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Abstract. The first-year WMAP data taken at their face value hint that the Universe

might be slightly positively curved and therefore necessarily finite, since all spherical

(Clifford-Klein) space forms M3 = S3/Γ, given by the quotient of S3 by a group

Γ of covering transformations, possess this property. We examine the anisotropy of

the cosmic microwave background (CMB) for all typical groups Γ corresponding to

homogeneous universes. The CMB angular power spectrum and the temperature

correlation function are computed for the homogeneous spaces as a function of the

total energy density parameter Ωtot in the large range [1.01, 1.20] and are compared

with the WMAP data. We find that out of the infinitely many homogeneous spaces

only the three corresponding to the binary dihedral group T ⋆, the binary octahedral

group O⋆, and the binary icosahedral group I⋆ are in agreement with the WMAP

observations. Furthermore, if Ωtot is restricted to the interval [1.00, 1.04], the space

described by T ⋆ is excluded since it requires a value of Ωtot which is probably too

large being in the range [1.06, 1.07]. We thus conclude that there remain only the two

homogeneous spherical spaces S3/O⋆ and S3/I⋆ with Ωtot of about 1.038 and 1.018,

respectively, as possible topologies for our Universe.

PACS numbers: 98.80.-k, 98.70.Vc, 98.80.Es

1. Introduction

At present, all data are consistent with, and in fact strongly support, the standard big-

bang model in which the time evolution of the Universe is described by the Friedmann-

Lemâıtre-Robertson-Walker metric. Accordingly, the Universe possesses the space-time

structure R × M where R describes the “space” of cosmic time, and M the three-

dimensional comoving space section of constant curvature K = +1, 0 and −1. The

Einstein field equations respectively the Friedmann equations for the cosmic scale factor

do not fix the curvature a priori. Instead, the curvature parameter K has to be inferred

from a determination of the total energy density εtot of the Universe via the relation

(c = 1) K = H2
0a

2
0(Ωtot − 1), Ωtot := εtot/εcrit, where εcrit :=

3H2

0

8πG
denotes the critical

energy density, a0 the cosmic scale factor, and H0 the Hubble constant (all quantities

at the present epoch). Furthermore, it is a mathematical fact, although not always

appreciated (see, however, the remark on early works below), that fixing the curvature

http://arXiv.org/abs/astro-ph/0504656
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K does not determine uniquely the global geometry of M, i. e. the topology and thus

the shape of the Universe. Only if it is assumed that the Universe is simply-connected,

the possible homogeneous 3-spaces M of constant curvature K are given by the 3-sphere

S3(K = +1), Euclidean 3-space E3(K = 0), or hyperbolic 3-space H3(K = −1). In this

case, the Universe is finite for positive curvature (Ωtot > 1) and infinite for vanishing

(Ωtot = 1) or negative curvature (Ωtot < 1). However, most 3-spaces M of constant

curvature are multi-connected and are given by the quotient of S3, E3, or H3 by a group

Γ of covering transformations, i. e. M = S3/Γ, E3/Γ, or H3/Γ. In this case, the Universe

is again finite for positive curvature, but can be finite too if it is flat or negatively curved.

Here, we would like to remark that the question whether the space of the Universe

is finite and possibly multi-connected has been discussed during the last century by

several cosmologists, e. g. by Schwarzschild [1], Einstein [2], Friedmann [3, 4], Lemâıtre

[5], Heckmann and Schücking [6], and Ellis [7], to mention only a few.

The concordance model of cosmology (ΛCDM model) assumes a flat Universe

with the topology of E3 with a positive cosmological constant Λ, i. e. ΩΛ := Λ
3H2

0

=

1 − Ωmat − Ωrad with Ωmat = Ωbar + Ωcdm, where the various Ω-parameters denote the

present value of the baryonic (bar), cold dark matter (cdm), matter (mat) and radiation

(rad) energy densities in units of εcrit. Three variants of the concordance model have

been presented by the WMAP team [8] providing a good overall fit to the temperature

fluctuations δT of the cosmic microwave background radiation (CMB) on small and

medium scales, but there remains a strange discrepancy at large scales as first observed

by COBE [9] and later substantiated by WMAP [10].

The suppression of the CMB anisotropy at large scales respectively low multipoles

can be explained if the Universe is finite. Recent analyses concerning the suppression

at low multipoles in the WMAP data can be found in [11, 12, 13, 14, 15]. As discussed

before, a finite Universe is naturally obtained, if the total energy density exceeds the

critical value one, i. e. Ωtot > 1. Interestingly enough, the WMAP team reported

[10] Ωtot = 1.02 ± 0.02 together with Ωbar = 0.044 ± 0.004, Ωmat = 0.27 ± 0.04, and

h = 0.71+0.04
−0.03 for the present day reduced Hubble constant (the errors give the 1σ-

deviation uncertainties only). Taking at their face value, these parameters hint to a

positively curved Universe possessing the geometry of S3 or of one of the spatial space

forms S3/Γ. (One should keep in mind, however, that the WMAP values depend on

certain priors, and, furthermore, include the 1σ-errors only. Thus it would be too early

to conclude that the data definitively exclude a negatively curved Universe. In fact,

we have recently shown [12, 13] that the non-compact, but finite hyperbolic Picard

universe describes well the CMB anisotropy and the observed suppression of power at

large scales.)

