
ar
X

iv
:c

s/
03

05
06

3v
2

 [
cs

.D
C

]
 1

0
Ju

n
20

03
Computing in High Energy Physics, March 24-28 2003, La Jolla, CA 1

McRunjob: A High Energy Physics Workflow Planner for Grid
Production Processing

G.E. Graham
Fermi National Accelerator Laboratory, Batavia, IL, 60510-0500, USA
D. Evans and I. Bertram
Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK

McRunjob is a powerful grid workflow manager used to manage the generation of large numbers of production
processing jobs in High Energy Physics. In use at both the DZero and CMS experiments, McRunjob has been
used to manage large Monte Carlo production processing since 1999 and is being extended to uses in regular
production processing for analysis and reconstruction. Described at CHEP 2001, McRunjob converts core
metadata into jobs submittable in a variety of environments. The powerful core metadata description language
includes methods for converting the metadata into persistent forms, job descriptions, multi-step workflows,
and data provenance information. The language features allow for structure in the metadata by including full
expressions, namespaces, functional dependencies, site specific parameters in a grid environment, and ontological
definitions. It also has simple control structures for parallelization of large jobs. McRunjob features a modular
design which allows for easy expansion to new job description languages or new application level tasks.

1. Introduction

McRunjob (Monte Carlo Run Job) was first cre-
ated in the context of the DZero Experiment at Fer-
milab during the 1999 DZero Monte Carlo Challenge.
At the time, there was no easy generic way to orga-
nize large batches of Monte Carlo jobs, each possibly
involving multiple processing steps. McRunjob was
originally designed so as to be generic enough so that
the addition of new production processing executa-
bles would not pose a significant integration problem
into the existing framework and so that different exe-
cutables could be linked together in possibly complex
tree-like workflows in which each node represents a
processing step. The main focus of McRunjob pro-
vides a metadata based abstraction of each job step
and to provide tools that allow for specification of the
metadata, functional dependencies of the metadata
among distinct steps, delegation of methods to build
and or run jobs, and linkages to external frameworks,
databases, or servers. While McRunjob has been used
continuously at DZero since then, it has only been in
use at CMS since the end of 2002 for regular produc-
tion operations.

Typically, McRunjob operates during the job build-
ing stage to turn structured metadata into jobs. It
does this by establishing interfaces to do the follow-
ing:

• Define and access a unit of schema called a Con-
figurator

• Register functions to the schema to perform job
building, or

• Optional delegation of job building responsibil-
ities to other Configurators

• Support User driven framework operation

• Support linkages to external databases, cata-
logs, or resource brokers.

• Register parsers to the schema to allow for cus-
tomized access to the Configurator interface as
text macros

• Specify dependencies among the metadata ele-
ments

• Support rudimentary ontologies through speci-
fication of synonyms and versioning

• Support inter-Configurator communication and
User Interface through a Configurator container
object known as the Linker.

2. Architecture of McRunjob

McRunjob is implemented in Python and consists
of three major components:

• The Configurator Configurators are essentially
packages of metadata that describe applications.
Configurators can be defined to describe appli-
cation input, environment, and output. How-
ever, since the Configurators are completely
generic, they can also describe batch queues,
grid execution environments, information from
a database, local computing site information,
etc. Taken together, the Configurators describe
workflow and provenance of data.

• The Script Generator The Script Generator is a
specialization of a Configurator that also imple-
ments the ScriptGen interface. The ScriptGen
interface makes it possible for Configurators to
delegate specific job generating tasks to a single
common ScriptGen object. This helps keep job

TUCT007

http://arXiv.org/abs/cs/0305063v2

2 Computing in High Energy Physics, March 24-28 2003, La Jolla, CA

generation consistent in an environment where
there may be different schemes for creating or
handling jobs.

• The Linker The Linker is a container for Con-
figurators. It also acts as a communication bus
for Configurators, a driver for the job building
framework, and a user interface to the Linker
and Configurator APIs.

