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1. QCD and the proton structure at

large Q2

The understanding of the structure of the proton

at short distances is one of the key ingredients

to be able to predict cross-section for processes

involving hadrons in the initial state. All pro-

cesses in hadronic collisions, even those intrinsi-

cally of electroweak nature such as the produc-

tion of W/Z bosons or photons, are in fact in-

duced by the quarks and gluons contained inside

the hadron. In this first lecture I will therefore

introduce some important concepts, such as the

notion of partonic densities of the proton, and of

parton evolution. These are the essential tools

used by theorists to predict production rates for

hadronic reactions.

The idea that the parton language and the

use of perturbative QCD can be used to describe

the structure of the proton at short distances was

developed in the late 60’s and early 70’s. While I

will not provide you with a rigorous proof of the

legitimacy of this approach, I will try to justify

it qualitatively to make it sound at least plau-

sible. More details can be found in good text-

books, such as those quoted in refs. [1]-[4]. I will

then proceed to extract some results based on
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the application of perturbative QCD to lepton-

hadron interactions.

1.1 The parton model

We all know that quarks are deeply bound inside

the proton. It is important to realise, however,

that the binding forces responsible for the quark

confinement are due to the exchange of rather

soft gluons. If a quark were to exchange a hard

virtual gluon with another quark, in fact, the re-

coil would tend to break the proton apart. It is

easy to verify that the exchange of gluons with

virtuality larger than Q is then proportional to

some large power of mp/Q, mp being the pro-

ton mass. Since the gluon coupling constant gets

smaller at largeQ, exchange of hard gluons is sig-

nificantly suppressed 1. As a result, the typical

time scale for quarks inside the proton to inter-

act among themselves is of the order of 1/mp, or

longer. If we probe the proton with an off-shell

photon, the interaction should take place during

the limited lifetime of the virtual photon, given

by the inverse of its virtuality as a result of the

Heisenberg principle. Once the photon gets “in-

side” the proton and meets a quark, the struck

quark has no time to negotiate a coherent re-

sponse with the other quarks, because the time

scale for it to “talk” to its pals is too long com-

pared with the duration of the interaction with

1The fact that the coupling decreases at large Q plays

a fundamental role in this argument. Were this not true,

the parton picture could not be used!.
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the photon itself. As a result, the struck quark

has no option but to interact with the photon as

if it were a free particle.

The one thing that the above picture does

not tell us, obviously, is in which precise state

the quark was once it got struck by the photon.

This depends on the internal wave function of

the proton, which perturbative QCD cannot eas-

ily predict. We can however say that the wave

function of the proton, and therefore the state of

the “free” quark, are determined by the dynamics

of the soft-gluon exchanges inside the proton it-

self. Since the time scale of this dynamics is long

relative to the time scale of the photon-quark in-

teraction, we can safely argue that the photon

sees to good approximation a static snapshot of

the proton’s inner guts. In other words, the state

of the quark had been prepared long before the

photon arrived. This also suggests that the state

of the quark will not depend on the precise nature

of the external probe, provided the time scale of

the hard interaction is very short compared to

the time it would take for the quark to readjust

itself. As a result, if we could perform some mea-

surement of the quark state using, say, a virtual-

photon probe, we could then use this knowledge

on the state of the quark to perform predictions

for the interaction of the proton with any oter

probe (e.g. a virtual W or even a gluon from an

opposite beam of hadrons).

In order to make the measurement of the pro-

ton structure as simple as possible, it is therefore

wise to use a probe as simple as possible. A vir-

tual photon emitted from a beam of high-energy

electrons provides such a probe. The relative pro-

cess is called deeply inelastic scattering (DIS),

and was historically the first phenomenon which

led people to introduce the concept of partons.

Assuming the parton picture outlined above,

we can describe the cross-section for the inter-

action of the virtual photon with the proton as

follows:

σ0 =

∫ 1
0

dx
∑
i

e2i fi(x) σ̂0(γ
∗qi → q′i, x) (1.1)

where the 0 subscript anticipates that this de-

scription represents a leading order approxima-

tion. In the above equation, fi(x) represents the

density of quarks of flavour i carrying a frac-

tion x of the proton momentum. The hatted

cross-section represents the interaction between

the photon and a free (massless) quark:

σ̂0(γ
∗qi → q′i) =

1

flux

∑
|M0(γ∗q → q′)|2 d3p′

(2π)32p′0
×(2π)4δ4(p′ − q − p)
=
1

flux

∑
|M0|22πδ(p′2) (1.2)

Using p′ = xP + q, where P is the proton mo-

mentum, we get

(p′)2 = 2xP · q + q2 ≡ 2xP · q −Q2 (1.3)

σ̂0(γ
∗q → q′) =

2π

flux

∑
|M0|2 1

2P · q δ(x− xbj)
(1.4)

where xbj =
Q2

2P ·q is the so-called Bjorken-x vari-
able. Finally:

σ0 =
2π

flux

∑|M0|2
Q2

∑
i

xbj fi(xbj) e
2
i

≡ 2π

flux

∑|M0|2
Q2

F2(xbj) (1.5)

The measurement of the inclusive ep cross-section

as a function of Q2 and P · q (= mp(E
′ − E)

in the proton rest frame, with E′ = energy of
final-state lepton and E = energy of initial-state

lepton) probes the quark momentum distribution

inside the proton.