In this paper, we present a systematic comparison of the predictions with the CMB

anisotropy for universes possessing homogeneous spherical topology. This comparison is

made possible for two reasons. First of all, the spherical spaces were classified already by

1932 [16, 17] and thus their mathematical structure is known. (This is in contrast to the

case of hyperbolic manifolds which are not yet completely classified; even the manifold
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with the smallest volume is not yet known.) Second, due to an efficient numerical

algorithm described in our recent paper [14], we are able to take in the Sachs-Wolfe

formula a large number of vibrational modes into account and thus to predict sufficiently

many CMB multipoles for the various spherical spaces which in turn allow a detailed

comparison with the WMAP data. Since the CMB spectrum depends sensitively on

the curvature radius, the comparison is performed as a function of Ωtot in the large

interval [1.01, 1.20] in order to determine for a given spherical space form the best-

fitting value of the total energy density - under the condition, of course, that the space

under consideration is able to describe the data at all.

Recently, Luminet et al. [11] proposed the Poincaré dodecahedron, which is one

of the well-known spherical space forms (see section 2 for details), as a model for the

geometry of the Universe. In their preliminary study involving only the three lowest

multipoles (l = 2, 3, 4) they found, indeed, for Ωtot = 1.013 a strong suppression of the

CMB power at l = 2 and a weak suppression at l = 3 in agreement with the WMAP

data. However, in [11] only the first three vibrational modes of the dodecahedral space

with wave number β = 13, 21 and 25 (comprising in total 59 eigenfunctions) have been

used, and there thus remained the question about how this extremely low wave number

cut-off affects the predictions of the multipoles, since experience shows that increasing

the cut-off usually enhances the integrated Sachs-Wolfe and Doppler contributions.

In our recent paper [14] we presented a thorough discussion of the CMB anisotropy

for the dodecahedral space topology using the first 10521 eigenfunctions corresponding to

the large wave number cut-off β = 155. The contributions of higher wave numbers up to

β = 1501 were taken into account with respect to their mean behaviour. Taking within

the tight-coupling approximation not only the ordinary, but also the integrated Sachs-

Wolfe and also the Doppler contribution into account, we were able to predict sufficiently

many multipole moments such that a detailed comparison of the dodecahedral space

model with the WMAP data could be performed. We found that the temperature

correlation function for the dodecahedral universe possesses very weak correlations at

large scales in nice agreement with the WMAP data for Ωtot in the range 1.016 . . . 1.020.

There thus arises the interesting question whether the dodecahedral space is the only

spherical space form able to describe the CMB data. In [15] the CMB anisotropy is also

studied for the dodecahedron, the binary octahedral group, and the binary tetrahedral

group.

The main result of the present paper is that while almost all homogeneous spherical

spaces have to be excluded as possible geometries for the Universe, there is one particular

space form, defined by the binary octahedral group, which agrees for Ωtot ≃ 1.038

with the WMAP data even better than the dodecahedron. We observe that the best-

fitting values obtained for Ωtot are different for the binary octahedral space and the

dodecahedron, but both values lie well within the 1σ-band determined by WMAP. It

remains to be seen whether future data will enable us to definitely eliminate one of the

two space forms in favour of the other as describing the true topology of the Universe.

Our paper is organised as follows. In section 2, we summarize the main properties
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of the existing homogeneous spherical space forms and of their vibrational modes. Our

main results are presented in section 3 which contains a detailed comparison with the

WMAP data of the CMB angular power spectrum for the various types of spherical

spaces. In addition to the power spectrum, we study also the so-called S(ρ) statistic

[10] which measures the suppression at large angular scales directly in terms of the

temperature correlation function. Section 4 contains our conclusions.

2. The spherical space forms and their vibrational modes

In section 2 of [14] we have already described the three-dimensional spaces M of constant

positive curvature K = 1, and therefore we refer the reader to this paper for details.

The spherical spaces were classified by 1932 [16, 17] and are given by the quotient

M = S3/Γ of the three-sphere S3 under the action of a discrete fixed-point free subgroup

Γ ⊂ SO(4) of the isometries of S3. All these manifolds are compact possessing the

volume V (S3/Γ) = V (S3)/N , where N is the order of the group Γ, and are, apart from

the universal covering space S3 with volume V (S3) = 2π2, multi-connected. To define

the discrete fixed-point free subgroups Γ ⊂ SO(4) of isometries of S3, one makes use

of the fact that the unit 3-sphere S3 can be identified with the multiplicative group of

unit quaternions {q}. The latter are defined by q := w + xi + yj + zij, (w, x, y, z) ∈ R
4,

having unit norm, |q|2 = w2 + x2 + y2 + z2 = 1. Here, the 4 basic quaternions {1, i, j, ij}
satisfy the multiplication rules i2 = j2 = −1 and ij = −ji plus the property that i and j

commute with every real number. The distance d(q1, q2) between two points q1 and q2
on S3 is given by cos d(q1, q2) = w1w2 + x1x2 + y1y2 + z1z2.

The group SO(4) is isomorphic to S3×S3/{±(1, 1)}, the two factors corresponding

to the left and right group actions. In this paper, we are only interested in homogeneous

manifolds M = S3/Γ, in which case the group Γ contains only right-handed Clifford

translations γ ∈ Γ that act on an arbitrary unit quaternion q ∈ S3 by left-multiplication,

q → γq, and translate all points q1, q2 ∈ S3 by the same distance χ, i. e. d(q1, γq1) =

d(q2, γq2) = χ. The right-handed Clifford translations act as right-handed cork screw

fixed-point free rotations of S3. The following groups lead to homogeneous manifolds

M = S3/Γ [16, 17, 18, 19]:

• The cyclic groups Zm of order m (m ≥ 1).