Figure 1 shows the simplest McRunjob scenario. A
User or Production Coordinator needs to run three
applications: let’s call them A, B, and C. Let’s say fur-
ther that the output of A is the input of B and that the
output of B is the input to C. The user will communi-
cate to the Linker directives to instantiate pre-defined
Configurators corresponding to A, B, and C.1 Usually
such job building directives are kept in an McRun-
job macro script, the syntax of which is described
below. The user issues a set of configuration macro
commands which are routed to the relevant Config-
urators. These configuration commands may include
specification of values for the schema, specification of
inter-Configurator dependencies, and the specification
of functional dependencies among schema elements in
different Configurators. Since each Configurator is re-
quired to have a unique description within the Linker
space, so the Configurators themselves function much
like namespaces. An example of a simple functional
dependency is B:InputFile = A:OutputFile.2 The
“MakeJob” and “MakeScript” directives, examples of
framework calls, are issues. These particular frame-
work call cause the Configurators to generate shell
scripts to handle their respective applications in se-
rial order. The scripts are then collected by the Linker
and a composite shell script that represents the entire
workflow is produced. This procedure can be reset
and re-run as many times as desired to kick out as
many jobs as desired. The procedure is also generic
in that different targets than shell scripts (eg- directed
graphs) can be selected by including different Script-
Gen modules.

In addition to modeling the application space,
the Configurators also provide a useful abstraction
through which to exchange information with other ex-
ternal sources such as databases, batch queues, etc.
Figure 2 shows a generalized picture of how Configu-
rators may do this. Typically, the user writes a script
of McRunjob macro commands which are interpreted
by the Linker framework (shown in light blue.) The

1This is the most common case: that the Configurators cor-
responding to production applications are written beforehand
by experts. However, directives also exist for the creation of
Configurators and specification of schema ”on the fly.”

2Such obvious I/O dependencies have a special place in many
job handling systems, but McRunjob treats all possible meta-
data dependencies on an equal footing.

Linker takes these commands and distributes them
to the Configurators attached below. The Configura-
tor layer exposes to the Linker sets of metadata key-
value pairs, but with additional customizable back-
ends. For example, one class of Configurators (”Input-
Plugins”) have backends that communicate to exter-
nal databases, planners, or servers. More conventional
Configurators just hold on the application metadata.
ScriptGenerators collect results from previous Con-
figurators and produce composite workflows (as de-
scribed above). Finally, a Batch Portal Configurator
may take the produced composite script object and
submit it to a batch queue.

In the DZero context, Monte Carlo production
is coordinated with the SAM database at FNAL.
Two of the common applications in the workflow are
PYTHIA Generation and D0gstar (GEANT Simula-
tion.) The ScriptGenerator targets executable scripts
for the DZero executable script environment3, and one
possible execution environment is the SAM/JIM grid
service. In upcoming DZero production on the grid,
there may no jobs; rather the focus is on automatic
production of McRunjob macros which replace scripts
and are executable by remote Linkers. Also, there is
work being done to leverage existing McRunjob tools
to do monitoring on the DZero farms.

Some typical dependency relationships among con-
figurators include modeling of the sequence in which
applications have to run on a set of events in order
to reach a given data product or modeling of param-
eter flows in environments where several databases or
configuration files may be consulted in the process of
job creation. One feature of the McRunjob frame-
work in CMS that is disabled in the DZero framework
is the requirement that such dependency relationships
be clearly defined before inter-Configurator parameter
lookup can take place. This discipline is useful, how-
ever, in an environment where a clear provenance of
the produced data is not already established by cen-
tral means. At DZero, this is largely handled by the
SAM database.

Three final points can be made. The first is that
although McRunjob was conceived in a Monte Carlo
production environment, it is perfectly and immedi-
ately well suited to any problem involving complex
workflow specification and job templating in a produc-
tion processing environment. The second is that while
McRunjob was designed to describe production work-
flows in the Monte Carlo setting (ie- applications and
files) there is no reason that it cannot be extended into
more fine grained settings to describe Analysis Object
Data (AOD) and their relationships and provenances.
Finally, McRunjob typically operates after metadata

3There is only one ScriptGen at DZero so usually no distinc-
tion is made.