1.2 Parton evolution

Let us now study the QCD corrections to the LO

parton-model description of DIS. This study will

exhibit many important aspects of QCD (struc-

ture of collinear singularities, renormalization-

group invariance) and will take us to an impor-

tant element of the DIS phenomenology, namely

scaling violations. We start from real-emission

corrections to the Born level process:

(1.6)
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The first diagram is proportional to 1/(p −
k)2 = 1/2(pk), which diverges when k is emitted

parallel to p:

p · k = p0k0 (1− cos θ) cos θ→1−→ 0 (1.7)

The second diagram is also divergent, if k is emit-

ted parallel to p′. This second divergence turns
out to be harmless, since we are summing over

all possible final states. Whether the final-state

quark keeps all of its energy, or whether it decides

to share it with a gluon emitted collinearly, an

inclusive final-state measurement will not care.

The collinear divergence can then be cancelled

by a similar divergence appearing in the final-

state quark self-energy corrections.

The first divergence is more serious, since

from the point of view of the incoming photon

(which only sees the quark, not the gluon) it does

make a difference whether the momentum is all

carried by the quark or is shared between the

quark and the gluon. This means that no cancel-

lation between collinear singularities in the real

emission and virtual emission is possible. So let

us go ahead, calculate explicitly the contribution

of these diagrams, and learn how to deal with

their singularities.

First of all note that while the second dia-

gram is not singular in the region k · p → 0, its
interference with the first one is. It is possible,

however, to select a gauge for which the interfer-

ence of the two diagrams is finite in this limit.

You can show that the right choice is∑
εµε
∗
ν(k) = −gµν +

kµp′ν + kνp′µ

k · p′ . (1.8)

Notice that in this gauge not only k·ε(k) = 0, but
also p′ · ε(k) = 0. The key to getting to the end
of a QCD calculation in a finite amount of time

is choosing a proper gauge (which we just did)

and the proper parametrization of the momenta

involved. In our case, since we are interested

in isolating the region where k becomes parallel

with p, it is useful to set

kµ = (1− z)pµ + βp′µ + (k⊥)µ , (1.9)

with k⊥ · p = k⊥ · p′ = 0. β is obtained by

imposing

k2 = 0 = 2β(1− z)p · p′ + k2⊥ (1.10)

Defining k2⊥ = −k2t , we then get

β =
k2t

2(pp′) (1− z) (1.11)

kµ = (1−x)pµ+ k2t
2(1− x)p · p′ p

′
µ+(k⊥)µ (1.12)

(k⊥)µ is therefore the gluon momentum vector
transverse to the incoming quark, in a frame where

γ∗ and q are aligned. kt is the value of this trans-
verse momentum. We also get

k · p = β p · p′ = k2t
2(1− z) (1.13)

and

k · p′ = (1− z)p · p′ (1.14)

As a result (p − k)2 = −k2t /(1 − z). The am-

plitude for the only diagram carrying the initial-

state singularity is:

Mg = igλaij ū(p
′)Γ

p̂− k̂
(p− k)2 ε̂(k)u(p) (1.15)

(where we introduced the notation â ≡ a/ ≡ aµγµ).
We indicated by Γ the interaction vertex with the

external current q. It is important to keep Γ arbi-

trary, because we would like to get results which

do not depend on the details of the interaction

with the external probe. It is important that the

singular part of the QCD correction, and there-

fore its renormalization, be process independent.

Only in this way we can hope to achieve a true

universality of the parton densities! So we will

keep Γ generic, and make sure that our alge-

bra does not depend on its form, at least in the

p · k → 0 limit. Squaring the most singular part
of the amplitude, and summing over colours and

spins, we get:

∑
g polariz.
and colours

|Mg|2 = g2
N×CF︷ ︸︸ ︷∑

a

tr (λaλa)× 1
t2
×

∑
ε

Tr [p̂′ Γ(p̂− k̂) ε̂ p ε̂∗ (p̂− k̂) Γ+] (1.16)

with t = (p − k)2 = −k2t /(1− z). Let us look
first at∑

ε

ε̂ p̂ ε̂∗ =
∑

εµ ε
∗
ν γ

µp̂γν = −γµp̂γµ +

1

k · p′ (p̂
′p̂k̂ + k̂p̂p̂′)

=
2

1− z (k̂ + βp̂
′) (1.17)
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(we used: âb̂ĉ+ ĉb̂â = 2(a·b) ĉ−2(a·c) b̂+2(b·c) â
and some of the kinematical relations from the

previous page). Then take

(p̂− k̂) (k̂ + βp̂′) (p̂− k̂) =
(p̂− k̂) k̂ (p̂− k̂) + β(p̂− k̂) p̂′ (p̂− k̂) (1.18)

In the second term, proportional to β, we can

approximate k̂ = (1 − z)p̂. This is because the
other pieces (βp̂′ + k̂⊥) multiplied by β would
cancel entirely the 1t2 singularity, and would only

contribute a non-singular term, which we are cur-

rently neglecting. So Eq. (1.18) becomes

p̂k̂p̂+ βz2p̂p̂′p̂ = 2(p · k)p̂+ βz22(p · p′)p̂
= 2(p · k) (1 + z2)p̂ (1.19)

and ∑
|Mg|2 = 2g2CF (1− z)

k2t

(
1 + z2

1− z
)

× N Tr[p̂′Γp̂Γ+] (1.20)

The last factor with the trace corresponds to the

Born amplitude squared. So the one-gluon emis-

sion process factorizes in the collinear limit into

the Born process times a factor which is indepen-

dent of the beam’s nature! If we add the gluon

phase-space:

