;

F; (t) and F.(t) are called Dirac and Pauli form factors, respectively. The general expression

for < ju > now gives for the functions a(t) and b(t) appearing in the cross-section:

GE+TG§
- 2 _ 2 & %
a(t) = (1+7) F£ - 2F, Gy*+ O = — 77
) (57)
b(t) = Gy .
The cross-section may then be written as:
do = (do) G2+ T |+2th9- ¢z | . (38)
NS ) E 2 /)M 1+717 °

This formula is called the Rosenbluth formula. The fact that no interference terms
between GM and GE appear is easily understood: GE and GM are the factors of the non-spin flip
and spin-flip terms in the Breit system. When writing Eq. (37) use has been made of the fact
that both GE and GM are real for electron-proton scattering. This property can be derived from
time reversal invariance‘).

V. TEST OF VALIDITY OF ONE-PHOTON APPROXIMATION

The one-photon approximation has two characteristic features:
a) a particular form of the dependence of |T|2 on s and t,
b) the form factors are real.

The particular dependence on s and t reflects the fact that spin 1 is exchanged.
If the Rosenbluth formula is verified by experiment this means that the interaction goes via
spin 1; but multiple photon exchange with exchanged total angular momentum equal to one and
parity minus is not excluded. Furthermore, an additional interaction through JP = 07 would

not modify the structure of the Rosenbluth formula since it would only give an additional
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contribution to Ao of Eq. (6) but no interference term. In general, a modification through
exchange of states with JP other than 1~ and 0~ will produce additional terms in the cross-

section formula with powers of

1 2 6 %
{I+-‘—+7ctg 5} =cosz9t.

Any deviations from the Rosenbluth formula can be expected to become more pronounced

for small angles O. For instance, an additional I+ interaction will make the cross-section

- ot %)1/2} (59)

The deviation of the © dependence of the interference term from the form "constant

become:

do = (da)NS {a(t) + 27 b(t) t& % + c(t) t& % <l Ty

+ tg 9/2 constant’ increases for small ©.  Our result is that a test of the Rosenbluth for-

mula basically is the test for the exchange of Jp = 0-, 1.

A more powerful test uses the measurement of the polarization of the outgoing nu-
cleons and is based on the fact that the form factors are real. Since one works with an
unpolarized electron beam and without analysing the polarization of the outgoing electrons for
simplicity we neglect the electron spin; its inclusion would not change the result. The

scattering amplitude can be written as matrix between Pauli spinors
+ g
T= xs,(f+ iog) Xg + (40)

The polarization can be written as:

- >k
9,-9. 2Imfg - 41)
P=g75 ° If[z | l ) 4
+7 - +18

g, and o_ are the cross-sectxons for the outgoing protons, spin being parallel or ant1parallel

L -R%

to the unit vector n. Now, in the one-photon exchange approximation both f and g are real.
There should be no polarization if the approximation is valid. If there is an additional

two-photon exchange we write

->

2 > 22>
f=-efy + ef2, g =eg  + €8 . (42)

The factors e indicate the different powers of the coupling constant for the elec-

tron. The indices 1 and 2 refer to one and two-photon exchange. Then

)
P~ (efy+ e Refa) Ime®gs -n+e*Imfalegi-n+ e Regzn n) . (43)

Even small two-photon contributions can give rise to polarization since P contains
interference terms between one-photon and two-photon amp litudes. Basically polarization

measurement is a test for the scattering amplitude being complex.

A third test of the one-photon approximation is the comparison of electron-proton
scatterlng. Both electron and positron scattering are described by the same spin average
|T|2 of the square of the amplitude except that the electron coupling constant e is replaced
by -e. If - neglecting spins - we indicate the dependence on the coupling constant explici-
tely:

T=¢eTy + T , (44)
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where the indices 1 and 2 refer to single and double photon exchange, we have

IT'2 :e2[T1!2+e4|T2i2+2e3 T]ReTz . (4—5)

The interference term changes sign when going from electron toc positron scattering:

oe_ - Ue* =~T,ReTy . (46)

VI. GENERAL STRUCTURE OF FORM FACTORS

We have introduced electric and magnetic form factors GE and GM (for the proton:
Gg, Gﬁ). A similar analysis can be done for the neutron giving Gg and G&. Since the static
charge of the neutron is zero: GE(O) = 0 and G& = Knp. But from the scattering of slow neu-
trons it is known that dGE(t)/Ht too # 0. In practice the form factors of the neutron can
not be determined as easily as those for the proton. Since free neutrons are not available
as target one has to use bound neutrons, e.g. deuterium, which causes difficulties due to

the strong interaction between the neutron and the proton.
For treating the influence of strong interactions it is more convenient to intro-

. . s v
duce isoscalar and isovector form factors G~ and G :

s GPu g
- 2

P n
G -G
G e (47)
In nucleon-antinucleon annihilation c° corresponds to the isosinglet contri-
bution (I = 0) and G to the isotriplet contribution (I = 1) of the one-photon channel. We

can write the inverse of Eq. (47) as matrix element between nucleon isospinors 7n:

p
¢" =%+ 6Y) 0 . (48)
p p
n n
The normalization is such that:
s 1 \ 1
Gz(0) = 35 Gg(0) = 3
] ke R (49)
Gu(0) =5+ =5 » Gy(0) = 5+ —5— .