TUCT007

Computing in High Energy Physics, March 24-28 2003, La Jolla, CA 3

Figure 1: A simple McRunjob scenario. The User or Production coordinator needs to run three applications A, B, and
C. The user communicates with the Linker to attach the appropriate configurators, set their metadata values, and run
the Linker framework to cause the Configurators to produce jobs.

is specified and before jobs are actually submitted;
McRunjob could conceivably be extended into run-
time to bring parameter lookup services into runtime.

2.1. The Configurator

The Configurator API provides methods for au-
tomating many of the procedures inherent in speci-
fying workflow for Monte Carlo Production or Anal-
ysis. The Configurator is essentially a value added
metadata container. It comprises a special Trigger-
Dictionary class used to hold the metadata key/value
pairs and the methods provided to manipulate the
metadata in a production processing environment.

• The TriggerDictionary allows the user to pro-
vide an implementation for the internal dictio-
nary. The implementation must use the regular
Python UserDict interface.

• The TriggerDictionary makes calls to user sup-
plied functions on reads or writes to the internal
dictionary implementation.

The TriggerDictionary triggering mechanism is used
to implement several Configurator functionalities,

such as parameter lookup or construction. It is also
used to implement parameter monitor and watch func-
tions for debugging purposes. The internal implemen-
tation object is swappable, enabling GUI linkage on
demand. There are four kinds of triggers: (1) Global
Read: Functions that are called when any element
is read. (2) Global Write: Functions that are called
when any element is written to. (3) Indexed Read:
Functions that are called only when a specific element
is read. (4) Indexed Write: Functions that are called
only when a specific element is written to. Functions
that handle any of the triggers must be registered to
the TriggerDictionary object as described below, and
must accept a Python list as argument. In all cases,
the first element in the list is always a back reference to
the TriggerDictionary object, and the second is always
the key that was called. The remaining elements, is
present, are defined at registration time. NOTE: Trig-
ger handlers registered to TriggerDictionary, if they
are going to alter dictionary state, must always inter-
act with the TriggerDictionary using the Untriggere-
dRead and UntriggeredWrite methods; otherwise an
infinite loop could occur.

TUCT007

4 Computing in High Energy Physics, March 24-28 2003, La Jolla, CA

Figure 2: At the direction of the user through a macro script file, one class of Configurators (”InputPlugins”) have
backends that communicate to external databases, planners, or servers. More conventional Configurators just hold on
the application metadata. ScriptGenerators collect results from previous Configurators and produce composite
workflows as described above. Finally, a Batch Portal Configurator may take the produced composite script object and
submit it to a batch queue.

The feature that the TriggerDictionary can accept
any conformant implementation of its internal dictio-
nary structure implies that structures can be built
for this purpose that have external linkage to graph-
ics or GUI packages. Furthermore, these can be
“HotSwapped” so that graphics packages or debug-
ging mechanisms can be inserted into running McRun-
job programs.

Configurators are themselves described by meta-
data. This metadata is used internally by McRun-
job to resolve dependencies, keep track of schema ver-
sions, resolve entries in synonym tables, and distin-
guish Configurators within the memory space of a
Linker. Configurators can function within the Linker
as namespaces; the ConfiguratorDescription objects
allow the namespaces to be referenced.

The ConfiguratorDescriptions are generally used
internally for two things: to implement inter-
Configurator dependencies and to aid in parameter
lookup. In the first capacity, a Configurator can de-
clare dependencies on other Configurators. This can
occur statically when a developer is modeling under-
lying relationships among applications or dynamically

when a user is modeling relationships among servers,
planners or databases. When adding a Configurator

to the Linker or when altering the dependencies of
Configurators already in the Linker, the dependencies
are checked and an Exception is thrown if not satis-
fied. The mechanism is that the dependencies of the
new or changed Configurator are matched against the
list of existing Configurators in the Linker If there is
not a match, then an exception is thrown. NOTE:
This behavior is disabled in DZero.