[dk] ≡ d3k

(2π)32k0
=
dk‖
k0

dφ

2π

1

8π2
dk2⊥
2

=
dz

(1− z)
1

16π2
dk2⊥ (1.21)

we get:

∑
|Mg|2 [dk] = dk2⊥

k2⊥
dz
(αs
2π

)
Pqq(z)

∑
|M0|2

(1.22)

where

Pqq(z) = CF
1 + z2

1− z (1.23)

is the so-called Altarelli-Parisi splitting function

for the q → q transition (z is the momentum

fraction of the original quark taken away by the

quark after gluon emission). We are now ready

to calculate the corrections to the parton-model

cross-section:

σg =

∫
dx f(x)

1

flux

∫
dz

dk2⊥
k2⊥

(αs
2π

)
Pqq(z)

×
∑
|M0|2 2πδ(p′2) (1.24)

Using (p′)2 = (p−k+q)2 ∼ (zp+q)2 = (xzP+q)2
and

δ(p′2) =
1

2P · q
1

z
δ(x− xbj

z
) =

xbj

z
δ(x− xbj

z
)

(1.25)

we finally obtain:

σg =
2π

flux

(∑|M0|2
Q2

)∑
i

e2i xbj
αs

2π

×
∫

dk2⊥
k2⊥

∫
dz

z
Pqq(z) fi

(xbj
z

)
(1.26)

We then find that the inclusion of the O(αs) cor-
rection is equivalent to a contribution to the par-

ton density:

fi(x)→ fi(x)+
αs

2π

∫
dk2⊥
k2⊥

∫ 1
x

dz

z
Pqq(z) fi

(x
z

)
(1.27)

Notice the presence of the integral
∫
dk2⊥/k

2
⊥.

The upper limit of integration is proportional to

Q2. The lower limit is 0. Had we included a

quark mass, the propagator would have behaved

like 1/(k2⊥ + m2). But the quark is bound in-

side the hadron, so we do not quite know what

m should be. Let us then assume that we cut-

off the integral at a k⊥ value equal to some scale
µ0, and see what happens. The effective parton

density becomes:

f(x,Q2) = f(x) +

log

(
Q2

µ20

)
αs

2π

∫ 1
x

dz

z
Pqq(z) f

(x
z

)
(1.28)

The dependence on the scale µ0, which is a non-

perturbative scale, can be removed by defining

f(x,Q2) in terms of the parton density f mea-

sured at a large, perturbative scale µ2:

f(x, µ2) = f(x) +

log

(
µ2

µ20

)
αs

2π

∫ 1
x

dz

z
Pqq(z) f

(x
z

)
(1.29)

We can then perform a subtraction, and write:

f(x,Q2) = f(x, µ2) +

log

(
Q2

µ2

)
αs

2π

∫ 1
x

dz

z
Pqq(z) f

(x
z

)
(1.30)

The scale µ plays here a similar role to the renor-

malization scale. Its choice is arbitrary, and f(x,Q2)
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should not depend on it. Requiring this inde-

pendence, we get the following “renormalization-

group invariance” condition:

df(x,Q2)

d lnµ2
= µ2

df(x, µ2)

dµ2
−

αs

2π

∫ 1
x

dz

z
Pqq(z) f

(x
z

)
≡ 0 (1.31)

and then

µ2
df(x, µ2)

dµ2
=

αs

2π

∫ 1
x

dz

z
Pqq(z) f

(x
z
, µ2
)
(1.32)

This equation is usually called the DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equa-

tion. As in the case of the resummation of lead-

ing logarithms in Re+e− induced by the RG in-

variance constraints, the DGLAP equation – which

is the result of RG-invariance – resums a full

tower of leading logarithms of Q2.

Proof: Let us define t = log Q
2

µ2
. We can then

expand f(x, t) in powers of t:

f(x, t) = f(x, 0)+ t
df

dt
(x, 0)+

t2

2!

d2f

dt2
(x, 0)+ . . .

(1.33)

The first derivative is given by the DGLAP equa-

tion itself. Higher derivatives can be obtained by

differentiating it:

f ′′(x, t) =
αs

2π

∫
dz

z
Pqq(z)

df

dt
(
x

z
, t)

=
αs

2π

∫ 1
x

dz

z
Pqq(z)

αs

2π

×
∫ 1
x
z

dz′

z′
Pqq(z)f(

x

zz′
, t)

...

f (h)(x, t) =
αs

2π

∫ 1
x

. . . . . .
αs

2π

×
∫ 1
x/zz′...z(n−1)

dz(n)

z(n)

× Pqq(z
(n))f(

x

zz′ . . .
, t) (1.34)

The n-th term in this expansion, proportional

to (αs t)
n, corresponds to the emission of n glu-

ons (it is just the n-fold iteration of what we did

studying the one-gluon emission case).