• The binary dihedral groups D⋆
4m of order 4m (m ≥ 2).

• The binary tetrahedral group T ⋆ of order 24.

• The binary octahedral group O⋆ of order 48.

• The binary icosahedral group I⋆ of order 120.

In table 1 we give the right-handed Clifford translations which generate the above groups

Γ.

The vibrations on the homogeneous spherical spaces M = S3/Γ are determined by

the regular solutions of the Helmholtz equation

(∆ + EM
β )ψM,i

β (q) = 0 , q ∈ M , (1)
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Γ γ1 γ2

Zm cos
(

2π
m

)

+ i sin
(

2π
m

)

−
D⋆

4m cos
(

2π
m

)

+ ij sin
(

2π
m

)

i

T ⋆ j 1
2

+ 1
2
i + 1

2
j + 1

2
ij

O⋆ 1√
2

+ 1√
2
i 1

2
+ 1

2
i + 1

2
j + 1

2
ij

I⋆ j σ
2

+ 1
2σ

i + 1
2
j

Table 1. The generators γ1 and γ2 for the groups Γ (σ = (1 +
√

5)/2).

satisfying the fundamental periodicity conditions

ψM,i
β (γkq) = ψM,i

β (q) , ∀q ∈ M , ∀γk ∈ Γ . (2)

Here ∆ denotes the Laplace-Beltrami operator on S3. The eigenfunctions on M satisfy

the orthonormality relation
∫

M
dµ ψM,i

β (q) ψM,i′

β′ (q) =
1

N

∫

S3

dµ ψM,i
β (q) ψM,i′

β′ (q) = δββ′ δii′ . (3)

The spectrum on M is discrete, and the eigenvalues can be expressed in terms of the

wave number β ∈ N as Eβ = β2 − 1 and are independent of the degeneracy index

i = 1, . . . , rM(β), where rM(β) denotes the multiplicity of the mode β. It should be

noted that for a given manifold M the wave numbers β do not take all values in N. The

allowed β values together with their multiplicities rM(β) are explicitly known [20, 21],

see Table 2.

The eigenfunctions ψM,i
β (q) on M can be expanded into the eigenfunctions ψS3

βlm(q)

on S3

ψM,i
β (q) =

β−1
∑

l=0

l
∑

m=−l

ξi
βlm(M)ψS3

βlm(q) . (4)

Since the eigenfunctions on S3 are explicitly known [22, 23, 24, 25, 26, 27], it remains to

determine the expansion coefficients ξi
βlm(M) which satisfy as a consequence of eq. (3)

the normalization condition
β−1
∑

l=0

l
∑

m=−l

(

ξi
βlm(M)

)2
= N . (5)

In [14] we have described our numerical algorithm to compute the coefficients ξi
βlm(M).

It uses a collocation method by imposing the periodicity condition (2). Using this

method, we have computed in [14] the expansion coefficients for Γ = I⋆, i. e. for the

Poincaré dodecahedral space D = S3/I⋆, for β ≤ 155 comprising the first 10521

eigenfunctions. In addition, we have computed in [14] the coefficients ξi
βlm(M) for

β ≤ 33 for some cyclic groups, some binary dihedral groups, the binary tetrahedral

group, and the binary octahedral group. Based on these numerical results, we stated

for homogeneous space forms the following relation as a conjecture (0 ≤ l ≤ β − 1)

1

2l + 1

l
∑

m=−l

rM(β)
∑

i=1

(

ξi
βlm(M)

)2
= N

rM(β)

rS3(β)
, (6)
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where rS
3

(β) = β2 denotes the multiplicity of the vibrational modes on S3. The relation

(6) has been found to hold within a numerical accuracy of 13 digits. However, for the

inhomogeneous lens spaces [28] L(12,5) and L(72,17) we have found that the relation

(6) does not hold. We thus concluded in [14] that the relation (6) is only valid for

homogeneous 3-spaces. Recently, Gundermann [15] provided a proof of our conjecture

(6).

In the next section, we shall use the eigenfunctions (4) to calculate CMB sky maps

and the variance of the CMB anisotropy and relation (6) to calculate the mean value of

the CMB anisotropy for a variety of spherical spaces.

3. The angular power spectrum δT 2
l and the correlation function C(ϑ) for

spherical spaces

The relative temperature fluctuations δT (n̂)
T

of the CMB are caused by several effects

which we shall compute within the tight-coupling approximation along the lines

described in detail in Section 2 of [12]. The dominant contribution at large scales

is given by the ordinary Sachs-Wolfe (SW) effect which is a combination of the

gravitational potential Φ(η, τ, θ, φ) at the surface of last scattering (SLS), and the

intrinsic temperature fluctuation 1
4
δγ(η, τ, θ, φ) due to the imposed entropic initial

conditions, where δγ denotes the relative perturbation in the radiation component. (Here

η denotes the conformal time and (τ(η), θ, φ) the spherical coordinates of the photon

path in the direction n̂ = n̂(θ, φ), where we assume that the observer is at the origin of

the coordinate system, i. e. at (τobs, θobs, φobs) = (0, 0, 0).)