The Configurators support a parameter lookup ser-
vice based on namespaces within the Linker and on
declared dependencies. Since the ConfiguratorDe-
scriptions of Configurators must be unique within the
Linker, they define a partition (namespaces) on the
parameters. Thus a parameter in the Linker is de-
fined by a complete specification of the Configura-
torDescription and the parameter name. From a Con-
figurator point of view, a parameter in Configurator
B is only visible if there exists a declared dependency
on Configurator B. This last behavior is also disabled
in DZero.

Configurators contain synonym tables. These are
lookup tables that translate local metadata key names
into different key names in other Configurator types.
The behavior of a workflow can therefore change de-
pending upon what synonyms are loaded at any given

TUCT007

Computing in High Energy Physics, March 24-28 2003, La Jolla, CA 5

time. The synonyms tables can be loaded for different
environments or changing versions, thus providing for
a rudimentary ontology.

Finally, Configurators can have explicit metadata
translation or construction rules attached directly to
each metadata element. These are available to the
developer, but not yet available in the macro script
language.

Examples of Configurators include those that have
connectivity with external databases (ie- RefDB in
CMS through SQL queries or SAM in DZero through
system commands,) those which model applications
steps (ie- Monte Carlo generation, detector simula-
tion, digitization,) those which submit jobs to spec-
ified batch portals (ie- LSF or PBS batch systems,
Condor, DAGMan/Condor-G.)

2.2. The Script Generator

One of the problems encountered in practice using
the above model of Configurators generating custom
bits of code which are then collected by the Linker
for submission to an execution manager is that there
is no organization in place to help guarantee that all
of the independently generated bits of code will be
compatible. For example, they may be targeted for
an environment in which the code bits cooperate at
runtime through non-McRunjob interfaces. The only
way to organize this is at the level of the Configurator
itself; so the number of modules potentially needing
modification in case of a change to the runtime envi-
ronment is as large as the number of Configurators.

ScriptGen is a special interface implemented by
some Configurators that enable Configurators to del-
egate specific calls to a single Configurator. In the
case of delegation, the ScriptGen must declare Con-
figuratorDescriptions and method calls which it can
handle. The Configurator must specify which method
calls it will delegate and the description of the Script-
Gen module to which it is delegating. With this func-
tionality, a new way to organize code is available: all of
the script generating code targeting specific runtime
environments can be collected in a single ScriptGen
module. The ScriptGen module is also usually the
agent which the Linker uses to collect code bits tar-
geted for a specific environment in order to create a
composite job or DAG.

Examples of different ScriptGen modules in CMS
are the default ImpalaScriptGen module, which gener-
ates executable scripts compatible with the legacy Im-
pala production environment, the ImpalaLiteScript-
Gen module, the CMSProdScriptGen module, the
VDLScriptGen module for generating specifications
written in the Chimera Virtual Data Language, and
the MOPDagGen module for taking the output of
other specified ScriptGen modules and producing a
Directed Acyclic Graph (DAG) for use by the Condor

DAGMan tool.

2.3. The Linker

The Linker is a Container class for Configurators.
It handles all communication between the User and
the Configurators and between any two Configura-
tors. It also contains a repository for “script Objects”.
Configurators that need to generate code bits to im-
plement a given workflow or job can store these bits
in the Linker as script Objects. As described above,
a ScriptGen module may later collect script Objects
targeted for a specific environment and create a com-
posite script Object. It may also, as in the case of
MOPDagGen, wrap existing scriptObjects or compos-
ites into a DAG.

The Linker also supports some simple looping struc-
tures within the McRunjob macro scripts, and also
drives the framework, described in the next section.

3. The Framework

The Configurators build jobs together by contribut-
ing their specialized knowledge of application steps or
external resources to the overall whole in structured
ways. One part of this structure is the Configurator
dependencies4. Another structure which organizes the
order in which tasks are completed is the Framework.
The framework is basically a sequence of strings used
as messages sent to framework handlers in the Config-
urators. The messages can include things like Reset,
MakeJob or MakeScript for shell script building, list-
ing of derivations and transformations in CHIMERA,
etc.