With similar calculations one can include the ef-

fect of the other O(αs) correction, originating
from the splitting into a qq̄ pair of a gluon con-

tained in the proton. With the addition of this

term, the evolution equation for the density of

the ith quark flavour becomes:

dfq(x, t)

dt
=

αs

2π

∫ 1
x

dz

z

[
Pqq(z) fi(

x

z
, t)+

Pqg(z)fg(
x

z
, t)
]
, (1.35)

with

Pqg =
1

2

[
z2 + (1− z)2] (1.36)

In the case of interactions with a coloured probe

(say a gluon) we meet the following corrections,

which affect the evolution of the gluon density

fg(x):

dfg(x, t)

dt
=

αs

2π

∫ 1
x

dz

z


Pgq(z)∑

i=q,q̄

fi

(x
z
, t
)
+

Pgg(z)fg

(x
z
, t
)]

(1.37)

with

Pgq(z) = Pqq(1− z) = CF 1 + (1− z)
2

z
(1.38)

and

Pgg(z) = 2CA

[
1− z
z
+

z

1− z + z(1− z)
]
(1.39)

Defining the moments of an arbitrary function

g(x) as follows:

gn =

∫ 1
0

dx

x
xn g(x)

it is easy to prove that the evolution equations

turn into ordinary linear differential equations:

df
(n)
i

dt
=

αs

2π
[P (n)qq f

(n)
i + P (n)qg f

(n)
g ] (1.40)

df
(n)
g

dt
=

αs

2π
[P (n)gg fg + P

(n)
gq f

(n)
i ] (1.41)

1.3 Properties of the evolution equations

We now study some general properties of these

equations. It is convenient to introduce the con-

cepts of valence (V (x, t)) and singlet (Σ(x, t))
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densities:

V (x) =
∑
i

fi(x) −
∑
ı̄

fı̄(x) (1.42)

Σ(x) =
∑
i

fi(x) +
∑
ı̄

fı̄(x) (1.43)

where the index ı̄ refers to the antiquark flavours.

The evolution equations then become:

dV (n)

dt
=

αs

2π
P (n)qq V (n) (1.44)

dΣ(n)

dt
=

αs

2π

[
P (n)qq Σ

(n) + 2nf P
(n)
qg f (n)g

]
(1.45)

df
(n)
g

dt
=

αs

2π

[
P (n)gq Σ

(n) + P (n)gg f (n)g

]
(1.46)

Note that the equation for the valence density

decouples from the evolution of the gluon and

singlet densities, which are coupled among them-

selves. This is physically very reasonable, since

in perturbation theory the contribution to the

quark and the antiquark densities coming form

the evolution of gluons (via their splitting into

qq̄ pairs) is the same, and will cancel out in the

definition of the valence. The valence therefore

only evolves because of gluon emission. On the

contrary, gluons and qq̄ pairs in the proton sea

evolve into one another.

The first moment of V (x), V (1) =
∫ 1
0
dxV (x),

counts the number of valence quarks. We there-

fore expect it to be independent of Q2:

dV (1)

dt
≡ 0 = αs

2π
P (1)qq V (1) = 0 (1.47)

Since V (1) itself in different from 0, we obtain

a constraint on the first moment of the splitting

function: P
(1)
qq = 0. This constraint is satisfied

by including the effect of the virtual corrections,

which generate a contribution to Pqq(z) propor-

tional to δ(1−z). This correction is incorporated
in Pqq(z) via the redefinition:

Pqq(z) →
(
1 + z2

1− z
)
+

≡ 1 + z
2

1− z −

δ(1 − z)
∫ 1
0

dy

(
1 + y2

1− y
)
(1.48)

where the + sign turns Pqq(z) into a distribution.

In this way,
∫ 1
0
dz Pqq(z) = 0 and the valence

sum-rule is obeyed at all Q2.

Another sum rule which does not depend on

Q2 is the momentum sum rule, which imposes

the constraint that all of the momentum of the

proton is carried by its constituents (valence plus

sea plus gluons):

∫ 1
0

dxx


∑
i,i

fi(x) + fg(x)


 ≡ Σ(2) + f (2)g = 1

(1.49)

Once more this relation should hold for all Q2

values, and you can prove by using the evolution

equations that this implies:

P (2)qq + P
(2)
gq = 0 (1.50)

P (2)gg + 2nf P
(2)
qg = 0 (1.51)

You can check using the definition of second mo-

ment, and the explicit expressions of the Pqq and

Pgq splitting functions, that the first condition

is automatically satisfied. The second condition

is satisfied by including the virtual effects in the

gluon propagator, which contribute a term pro-

portional to δ(1 − z). It is a simple exercise to
verify that the final form of the Pgg(z) splitting

function, satisfying eq. (1.51), is:

Pgg → 2CA
{

x

(1− x)+ +
1− x
x
+ x(1 − x)

}

+ δ(1− x)
[
11CA − 2nf

6

]
(1.52)

1.4 Solution of the evolution equations

The evolution equations formulated in the previ-

ous section can be solved analytically in moment

space. The boundary conditions are given by the

moments of the parton densities at a given scale

µ, where in principle they can be obtained from

a direct measurement. The solution at different

values of the scale Q can then be obtained by

inverting numerically the expression for the mo-

ments back to x space. The resulting evolved

densities can then be used to calculate cross sec-

tions for an arbitrary process involving hadrons,

at an arbitrary scale Q. We shall limit ourselves

here to studying some properties of the analytic

solutions, and will present and comment some

plots obtained from numerical studies available

in the literature.
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As an exercise, you can show that the so-

lution of the evolution equation for the valence

density is the following:

V (n)(Q2) = V (n)(µ2)

[
logQ2/Λ2

logµ2/Λ2

]P (n)qq /2πb0

= V (n)(µ2)

[
αs(µ

2)

αs(Q2)

]P (n)qq /2πb0

(1.53)

where the running of αs(µ
2) has to be taken into

account to get the right result. Since all moments

P (n) are negative, the evolution to larger values

of Q makes the valence distribution softer and

softer. This is physically reasonable, since the

only thing that the valence quarks can do is to

loose energy because of gluon emission.