The gravitational potential Φ is identified with the (scalar) perturbation of the

Friedmann-Lemâıtre-Robertson-Walker metric which for an energy-momentum tensor

Tµν with Tij = 0 for i 6= j (i, j = 1, 2, 3) can in conformal Newtonian gauge be written

as [29]

ds2 = a2(η)
[

(1 + 2Φ)dη2 − (1 − 2Φ)|d~x|2
]

. (7)

Here a(η) denotes the cosmic scale factor as a function of conformal time η and |d~x|2
the line element on S3

|d~x|2 = dτ 2 + sin2 τ (dθ2 + sin2 θ dφ2) (8)

with 0 ≤ τ ≤ π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

The ordinary Sachs-Wolfe (SW) contribution to the temperature fluctuation is given

by

δT SW(n̂)

T
= Φ(ηSLS, τSLS, θ, φ) +

1

4
δγ(ηSLS, τSLS, θ, φ) (9)

with τSLS := η0−ηSLS, where η0 and ηSLS denote the conformal time at the present epoch

and at the time of recombination corresponding to a redshift zSLS = 1089, respectively.
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For a given spherical space M, the metric perturbation can be written as an expansion

in the eigenfunctions on M

Φ(η, τ, θ, φ) =
∑

β≥3

′
rM(β)
∑

i=1

Φi
β(η) ΨM,i

β (τ, θ, φ) , (10)

where in the mode summation only the modes with β ≥ 3 have been taken into account

(if they exist), since the wave numbers β = 1, 2 correspond to modes which are pure

gauge terms [29]. The prime in the summation over the modes β indicates that the

spectrum of a given manifold M does not contain all β ∈ N, see Table 2. The functions

Φi
β(η) determine the time evolution and will be factorized Φi

β(η) = Φi
β(0) gβ(η) with

gβ(0) = 1. The functions gβ(η) do not depend on the degeneracy index i, since the

associated differential equation depends only on the eigenvalue EM
β which is independent

of i. The initial values Φi
β(0) are the primordial fluctuation amplitudes and are assumed

to be Gaussian random variables with zero expectation value and covariance
〈

Φi
β(0) Φi′

β′(0)
〉

= δββ′ δii′ PΦ(β) . (11)

Here PΦ(β) denotes the primordial power spectrum that determines the weight by which

the primordial modes β are excited, on average. The average 〈. . .〉 in (11) denotes an

ensemble average over the primordial perturbations which are supposed to arise from

quantum fluctuations, by which the Universe is “created”. In the following, we shall

assume that the primordial power spectrum is in good approximation described by the

scale-invariant Harrison-Zel’dovich spectrum

PΦ(β) =
α

β(β2 − 1)
. (12)

Here α is a normalization factor which will be determined from the CMB data.

The temperature fluctuations δT (n̂) of the microwave sky can be expanded into real

spherical harmonics Ỹlm(n̂) on S2,

δT (n̂) :=
∞
∑

l=2

l
∑

m=−l

alm Ỹlm(n̂) , (13)

where the monopole and dipole terms, l = 0, 1, are not included in the sum (13). From

the real expansion coefficients alm one forms the multipole moments

Cl :=
1

2l + 1

〈

l
∑

m=−l

(alm)2
〉

(14)

and the angular power spectrum

δT 2
l :=

l(l + 1)

2π
Cl . (15)

The average 〈. . .〉 in (14) denotes an ensemble average over the primordial perturbations

as in eq.(11), respectively an ensemble average over the universal observers.
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Inserting the expansions (10) and (4) into the approximation δTSW(n̂)
T

≃
1
3
Φ(ηSLS, τSLS, θ, φ) to the Sachs-Wolfe formula (9) and using the explicit expression

for the eigenfunctions ψS3

βlm on S3,

ψS3

βlm(~x ) = Rβl(τ) Ỹlm(θ, φ) , (16)

one arrives [14] with the help of relation (6) at the following expression for the

ordinary Sachs-Wolfe contribution to the multipole moments for a given spherical space

M = S3/Γ

CSW
l (M) =

N

9

∑

β>l

′ rM(β)

β2
PΦ(β) g2

β(ηSLS)R
2
βl(τSLS) . (17)

Here Rβl(τ) denote the “radial functions” on S3 which can be expressed in terms of

Gegenbauer polynomials, see eq.(10) of [14]. The expression (17) shows in a transparent

way, why the lowest multipoles are in general suppressed for the multi-connected

spherical spaces, the more the more wave numbers β are missing in the vibrational

spectrum. Let us consider, for example, the quadrupole moment, l = 2. Then the

summation over modes in (17) runs for the simply-connected manifold S3 over all natural

numbers with β ≥ 3. In contrast, for the Poincaré dodecahedral space D there is a large

gap between β = 3 and 12, since the lowest contributing mode occurs only at β = 13, and

thus the missing modes lead to a suppression. The suppression on D gets even stronger,

because there exist only the three modes β = 21, 25 and 31 in the wave number interval

13 < β < 33 (see table 2).

Now, we would like to discuss this suppression mechanism in more detail. Table 2

shows that the allowed wave numbers β are for all homogeneous spherical spaces given

by odd natural numbers, except for the homogeneous lens spaces S3/Zm with m odd

≥ 1 for which β runs through all natural numbers with β ≥ m + 1, in addition to the

lowest odd wave numbers between 1 and m. While the β spectrum consists for the

homogeneous lens spaces Zm with m even ≥ 2 of all odd natural numbers, there are for

all other spherical spaces at low wave numbers below a given threshold βth “gaps” in the

spectrum. As can be seen from Table 2, the threshold value βth increases if the volume

V (M) decreases, i. e. βth = 4[(m+ 1)/2] + 1, 13, 25 and 61 for the spaces belonging to

the groups D⋆
4m, T ⋆, O⋆ and I⋆, respectively. This demonstrates clearly the important

rôle played by the spatial volume, i. e. the topology of the Universe.