Traditionally in McRunjob, framework calls are
handled directly by the Configurators themselves
through subclassing the Framework handling meth-
ods. However, to better support flexibility without
using inheritance, the Configurator base class also pro-
vides methods for registering functions (possibly user
supplied in certain simple cases) to handle specific
framework messages. As described above, as a double
indirection supporting code maintenance tasks, these
functions can also be registered to a special Configu-
rator that inherits the ScriptGen interface and then
delegated.

The Linker thus provides the drumbeat according to
which the Configurators march: it provides a context
within which to order the Configurators by their de-
pendencies and a framework within which to sequence
method invocations.

4Or, when not enabled, just the order in which Configurators
are added.

TUCT007

6 Computing in High Energy Physics, March 24-28 2003, La Jolla, CA

4. The Macro Language

The McRunjob macros are intended to provide a
user interface to the Configurator and Linker APIs.
It is possible to construct the macros as a complete
declarative specification of the workflow, but even in
a procedural environment where parameters are being
“constructed” or “discovered” in external databases
the resulting state of the McRunjob program can at
any time be dumped in declarative format. Thus
macros can also serve as a rudimentary ”provenance”
for the described or constructed workflow.

The Linker macros comprise commands that at-
tach Configurators, route macro commands to spec-
ified Configurators, and simple looping and condi-
tional constructs. In the Configurator, the handling of
macros is done in a “class distributed” fashion. Con-
figurator classes can have macro handlers registered
to them so that it is very easy to extend their macro
interfaces. A particular Configurator object passes
a particular macro to each of the registered macro
handlers until it finds one that can handle the par-
ticular macro. The Configurator base class registers
a base parser which is called last, and Configurator
subclasses extend this. Following is a list of simple
Linker directives:

• attach cfgIdentifier attaches a configurator of
the given type.

• cfg cfgIdentifier cmd issues the macro “cmd”
to the specified Configurator.

• framework run cmd issues the framework
message “cmd” to all Configurators in sequence.
Framework commands can be grouped together
and run in groups as well.

Following is a list of simple Configurator macros:

• additem keyname Adds a metadata element
named “keyname”

• define keyname expression Sets the value
of “keyname” to “expression” where expression
can be a literal or a reference to the value of a
key in another configurator or a reference into
the internal Configurator synonym table5 or a
directive to construct the value by registered
function.

• addreq cfgIdentifier Adds cfgIdentifier as a
dynamic dependency for this configurator.

• synonym key ::cfgIdentifier:newkey Defines
a possible synonym for “key” to target “newkey”
in another Configurator.

5‘Real expressions like “a+b/c” are not yet supported.

• oncall fmk do cmd Store command “cmd” and
execute it on receipt of framework call “fmk”.

Macros can source other macros. In this way,
McRunjob macro commands can be separated into
synonym definitions and stored commands on one
hand and pure workflow descriptions on the other
hand. The former are seen as part of the environ-
ment and are in some sense independent of the pure
workflow descriptions. The management of these en-
vironments leads to a rudimentary ontological man-
agement system.

4.1. The “Hello World” Example

In the CMS implementation of McRunjob, a Hel-
loWorld example is provided which consists of a Hel-
loWorld Configurator with metadata element Hel-
loMessage and a HelloWorldScriptGen that also serves
as a metadata server. Each HelloWorld configurator is
equipped to produce a short script which echos its Hel-
loMessage to the screen. The HelloWorldScriptGen
collects these scripts into a composite. The following
is a simple example macro script fragment that would
print out a HelloWorld message in English, French,
and German6.

Attach the ScriptGen which will in this

case also serve metadata values to the
HelloWorld configurators

attach HelloWorldScriptGen
cfg HelloWorldScriptGen additem English

cfg HelloWorldScriptGen define English \
Hello World

cfg HelloWorldScriptGen additem French
cfg HelloWorldScriptGen define French \

Salut le Monde
cfg HelloWorldScriptGen additem German

cfg HelloWorldScriptGen define German \
Hallo Welt

Attach the HelloWorld Configurators

themselves
attach HelloWorld named English

attach HelloWorld named French
attach HelloWorld named German

Enable HelloWorld to delegate script
generation to ScriptGen. (This also

sets correct dependencies.)
cfg HelloWorldScriptGen register HelloWorld

Route the metadata to correct

configurators

6This uses new syntax instituted as of May 2003.