The solutions for the gluon and singlet distri-

butions fg and Σ can be obtained by diagonal-

izing the 2×2 system in eqs. (1.45) and (1.46).
We study the case of the second moments, which

correspond to the momentum fractions carried

by quarks and gluons separately. In the asymp-

totic limit Σ(2) goes to a constant, and dΣ
(2)

dt
= 0.

Then, using the momentum sum rule:

P (2)qq Σ
(2) + 2nf P

(2)
qg f

(2)
g = 0 (1.54)

Σ(2) + f (2)g = 1 (1.55)

The solution of this system is:

Σ(2) =
1

1 + 4CF
nf

(1.56)

f (2)g =
4CF

4CF + nf
(1.57)

As a result, the fraction of momentum carried by

gluons is asymptotically approximately 50% of

the total proton momentum. It is interesting to

note that, experimentally, this asymptotic value

is actually reached already at rather low values

of Q2. It was indeed observed already since the

early days of the DIS experiments that only ap-

proximately 50% of the proton momentum was

carried by charged constituents. This was one of

the early evidences for the existence of gluons.

As I mentioned earlier, a complete solution

for the evolved parton densities in x space can

only be obtained from a numerical analysis. This

work has been done in the past by several groups

(see e.g. the discussions in ref. [4]), and is con-

tinuously being updated by including the most

up-to-date experimental results used for the de-

termination of the input densities at a fixed scale.

Figure 1 (left side) shows the up-quark valence

momentum density at different scales Q. Note

the anticipated softening at large scales, and the

clear logQ2 evolution. The most likely momen-

tum fraction carried by a valence up quark in

the proton goes from x ∼ 20% at Q = 3 GeV, to
x <∼ 10% at Q = 1000 GeV. Notice finally that
the density vanishes at small x.

The right plot in Figure 1 shows instead the

gluon momentum density at different scales Q.

This time the density grows at small-x, with an

approximate g(x) ∼ 1/x1+δ behaviour, and δ > 0
slowly increasing at large Q2. This low-x growth

is due to the 1/x emission probability for the ra-

diation of gluons, and is represented by the 1/x

factors in the Pgq(x) and Pgg(x) splitting func-

tions.

Figure 2 (left) shows the up-quark sea mo-

mentum density at different scales Q. Shape and

evolution match those of the gluon density, a con-

sequence of the fact that sea quarks come from

the splitting of gluons. Since the gluon-splitting

probability is proportional to αs, the approxi-

mate ratio sea/gluon ∼ 0.1 which can be ob-
tained by comparing the various plots is perfectly

justified.

Finally, the momentum densities for gluons,

up-sea, charm and up-valence distributions are

shown in the right plot of fig.2 forQ = 1000 GeV.

Note here that usea and charm are approximately

the same at very largeQ and small x, The proton

momentum is mostly carried by valence quarks

and by gluons. The contribution of sea quarks is

negligible.

2. QCD in hadronic collisions

In hadronic collisions, all phenomena are QCD-

related. The dynamics is more complex than in

e+e− or DIS, since both beam and target have a
non-trivial partonic structure. As a result, cal-

culations (and experimental analyses) are more

7
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Figure 1: Left:Valence up-quark momentum-density distribution, for different scales Q. Right: gluon

momentum-density distribution.

Figure 2: Left: Sea up-quark momentum-density distribution, for different scales Q. Right: Momentum-

density distribution for several parton species, at Q = 1000 GeV.

complicated. QCD phenomenology is however

much richer, and the higher energies available in

hadronic collisions allow to probe the structure of

the proton and of its constituents at the smallest

scales attainable in a laboratory.

Contrary to the case of e+e− and lepton-
hadron collisions, where calculations are routinely

available up to next-to-next-to-leading order ac-

curacy, theoretical calculations for hadronic col-

lisions are available at best with next-to-leading-

order (NLO) accuracy. The only exception is the

case of Drell-Yan production, where NNLO re-

sults are known for the total cross sections. So

we generally have relatively small precision in

the theoretical predictions, and theoretical un-

certainties which are large when compared to

LEP or HERA.

However, pp̄ collider physics is primarily dis-

covery physics, rather than precision physics (there

are exceptions, such as the measurements of the

W mass and of the properties of b-hadrons. But

these are not QCD-related measurements). As

such, knowledge of QCD is essential both for the

estimate of the expected signals, and for the eval-

uation of the backgrounds. Tests of QCD in pp̄

collisions confirm our understanding of pertur-

bation theory, or, when they fail, point to areas

where our approximations need to be improved.

8
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(see, e.g., the theory advances prompted by the

measurements of ψ production at CDF!).

Finally, a reliable theoretical control over the

details of production dynamics allows one to ex-

tract important information on the structure of

the proton (parton densities) in regions ofQ2 and

x otherwise unaccessible. Control of QCD at the

current machines (the Tevatron at Fermilab) is

therefore essential for the extrapolation of pre-

dictions to higher energies (say for applications

at the future LHC, at CERN).

The key ingredients for the calculation of

production rates and distributions in hadronic

collisions are:

• the matrix elements for the hard, partonic
process (e.g., gg → gg, gg → bb̄, qq̄′ →
W, . . .),

• the hadronic parton densities, discussed in
the previous lecture

Then the production rate for a given final state

H is given by a factorization formula similar to

the one used to describe DIS:

dσ(pp̄→ H +X) =

∫
dx1 dx2∑

i,j

fi(x1, Q) fj(x2.Q) dσ̂(ij → H)(2.1)

where the parton densities fi’s are evaluated at a

scale Q typical of the hard process under consid-

eration. For example Q ' MDY for production

of a Drell-Yan pair, Q ' ET for high transverse-
energy (ET ) jets, Q

2 ' p2T + m2Q for high-pT
heavy quarks, etc.