In addition to the wave number gaps, there is another important imprint of topology

on the multipole moments Cl due to the multiplicities rM(β), also given in Table 2, by

which the vibrational modes are weighted in the mode sum (17). Again, this effect is

significant for the low vibrational modes and thus for the low multipole moments which

can be considered as carrying the fingerprints of the topology of the Universe.

On the other hand, for the large multipole moments, l ≫ βth, the details of the

different topologies get washed out due to the identical mean asymptotic behaviour of

the multiplicities for all multi-connected spaces M (except Zm, m odd) given by

rM(β) =
2

N
β2 + . . . =

V (M)

π2
β2 + . . . for β → ∞ (18)
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Γ wave number spectrum {β} of manifold M = S3/Γ multiplicity rM(β)

Z1 N β2

Zm, m odd ≥ 1 {1, 3, 5, . . . , m} ∪ {n|n ≥ m+ 1} β
∑

β−1≡2l(m);0≤l≤β−1 1

Zm, m even ≥ 2 2N + 1 β
∑

β−1≡2l(m);0≤l≤β−1 1

D⋆
4m, m ≥ 2 {1, 5, 9, . . . , 4

[

m+1
2

]

+ 1} ∪ {2n+ 1|n ≥ 2
[

m+1
2

]

+ 1} β
([

β−1
2m

]

+ 1
)

for β ∈ {4n+ 1|n ≥ 0}
β
[

β−1
2m

]

for β ∈ {4n+ 3|n ≥
[

m+1
2

]

}
T ⋆ {1, 7, 9} ∪ {2n+ 1|n ≥ 6} β

(

2
[

β−1
6

]

+
[

β−1
4

]

− β−3
2

)

O⋆ {1, 9, 13, 17, 19, 21} ∪ {2n+ 1|n ≥ 12} β
([

β−1
8

]

+
[

β−1
6

]

+
[

β−1
4

]

− β−3
2

)

I⋆ {1, 13, 21, 25, 31, 33, 37, 41, 43, 45, 49, 51, 53, 55, 57} β
([

β−1
10

]

+
[

β−1
6

]

+
[

β−1
4

]

− β−3
2

)

∪{2n+ 1, n ≥ 30}
Table 2. The eigenvalue spectrum for the groups Γ.

which leads to the universal formula (l ≫ βth)

CSW
l (M) ≃ 2

9

∞
∑

β odd,β>l

PΦ(β) g2
β(ηSLS)R

2
βl(τSLS) . (19)

For the homogeneous lens spaces Zm, m odd ≥ 1, one obtains instead

rM(β) =
1

N
β2 + . . . for β → ∞ , (20)

and thus from (17) for l ≫ βth

CSW
l (Zm) ≃ 1

9

∞
∑

β=l+1

PΦ(β) g2
β(ηSLS)R

2
βl(τSLS) (21)

which should be numerically not very different from the expression (19) where the

additional factor 2 should recompensate for the missing even β-values in the sum (19).

The asymptotic behaviour given in eqs. (18) and (20) is in agreement with Weyl’s law,

as can be seen as follows (k → ∞):

NM(k) := #{β|β ≤ k} =
∑

β≤k

′
rM(β)

=
∑

β odd,β≤k

(

2

N
β2

)

+ . . . =
V (M)

6π2
k3 + . . . (22)

for Γ 6= Zm, m odd ≥ 1, and

NM(k) =

k
∑

β=1

(

1

N
β2

)

+ . . . =
V (M)

6π2
k3 + . . . (23)

for Γ = Zm, m odd ≥ 1. One thus sees that the ordinary Sachs-Wolfe contribution to

the large multipoles is identical for all spherical spaces, including S3, in agreement with

the expectation that the cosmic topology is most clearly seen at large scales.

The above discussion showed how the topology of the Universe influences via the

vibrational modes the CMB anisotropy at large scales. The whole story is, however,
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more subtle, since an additional l-dependence comes in eq.(17) from the radial functions

Rβl(τSLS), and furthermore, there is an important dependence of the multipoles on the

curvature radius respectively on Ωtot which is determined by both the time evolution via

gβ(ηSLS) and the radial functions. The interplay of all these effects is responsible for the

rather complicated structure displayed by the numerical computations to be illustrated

below.

(a)

1.05 1.1 1.15 1.2
0

5000

10000

15000

20000

25000

30000

35000

40000

(b)

Figure 1. The binary tetrahedral group T ⋆. Panel (a) shows the Ωtot dependence

of the mean value of the first three angular power moments δT 2

l . The horizontal

lines indicate the corresponding WMAP values for δT 2

l . Panel (b) displays the S(ρ)

statistics (ρ = 60◦ full curve and ρ = 20◦ dotted curve) in units of µK4 in dependence

on Ωtot. The corresponding WMAP values are indicated as horizontal lines.
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20000

25000

30000

35000

40000

(b)

Figure 2. The same as in figure 1 for the binary octahedral group O⋆.