TUCT007

Computing in High Energy Physics, March 24-28 2003, La Jolla, CA 7

FrameworkCall HelloWorld HelloWorld HelloWorld ScriptGen Fork

Reset Handled Handled Handled Handled Handled

MakeJob Delegated Delegated Delegated Skipped Skipped

to ScriptGen to ScriptGen to ScriptGen

MakeScript Skipped Skipped Skipped Handled Skipped

RunJob Skipped Skipped Skipped Skipped Handled

Table I Framework Operation in the Hello World example. The sequence goes from left to right and then up to down,
like reading a book (in English.)

cfg HelloWorld named English define \
HelloMessage ::HelloWorldScriptGen:English

cfg HelloWorld named French define \
HelloMessage ::HelloWorldScriptGen:French

cfg HelloWorld named German define \
HelloMessage ::HelloWorldScriptGen:German

Fork the resulting jobs in background
Set it to get executables list every time

‘‘RunJob’’ is executed.
attach Fork

cfg Fork define ScriptGenName \
HelloWorldScriptGen

cfg Fork oncall RunJob do \
define ExecutableList ::construct

Upon invocation of the framework, this will result
in the sequence of framework calls shows in table 4
and will result in the output

Hello World
Salut le Monde

Hallo Welt

5. Conclusions and Future Plans

McRunjob has been successfully used in both the
DZero and CMS experiments to model HEP workflows
for Monte Carlo productions both on local controlled
farms resources and in Grid environments. In both
experiments, there is a desire to see how far we can ex-
tend McRunjob into the realm of interactive analysis;
The extension to batch analysis should be straightfor-
ward. More immediately, full expression support will
be added to the macro language. A common project
at Fermilab between USCMS and DZero is also being
started to address common goals and support issues.

There are many exciting directions being explored.
In the context of DZero, runtime McRunjob is be-
ing explored as an answer to the need for monitoring
jobs on the farms. The declarative specifications of
jobs are converted to XML and stored in a local XML
database, and the McRunjob created job is instru-
mented to update this database. Furthermore, the

extension of the rudimentary ontologies as described
above presents an interesting research problem as the
environments (as defined above) become large. Also,
how the workflow description plus and annotations
from the environment informs the provenance of a
particular derived data product is an open question.
Finally, as the Grid itself adopts a more Web Services
oriented model of operation, it may become impor-
tant to include extensions to proposed standards such
as Web Services Flow Language (WSFL).

Acknowledgments

The authors wish to thank the members of the
DZero and CMS experiments who have provided many
insights (and bug reports) over the years; especially
Boaz Klima, Kors Bos, Willem van Leeuwen, Lee
Lueking, and the SAM team at DZero; and Tony
Wildish, Veronique Lefebure, and Julia Andreeva at
CMS; and Jaideep Srivastava and Praveen Venkata
of the University of Minnesota, Peter Couvares, Alan
DeSmet, and Miron Livny of the University of Wiscon-
sin, and Richard Cavanaugh and Adam Arbree of the
University of Florida, and Muhammad Anzar Afaq of
Fermilab for helpful discussions.

References

[1] G.E. Graham, “DZero Monte Carlo” ACAT’00,
Fermilab, Batavia, IL, USA 2000

[2] D. Evans and G.E. Graham, “DZero Monte Carlo
Production Tools (8-0127)” CHEP’01, Beijing,
China 2001

[3] G.E. Graham, T. Wildish, et al. “Tools and Infras-
tructure for CMS Distributed Production (4-033)”
CHEP’01, Beijing, China 2001

[4] DZero McRunjob page http://www-
clued0.fnal.gov/runjob

[5] USCMS McRunjob page
http://www.uscms.org/scpages/subsystems
/DPE/Projects/MCRunjob

TUCT007