In this lecture we will briefly explore three of

the QCD phenomena currently studied in hadronic

collisions: Drell-Yan, inclusive jets, and heavy

quark production. More details can be found in

ref. [1, 4].

2.1 Drell-Yan processes

While the Z boson has been recently studied with

great precision by the LEP experiments, it was

actually discovered, together with the W boson,

by the CERN experiments UA1 and UA2 in pp̄

collisions. W physics is now being studied in

great detail at LEP2, but the best direct mea-

surements of its mass by a single group still be-

long to pp̄ experiments (CDF and D0 at the Teva-

tron). Even after the ultimate luminosity will

have been accumulated at LEP2, with a great

improvement in the determination of the param-

eters of theW boson, the monopoly ofW studies

will immediately return to hadron colliders, with

the Tevatron data-taking resuming in the year

2000, and later on with the start of the LHC ex-

periments.

Precision measurements of W production in

hadronic collisions are important for several rea-

sons:

• this is the only process in hadronic colli-
sions which is known to NNLO accuracy

• the rapidity distribution of the charged lep-
tons fromW decays is sensitive to the ratio

of the up and down quark densities, and

can contribute to our understanding of the

proton structure.

• deviations from the expected production rates
of highly virtual W ’s (pp̄→W ∗ → eν) are

a possible signal of the existence of new W

bosons, and therefore of new gauge inter-

actions.

The partonic cross-section for the production

of a W boson from the annihilation of a qq̄ pair

can be easily calculated, giving the following re-

sult [1, 4]:

σ̂(qiq̄j →W ) =

π

√
2

3
|Vij |2 GF M2

W δ(ŝ−M2
W ) =

Aij M
2
W δ(ŝ−M2

W ) (2.2)

where ŝ is partonic center of mass energy squared,

and Vij is the element of the Cabibbo-Kobayashi-

Maskawa matrix. The delta function comes from

the 2→ 1 phase space, which forces the center-of-
mass energy of the initial state to coincide with

the W mass. It is useful to introduce the two

9
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variables

τ =
ŝ

Shad
≡ x1x2 (2.3)

y =
1

2
log

(
EW + p

z
W

EW − pzW

)
≡ 1
2
log

(
x1

x2

)
,(2.4)

where Shad is the hadronic center of mass en-

ergy squared. The variable y is called rapidity.

For slowly moving objects it reduces to the stan-

dard velocity, but, contrary to the velocity, it

transforms additively even at high energies un-

der Lorentz boosts along the direction of motion.

Written in terms of τ and y, the integration mea-

sure over the initial-state parton momenta be-

comes: dx1dx2 = dτdy. Using this expression

and eq. (2.2) in eq. (2.1), we obtain the follow-

ing result for the LO total W production cross

section:

σDY =
∑
i,j

π Aij

M2
W

τ

∫ 1
τ

dx

x
fi(x) fj

( τ
x

)

≡
∑
i,j

π Aij

M2
W

τLij(τ) (2.5)

where the function Lij(τ) is usually called par-
tonic luminosity. In the case of ud̄ collisions, the

overall factor in front of this expression has a

value of approximately 6.5 nb. It is interesting

to study the partonic luminosity as a function

of the hadronic CoM energy. This can be done

by taking a simple approximation for the parton

densities. Following the indications of the fig-

ures presented in the previous lecture, we shall

assume that fi(x) ∼ 1/x1+δ, with δ < 1. Then

L(τ) =
∫ 1
τ

dx

x

1

x1+δ

(x
τ

)1+δ
=
1

τ1+δ

∫ 1
τ

dx

x

=
1

τ1+δ
log

(
1

τ

)
(2.6)

and

σW ∼ τ−δ log
(
1

τ

)

=

(
Shad

M2
W

)δ
log

(
Shad

M2
W

)
(2.7)

The DY cross-section grows therefore at least log-

arithmically with the hadronic CM energy. This

is to be compared with the behaviour of the Z

production cross section in e+e− collisions, which

is steeply diminuishing for values of s well above

the production threshold. The reason for the

different behaviour in hadronic collisions is that

while the energy of the hadronic initial state grows,

it will always be possible to find partons inside

the hadrons with the appropriate energy to pro-

duce theW directly on-shell. The number of par-

tons available for the production of a W is fur-

thermore increasing with the increase in hadronic

energy, since the larger the hadron energy, the

smaller will be the value of hadron momentum

fraction x necessary to produce the W . The in-

creasing number of partons available at smaller

and smaller values of x causes then the growth

of the total W production cross section.

A comparison between the best available pre-

diction for the production rates ofW and Z bosons

in hadronic collisions, and the experimental data,

is shown in fig. 3. The experimental uncertainties

will soon be dominated by the limited knowledge

of the machine luminosity, and will exceed the ac-

curacy of the NNLO predictions. This suggests

that in the future the total rate of produced W

bosons could be used as an accurate luminome-

ter.

It is also interesting to note that an accurate

measurement of the relativeW and Z production

rates (which is not affected by the knowledge of

the total integrated luminosity, that will cancel in

their ratio) provides a tool to measure the total

W width. This can be seen from the following

equation:

ΓW =

Nobs(Z → e+e−)
Nobs(W → e±ν)

(
σW±

σZ

) (
ΓWeν
ΓZ
e+e−

)
ΓZ

↑ ↖ ↗ ↑
measure calculable LEP/SLC

As of today, this technique provides the best mea-

surement of ΓW : ΓW = 2.06± 0.06 GeV, which
is a factor of 5 more accurate than the current

best direct measurements from LEP2.