Let us now discuss the results for the different spherical space forms. In all these

computations the CMB anisotropy is obtained using the complete Sachs-Wolfe formula

(τ(η) := η0 − η)

δT

T
(n̂) =

∑

β≥3

′
rM(β)
∑

i=1

[(

Φi
β(η) +

δi
γ,β(η)

4
+
a(η)V i

γ,β(η)

Eβ

∂

∂τ

)

ΨM,i
β (τ(η), θ, φ)

]

η=ηSLS
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Figure 3. The same as in figure 1 for the binary icosahedral group I⋆.
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(b)

Figure 4. The same as in figure 1 for the binary dihedral group D⋆
8 , i. e. m = 2.
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Figure 5. The same as in figure 1 for the binary dihedral group D⋆
20, i. e. m = 5.

+ 2
∑

β≥3

′
rM(β)
∑

i=1

∫ η0

ηSLS

dη
∂Φi

β(η)

∂η
ΨM,i

β (τ(η), θ, φ) . (24)

The details of the computation of the quantities needed in (24) are described in [12].

The first two terms in (24) are the ordinary Sachs-Wolfe contribution (9) discussed
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Figure 6. The same as in figure 1 for the cyclic group Z1, i. e. for the space S3.
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Figure 7. The same as in figure 1 for the cyclic group Z2, i. e. for the projective

space P3.

(a)

1.05 1.1 1.15 1.2
0

50000

100000
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(b)

Figure 8. The same as in figure 1 for the cyclic group Z6.

above. The next term involving the spatial covariant divergence of the velocity field

is the Doppler contribution. The integral over the photon path yields the integrated

Sachs-Wolfe contribution. The βmax cut-off is chosen sufficiently high in order to obtain

enough multipoles which then enables us to normalise the δT 2
l spectrum in the range
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l = 20 to 45 according to the WMAP first-year data [10]. In our computations we use

βmax = 3001 for Ωtot ≤ 1.05, βmax = 2001 for 1.05 < Ωtot ≤ 1.1, and βmax = 1501 for

1.1 < Ωtot ≤ 1.2. In the following we fix the cosmological parameters as Ωbar = 0.046,

Ωmat = 0.28, and h = 70, in agreement with the WMAP data. The free parameter is

ΩΛ = Ωtot − Ωmat − Ωrad, i. e. the density corresponding to the cosmological constant.

Although ΩΛ is varied, we show in the following figures Ωtot on the abscissa.

In figures 1 to 8 we show the dependence of the large scale CMB anisotropy on

Ωtot for the binary tetrahedral space, the binary octahedral space, the dodecahedral

space, two binary dihedral spaces and three spaces belonging to cyclic groups. In panel

(a) the expectation values of the angular power spectra δT 2
l are shown for the first

three multipole moments δT 2
2 (solid curve), δT 2

3 (dashed curve) and δT 2
4 (dotted curve).

(Panel (b) in figures 1 to 8 will be discussed below.) The corresponding values measured

by the WMAP team are indicated as straight horizontal lines. With respect to the large

scale anisotropy, the best values for Ωtot are obtained by choosing those values which

yield the best agreement with the data. For example, consider the binary tetrahedral

space shown in figure 1. Since the density Ωtot should be as close to one as possible,

one chooses the first minimum of δT 2
2 , i. e. the range Ωtot = 1.06 . . . 1.07. In this range

the value of δT 2
3 is also near to the observed one. One should note that these values are

only the expectation values such that for a given realization one has also to take into

account the cosmic variance. However, as the simulations for such realizations show,

the probability for a given spherical space increases significantly when the expectation

values are already near to the observed values. In this way one gets for the binary

octahedral space (figure 2) the range Ωtot = 1.03 . . . 1.04 and for the dodecahedron

(figure 3) Ωtot = 1.015 . . . 1.02.

For none of the considered binary dihedral spaces is a comparably good agreement

found. We have computed the CMB anisotropy for the binary dihedral groups D⋆
4m

with m = 2, 3, 4, 5, 10, 20, and 30. In figures 4 and 5 we show as two typical examples

the cases m = 2 and m = 5, respectively. The first multipole moment δT 2
2 decreases

for all considered groups D⋆
4m only for unrealistically high values of Ωtot > 1.1. In this

parameter range the values for δT 2
4 are very large. Thus a binary dihedral topology

seems to be very unprobable as a possibility for our Universe.

The cyclic groups Zm are also much worse compared to the binary tetrahedral

space, the binary octahedral space, or the dodecahedron. We have computed all groups

Zm with m ≤ 20 and a lot of examples up to m = 500. As three examples we present

in figures 6 to 8 the models for m = 1, 2, and 6, respectively. The group Z1 has only

the identity as a group element and thus leads to the usual spherical space S3. One

observes the known difficulty of the concordance model, i. e. too large values for the

two lowest multipole moments. The next group shown is Z2 leading to the projective

space P3, also known as elliptic space, which has historically played a special role as an

example of an alternative to the spherical space S3. For Ωtot < 1.1 the first multipole

moments behave very similar to the former case with m = 1 such that this topology is

not a better match than the concordance model. Models with larger groups Zm lead to
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a quadrupole moment which increases with increasing Ωtot, in general. As an example,

figure 8 displays the result for Z6. The quadrupole moment δT 2
2 shows a very small

minimum around Ωtot = 1.05 and increases for higher values of Ωtot. Although there are

minima in many cyclic models, they never suppress the power of δT 2
2 even to the level

of the observed value for δT 2
4 , see figure 8. The fact that lens spaces do not fit well the

CMB anisotropy is already discussed in [30] where this behaviour is ascribed to the non

well-proportioned fundamental cells.