The influence of strong interactions on the electromagnetic structure of the nu-
cleons is most conveniently discussed within the frame of dispersion relations. It has been
shown in perturbation theory that the form factors are functions analytic in the complex
t-plane cut along the real axis from some value t, to «. The corresponding representation
by a Cauchy integral gives the dispersion relation:

t [ ImG(t')
T (t -’

to

G(t) = G(0) + dt’ . (50)
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With this representation there is associated a decomposition into contributions of different

intermediate states indicated in Fig. 4.

To each diagram corresponds a cut of the function G for values of t such that the
particles in the intermediate state are on the mass shell, i.e., for t 2 (Znu)z, where m, are
the masses of the particles. The value of to in Eq. (50) is given by the intermediate state
of lowest mass. The intermediate states must satisfy the selection rules, i.e. they must

have
angular momentum J = 1 parity minus

isospin I = 1 for isovector form factor
I

i

0 for isoscalar form factor .

Since the pions are bosons, two pions with J = 1 necessarily have I=1. J=1and I =0 can

only be obtained with at least three pions; therefore

to = (2u)? for isovector
form factors; u = pion mass . (51)

to = (3u)® for isoscalar

Each diagram of Fig. 4 is composed of diagrams corresponding to other processes,
e.g. for the two-pion intermediate state corresponding to N+ N » 27 and to the pion form

factor. This is reflected in the rule for the computation of the weight function:

¥
In G =Z TNﬁ';zrziY . (52)

intermediate
states z

Here TNN denotes the scattering amplitude for N+ N>z, Pziy_denotes the electro-
magnetic vertex. Each of the functions entering into ImG according to Eq. (52) itself is
connected with amplitudes for other processes. For instance, the pion form factor entering
into the two-pion contribution is related to the amplitude for pion-pion scattering as indi-

cated in Fig. 5.
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In practice it is impossible to take into account all relations between the
functions appearing in Eq. (52) and the amplitudes for the related processes. But it is
hoped that in the physical region for electron-nucleon scattering, i.e. t< 0, for small
values of |t| the first portion of the cut will be more important than the far distant parts,
for which the factor 1/(t’ - t) appearing in the dispersion integral is smaller. Now, the
first part of the cut is largely determined by the pion-pion interaction which is known to
show strong resonances. Therefore, one frequently interprets the experimental results in

terms of resonance models involving the p, w and ¢ mesons.

Before turning to the approximations we shall mention some general considerations
which impose constraints on parameters of the model. If a form factor G(t) for t » - =

vanishes sufficiently rapidly in the limit, the dispersion integral must cancel the constant

term in Eq. (50)s This gives

1 [ ImG(t') .
™ j t!
to

G(0) = t. (53)

If G(t) vanishes faster than ~ l/|t|,1m G(t) can not be 2 0 throughout the interval of
lim tG(t)

t>mw = 0, we have

integration, In particular if

3

{ Im G(t’') dt’ =0 . (54)

to

Unfortunately no rigorous statement about the asymptotic behaviour can yet be given. We

therefore shall not go into detailss).

Another constraint is imposed by the behaviour at t = 4, i.e, the physical
threshold for nucleon-antinucleon annihilation. The matrix element of the electromagnetic

current in the ce.mes. for nucleon-antinucleon annihilation has the structure

<Ju> ~thl (; . ?’22 (GM - GE) + ;GM> XS . (55)
P

2



—]3_

The second term involving only ; corresponds to a 38 contribution while the first
term contains the >D contribution. At threshold there should remain only the S-wave amplitude
which requires: GM = GE at t = 4M®, Another argument for this relation to hold goes as
follows: at threshold there exists no privileged direction in space. Therefore the angular
distribution should be isotropic. Now, Fj? in general contains a term proportional to

cos? #, which should vanish at threshold:

t t
(Z - M2> <Z - m2> a(t) cos® o, = - (ﬁ - m2> M2<GE - 4—;'15- Gﬁ) cos? o,

»> 0 for t » 4M (56)