2.2 W Rapidity Asymmetry

The measurement of the charge asymmetry in the

rapidity distribution ofW bosons produced in pp̄

10
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Figure 3: Comparison of measured (a) σ · B(W →
eν) and (b) σ · B(Z0 → e+e−) to 2-loop theoretical
predictions using MRSA parton distribution func-

tions. The UA1 and UA2 measurements and D0

measurements are offset horizontally by ± 0.02 TeV
for clarity. In the inset, the shaded area shows the 1σ

region of the CDF measurement; the stars show the

predictions using various parton distribution func-

tion sets (1) MRSA, (2) MRSD0′, (3) MRSD-′, (4)
MRSH and (5) CTEQ2M. The theoretical points in-

clude a common uncertainty in the predictions from

choice of renormalization scale (MW /2 to 2MW ).

collisions can provide an important measurement

of the ratio of the u-quark and d-quark momen-

tum distributions. Using the formulas provided

above, you can in fact easily check as an exercise

that:

dσW+

dy
∝ fpu(x1) f

p̄

d̄
(x2) + f

p

d̄
(x1)f

p̄
u(x2) (2.8)

dσW−

dy
∝ fpū(x1) f

p̄
d (x2) + f

p
d (x1)f

p̄
ū(x2) (2.9)

We can then construct the following charge asym-

metry (assuming the dominance of the quark den-

sities over the antiquark ones, which is valid in

the kinematical region of interest for W produc-

tion at the Tevatron):

A(y) =

dσW+
dy − dσW−dy
dσW+
dy
+
dσW−
dy

=
fpu(x1) f

p
d (x2)− fpd (x1) fpu(x2)

fpu(x1) f
p
d (x2) + f

p
d (x1) f

p
u(x2)
(2.10)

Setting fd(x) = fu(x) R(x) we then get:

A(y) =
R(x2)−R(x1)
R(x2) +R(x1)

. (2.11)

which measures the R(x) ratio since x1,2 are known

in principle from the kinematics: x1,2 =
√
τ exp(±y)2.

The current CDF data provide the most accurate

measurement to date of this quantity (for more

details, see ref. [4]).

2.3 Jet Production

Jet production is the hard process with the largest

rate in hadronic collisions. For example, the cross

section for producing at the Tevatron (
√
Shad =

1.8 TeV) jets of transverse energy EjetT
<∼ 50 GeV

is of the order of a µb. This means 50 events/sec

at the luminosities available at the Tevatron. The

data collected at the Tevatron so far extend all

the way up to the ET values of the order of

450 GeV. These events are generated by collisions

among partons which carry over 50% of the avail-

able pp̄ energy, and allow to probe the shortest

distances ever reached.

Data on jet production in hadronic collisions

can be used for different purposes:

• They provide valuable test of QCD, since
calculations are available up to the NLO [5].

• They allow to extract information on fq,g(x,Q2)
at large Q2

• They allow to measure αs(Q2) over a huge
range of Q2

• They provide constraints on the point-like
nature of quarks, and help setting limits on

possible contact interactions, signalling the

onset of new dynamical processes and the

presence of new forces.

• 2-jet (or multi-jet) mass spectra can be used
to search for production of new resonances,

2In practice one cannot determine x1,2 with arbitrary

precision on an event-by-event basis, since the longitudi-

nal momentum of the neutrino cannot be easily measured.

The actual measurement is therefore done by studying

the charge asymmetry in the rapidity distribution of the

charged lepton.
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once again indicating the existence of new

interactions beyond the SM.

The leading mechanisms for jet production

in QCD are shown in fig. 4.

The 2-jet inclusive cross section can be ob-

tained from the formula

dσ =
∑
ijkl

dx1 dx2 f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

× dσ̂ij→k+l
dΦ2

dΦ2 (2.12)

that has to be expressed in terms of the rapidity

and transverse momentum of the quarks (or jets),

in order to make contact with physical reality.

The two-particle phase space is given by

dΦ2 =
d3k

2k0(2π)3
2π δ((p1 + p2 − k)2) , (2.13)

and, in the CM of the colliding partons, we get

dΦ2 =
1

2(2π)2
d2kT dy 2 δ(ŝ− 4(k0)2 ) , (2.14)

where kT is the transverse momentum of the final-

state partons. Here y is the rapidity of the pro-

duced parton in the parton CM frame. It is given

by

y =
y1 − y2
2

(2.15)

where y1 and y2 are the rapidities of the produced

partons in the laboratory frame (in fact, in any

frame). One also introduces

y0 =
y1 + y2
2

=
1

2
log

x1

x2
, (2.16)

τ =
ŝ

Shad
= x1 x2 . (2.17)

With dx1 dx2 = dy0 dτ we obtain:

dσ =
∑
ijkl

dy0
1

Shad
f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

× dσ̂ij→k+l
dΦ2

1

2(2π)2
2 dy d2kT (2.18)

which can also be written as

dσ

dy1 dy2 d2kT
=

1

Shad 2(2π)2

×
∑
ijkl

f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

× dσ̂ij→k+l
dΦ2

. (2.19)

The variables x1, x2 can be obtained from y1, y2
and kT from the equations

y0 =
y1 + y2
2

(2.20)

y =
y1 − y2
2

(2.21)

xT =
2kT√
Shad

(2.22)

x1 = xT e
y0 cosh y (2.23)

x2 = xT e
−y0 cosh y . (2.24)

For the partonic variables, we need ŝ and the

scattering angle in the parton CM frame θ, since

t = − ŝ
2
(1− cos θ) , u = − ŝ

2
(1 + cos θ) .