Therefore, from all spherical spaces, only the binary tetrahedral space, the binary

octahedral space, and the dodecahedron display for the given parameter ranges the

observed suppression in the large anisotropy power.

Up to now, we have only discussed the angular power spectrum δT 2
l . Let us

now come to the temperature two-point correlation function C(ϑ), which is defined as

C(ϑ) := 〈δT (n̂)δT (n̂′)〉 with n̂ · n̂′ = cos ϑ. It can be computed from the multipole

moments (14) under the assumption of statistical isotropy as

C(ϑ) ≃ 1

4π

∞
∑

l=2

(2l + 1)Cl Pl(cosϑ) . (25)

This quantity is well suited in order to measure the large scale power as emphasised

in [8] where the observations are compared with the theoretical models. A comparison

of C(ϑ) observed by WMAP with the concordance model can also be found in figure

1 of reference [14]. (In [14] we have derived an analytic expression for CSW(ϑ), i. e.

for the SW contribution in the case of the dodecahedron, which after multiplication by

N/120 holds for all homogeneous spherical space forms.) The correlation function C(ϑ)

displays a surprisingly low CMB anisotropy on large angular scales ϑ ≥ ρ, which can be

quantified by the S(ρ) statistic [10]

S(ρ) =

∫ cos ρ

−1

|C(ϑ)|2 d cosϑ (26)

which is discussed for the first-year WMAP data in [8] for ρ = 60◦, and it is found

that only 0.3% of the simulations based on the concordance model ri have lower values

of S(60◦) than the observed value S(60◦) = 1644. The S(ρ) statistic is shown for

the above discussed spherical spaces in figures 1 to 8 in panel (b) for ρ = 60◦ (solid

curves) and ρ = 20◦ (dotted curves). The corresponding WMAP values are indicated as

straight horizontal lines. The inspection of these figures leads to the same result as the

above discussion of the first three angular power moments δT 2
l . The binary tetrahedral

space possesses a sufficiently low power in the range Ωtot = 1.06 . . . 1.07, the binary

octahedral space in the range Ωtot = 1.03 . . . 1.04, and the dodecahedral space in the

range Ωtot = 1.015 . . . 1.02. For the other spherical spaces no comparable agreement is

found as can be seen in the case of the two binary dihedral spaces (figures 4(b) and

5(b)) and the three cyclic groups (figures 6(b) to 8(b)).

Now, we would like to demonstrate the strong influence of the radial function

R2
βl(τ) on the suppression of power in the case of the quadrupole moment l = 2 already

discussed above. The quadrupole suppression gets stronger, the higher the value of the
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Figure 9. Panel (a) shows the dependence of the conformal distance τSLS to the

surface of last scattering on the density Ωtot. Panel (b) shows the square of the radial

function R2

βl(τ) for the first eigenvalue occurring in (24) for the quadrupole moment

l = 2 for the binary tetrahedral space (β = 7), the binary octahedral space (β = 9),

and the dodecahedron (β = 13).

first contributing eigenvalue is, see equation (17). In addition, it is seen from equation

(17) that the term belonging to the first eigenvalue β is multiplied by R2
βl(τ). Thus the

contribution of the first eigenvalue is eliminated for those values of Ωtot which belong to

a value of τSLS at which Rβl(τSLS) is zero. The dependence of τSLS on the density Ωtot

is shown in figure 9(a) for our choice of cosmological parameters and is well described

by τSLS = 3.32
√

Ωtot − 1 for 1 < Ωtot < 1.1. In figure 9(b) the square of the radial

function R2
βl(τ) is shown for the first eigenvalue of the binary tetrahedral space (β = 7),

the binary octahedral space (β = 9), and the dodecahedron (β = 13) for l = 2. One

observes that the quadrupole suppression due to the first zero of the radial function is

maximal in the case of the binary tetrahedral space at Ωtot ≃ 1.064, at Ωtot ≃ 1.038

for the binary octahedral space, and at Ωtot ≃ 1.018 for the dodecahedral space. This

matches perfectly well to the previously found intervals on which these models show

a strong anisotropy suppression. Thus, the radial function has an important influence

on the suppression for a given spherical topology. Note that the zero of the radial

function eliminates many eigenfunctions due to the high degeneracy, e. g. the first 13

eigenfunctions in the case of the dodecahedron. This does not happen in such a dramatic

way in models with negative curvature, where one has no degeneracies at all, i. e. all

eigenvalues have multiplicity one, in general. Then the radial function can only suppress

a single eigenfunction and not a “cluster” of them.

The angular power spectrum δT 2
l as well as the S(ρ) statistic lead to the conclusion

that there are three best candidates with respect to spherical spaces, i. e. the binary

polyhedral spaces S3/T ⋆, S3/O⋆, and S3/I⋆. In figures 10 to 12 we show the temperature

fluctuation δT/T in the Mollweide projection for these three topological spaces, where

exactly those values of Ωtot are used which lead to a strong suppression of large scale

power. In these calculations we have used for the three spaces all modes below the wave

number cut-off βmax = 155, 161 and 185, respectively.
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Figure 10. The temperature fluctuation δT/T of one realization for the binary

tetrahedral group T ⋆ is shown (βmax = 155). The cosmological parameters Ωtot =

1.065, ΩΛ = 0.785 and h = 70 are used.