. 2 2 2
i.e. GE - GM for t » 4M

The reasoning for obtaining expressions to fit the form fdctors goes as follows:
the pion-pion interaction at small energies is dominated by resonances (eege Dy Wy ¢). It is
assumed that the contribution to the weight function in the dispersion relation for the nu-
cleon form factors comes mainly from the vicinity of resonances. In the limit of an infini-
tely narrow resonance one has a §-function contribution to Im G(t) leading to a form factor

contribution:

constant . (57)

t-m
r

contribution of narrow resonance ~

m. is the mass of the particle associated with the resonance. The constant appearing in
Eq. (57) is the product of the coupling constants N- N resonance and y resonance. This
approximation corresponds to substituting one particle for a two or more pion intermediate

state. For the two-pion contribution a p meson is substituted according to Fig. 6.

O — (O

2T 9
FIG. 6

Candidates for approximating the isoscalar form factors are the w and ¢ mesons.
It can not be expected that all of the integral can be approximated by resonant contributions
of the form (57). There will be a slowly varying background which sometimes is approximated

by a constant. Thus one arrives at a formula of the structure:

b

5 .
W xar) T - (58)

A formula of this type with one pole term is known as "Clementel-Villi formula"e).

Our considerations leading to the expression (58) have only been a motivation but not

a derivation. This should be born in mind when applying it to the experiment.
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We have added the constant term a in order to represent a slowly varying back-
ground. If the inclusion of such a term gives a good fit to the experiment it does not ne-
cessarily mean that the rigorous expression for G(t) contains a constant. An equally good
fit can be obtained if instead of the constant a an additional pole term is used such that
- bi/mf = a and mf sufficiently large. The constant term only simulates a contribution of a
slowly varying Im G(t) for large values of t’. Since the Fourier transform of a constant is
a 8-function, the constant a sometimes is interpreted as being due to a hard core. But in the
light of the fact that expression (58) is only an approximation this interpretation should not

be taken too literally.

The number of pole terms necessary to give a good fit to the experiments is not
known a priori. Of course, one expects the known resonances with appropriate quantum num-
bers to give contributions. There are the p meson for the isovector form factors and the w
and ¢ mesons for the isoscalar form factors. It turns out that a better fit is obtained if
one pole more - a p’ - is included for the isovector form factor. The apparent necessity to
include such a pole does not necessarily mean that a corresponding resonance exists. It only

says that the behaviour of the dispersion integral is thus better approximated.

The masses entering into (58) can not a priori be expected to be exactly those of the
known resonances. The resonances have a finite width which in the case of the p is consider-
able. As pointed out by Ball and Wong, a more detailed calculation of the weight function
entering into the isovector form factors shows that the maximum is shifted to lower energies
and furthermore the region of small t’ is weighted rather heavily. Therefore, in general,

shift of the masses my relative to the masses of the known resonances is expected.

The constants bi are restricted by the normalization at t = O. Furthermore, some-
times the condition GE = GM at t = 4M? is used as a constraint. But it should be born in
mind that this point lies outside the region where one can expect the approximation to hold.

At present the experiments indicate that there is no substantial deviation from the
predictions of the one-photon approximation. The Rosenbluth formula with its particular
dependence on t# 6/2 seems to hold, a measurement of polarization at t = 16 F° gives
P = 0.031 * 0,025 which is no significant deviation from P = 0, and a comparison of e+ and e

scattering also does not indicate a substantial two-photon contribution.

If the scattering data are analysed in terms of form factors,the surprising result
. D o n _ -2 . . .
is that GE’ GMA Kn? and GMan seem to be equal up to ¢© = 50 F . This equality in the
region t< 0 is not expected to hold for all values of t since it contradicts GE = GM at
t = 4M3, If the experimental results are represented by a Clementel-Villi-type formula, the
values for the parameters depend on the number of them left free. If one takes the masses of

p, w and ¢ and introduces a fictitious p’ with mp’ = 940 MeV, one obtains7)
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G5 .24 __ 0.7
E" 14+ /15.8 1+ q/26.7

v - 2,01 _ 1.51
E™ 1+ q®/14.4 1+ q/23.0
(57)
S _ 1.12 _ 0.68

M7 14+ @/15.8 1+ /26,7

o 6.23 _ 3.87
M " 1+ @/14.5 1+ ¢/23.0

This fit does not include a constant term. But it is also possible to represent the data

with p, » and ¢ only together with constant terms. This givese)

G = 2.6 _ 3.1 .1
E™ 1+ q®/15.8 1+ ¢?/26.7
Vo —09 o4

E T /145 0
(58)
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T 1+ @/14.5

0.8

= Tr @/15.8 1+ /26.7
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