Figure 11. The temperature fluctuation δT/T of one realization for the binary

octahedral group O⋆ is shown (βmax = 161). The cosmological parameters Ωtot =

1.038, ΩΛ = 0.758 and h = 70 are used.

In figures 13 to 15 we show the angular power spectrum δT 2
l for the binary

polyhedral spaces S3/T ⋆, S3/O⋆, and S3/I⋆, where the same cosmological parameters

as in figures 10 to 12 are used. The 1σ deviations are computed along the lines of

[15]. Since the distributions for the lowest multipole moments are asymmetric, i. e. not
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Figure 12. The temperature fluctuation δT/T of one realization for the binary

icosahedral group I⋆ is shown (βmax = 185). The cosmological parameters Ωtot =

1.018, ΩΛ = 0.738 and h = 70 are used.
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Figure 13. The angular power spectrum δT 2

l is shown for the binary tetrahedral

group T ⋆ (open circles) using the same cosmological parameters as in figure 10. The

angular power spectrum is shifted by ∆l = 0.25 in order to enable a comparison with

the first-year WMAP data (full diamonds). The 1σ errors are shown.

Gaussian, these error bars should only be considered as providing the order of magnitude

of fluctuations in individual realizations. In order to facilitate a comparison with the

WMAP data, shown as full diamonds together with their 1σ errors not including the

cosmic variance, the spectra of the binary polyhedral spaces are shifted by ∆l = 0.25.

The angular power spectra δT 2
l for these three binary polyhedral spaces are very similar

such that one is faced with a topological degeneracy with respect to δT 2
l . All three
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Figure 14. The angular power spectrum δT 2

l is shown for the binary octahedral

group O⋆ (open circles) using the same cosmological parameters as in figure 11.
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Figure 15. The angular power spectrum δT 2

l is shown for the binary icosahedral

group I⋆ (open circles) using the same cosmological parameters as in figure 12.

spectra display a good agreement with the WMAP data.

4. Conclusion

In this paper we analyse the CMB anisotropy of homogeneous 3-spaces of constant

positive curvature which are multi-connected and are given by the quotient of S3 by a

group Γ of covering transformations, i. e. M = S3/Γ. The motivation is provided by

the surprisingly low power in the CMB anisotropy at the largest scales as measured by

COBE and WMAP and the fact that the mean value of Ωtot reported by WMAP is

1.020 which hints to a positively curved Universe. In order to explain this low power,

one could modify the primordial power spectrum PΦ(β), e. g. by carefully choosing the

inflationary scalar potential, or by resorting to multi-connected space forms which give
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a low CMB anisotropy at the largest scales due to missing modes compared to the

simply-connected S3, in general.

We study all types of homogeneous multi-connected spherical space forms and find

no agreement for the cyclic groups Zm which show an enhanced power at the largest

scales despite their small volumes. Also the binary dihedral groups D⋆
4m do not lead to

models with a suppression significantly stronger than the simply-connected S3 universe.

Thus these models do not seem to provide viable space forms as a model for our

Universe. This contrasts to the remaining three space forms, the binary tetrahedral,

the binary octahedral as well as the dodecahedral space forms which show a sufficiently

strong suppression of large scale power compared to the simply-connected S3 universe.

The binary tetrahedral space requires a density Ωtot in the range 1.06 . . . 1.07. Since

the WMAP team reported Ωtot = 1.02 ± 0.02 this model is probably in conflict with

the observations. For the two remaining models the density Ωtot should be in the

range Ωtot = 1.03 . . . 1.04 for the binary octahedral space, and Ωtot = 1.015 . . . 1.02

for the dodecahedral space. These values are compatible with the current observations.

Furthermore, we would like to remark that the binary octahedral space displays a slightly

stronger suppression of power than the dodecahedral space, as a comparison of figures

2 and figures 3 reveals.

A unique signal for a particular topology is provided by the so-called circles-in-the-

sky-signature proposed in [31]. Along two circles on the sky which are mapped onto each

other by the group Γ, the ordinary Sachs-Wolfe effect produces the same temperature

signal. If there would be no Doppler and integrated Sachs-Wolfe contribution, see

equation (24), which disturb this signal, one would expect a clear sign for a given

topology if present. In [14] we study the influence of the latter two contributions on the

circles-in-the-sky-signature and find that the degradation of the signal is strong enough

such that the topology signal can be swamped. Therefore, the fact that in [32] no circles

are found in the WMAP sky maps, does not necessarily exclude the binary octahedral

or the dodecahedral space as viable models for our Universe. In a forthcoming paper

we will study the circles-in-the-sky for the three best multi-connected spherical space

forms, and in particular shall discuss whether a combined circle search on all circles

simultaneously of a given topology can overcome the degradations.

Acknowledgment

One of us (F.S.) would like to thank the Theoretical Physics Division of CERN for

hospitality.

References

[1] K. Schwarzschild, Vierteljahrsschrift der Astron. Gesellschaft 35, 337 (1900).

[2] A. Einstein, Sitzungsber. Preuß. Akad. Wiss. , 142 (1917).

[3] A. Friedmann, Zeitschrift f. Physik 10, 377 (1922).

[4] A. Friedmann, Zeitschrift f. Physik 21, 326 (1924).



CMB Anisotropy of Spherical Spaces 20
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