(2.25)

Neglecting the parton masses, you can show that

the rapidity can also be written as:

y = − log tan θ
2
≡ η , (2.26)

with η being usually referred to as pseudorapid-

ity.

The leading-order Born cross sections for par-

ton parton scattering are reported in table 1.

Process dσ̂
dΦ2

qq′ → qq′ 1
2ŝ
4
9
ŝ2+û2

t̂2

qq → qq 1
2
1
2ŝ

[
4
9

(
ŝ2+û2

t̂2
+ ŝ

2+t̂2

û2

)
− 8
27
ŝ2

ût̂

]
qq̄ → q′q̄′ 1

2ŝ
4
9
t̂2+û2

ŝ2

qq̄ → qq̄ 1
2ŝ

[
4
9

(
ŝ2+û2

t̂2
+ t̂

2+û2

ŝ2

)
− 8
27
û2

ŝt̂

]
qq̄ → gg 1

2
1
2ŝ

[
32
27
t̂2+û2

t̂û
− 83 t̂

2+û2

ŝ2

]
gg → qq̄ 1

2ŝ

[
1
6
t̂2+û2

t̂û
− 38 t̂

2+û2

ŝ2

]
gq → gq 1

2ŝ

[
− 49 ŝ

2+û2

ŝû
+ û

2+ŝ2

t̂2

]
gg → gg 1

2
1
2ŝ
9
2

(
3− t̂ûŝ2 − ŝût̂2 − ŝt̂

û2

)

Table 1: Cross sections for light parton scattering.

The notation is p1 p2 → k l, ŝ = (p1 + p2)
2, t̂ =

(p1 − k)2, û = (p1 − l)2.

It is interesting to note that a good approxima-

tion to the exact results can be easily obtained by

applying a simplified set of Feynman rules valid

in the limit of soft-gluon emission. In this limit,
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Figure 4: Representative diagrams for the production of jet pairs in hadronic collisions.

the vertex for emission of a gluon from a quark

line is given by:

g λaij 2p
µ (2.27)

This is easy to prove, realising that the interac-

tion vertex, aside from the obvious colour factor,

is just given by the current:

ū(p′)γµu(p) (2.28)

where p and p′ are the quark momenta before and
after the gluon emission. In the case of soft-gluon

emission, the quark momentum is left to first ap-

proximation unaltered. Setting p′ = p, one just

obtains the expression ū(p)γµu(p), which is equal

to 2pµ from the standard normalization of mass-

less spinors. It is easy to prove that a similar

expression holds in the case of soft-gluon emis-

sion from a hard gluon:

igfabc 2pµ gνρ (2.29)

where the quark colour factor was replaced by the

gluon one, µ is the Lorentz index of the emitted

gluon, and ν, ρ are the Lorentz indices of the hard

gluon before and after the emission.

Based on the fact that even at 90◦ min(|t|, |u|)
does not exceed s/2, and that therefore every-

thing else being equal a propagator in the t or

u channel contributes to the square of an ampli-

tude 4 times more than a propagator in the s

channel, it is reasonable to assume that the am-

plitudes are dominated by the diagrams with a

gluon exchanged in the t (or u) channel. It is easy

to calculate the amplitudes in this limit using the

soft-gluon approximation.

For example, the amplitude for the exchange

of a soft gluon among a qq′ pair is given by:

(λaij) (λ
a
kl) 2pµ

1

t
2p′µ = λaij λ

a
kl

4p · p′
t

=
2s

t
λaij λ

a
kl (2.30)

The pµ and p
′
µ factors represent the coupling of

the exchanged gluon to the q and q′ quark lines,
respectively (see eq. (2.27). Squaring, and sum-

ming and averaging over spins and colours, gives

∑
colours,spin

|Mqq′ |2 = 1

N2

(
N2 − 1
4

)
4s2

t2
=
8

9

s2

t2

(2.31)

Since for this process the diagramwith a t-channel

gluon exchange is symmetric for s↔ u exchange,

and since u → −s in the t → 0 limit, the above
result can be rewritten in an explicitly (s, u) sym-

metric way as

4

9

s2 + u2

t2
(2.32)

which indeed exactly agrees with the result of the

exact calculation, as given in table 1. The correc-

tions which appear from s or u gluon exchange

when the quark flavours are the same or when we

study a qq̄ process are small, as can be seen by

comparing the above result to the expressions in

the table.

As another example we consider the case of

qg → qg scattering. The amplitude will be ex-

actly the same as in the qq′ → qq′ case, up to
the different colour factors. A simple calculation
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then gives:

∑
colours,spin

|Mqg|2 = 9
4

∑
|Mqq′ |2 = s2 + u2

t2

(2.33)

The exact result is

u2 + s2

t2
− 4
9

u2 + s2

us
(2.34)

which even at 90◦, the point where the t-channel
exchange approximation is worse, only differs from

this latter by no more than 25%.

As a final example we consider the case of

gg → gg scattering, which in our approximation

gives: ∑
|Mgg|2 = 9

2

s2

t2
(2.35)

By u↔ t symmetry we should expect the simple

improvement:

∑
|Mgg|2 ∼ 9

2

(
s2

t2
+
s2

u2

)
. (2.36)

This only differs by 20% from the exact result at

90◦.

Notice that at small t the following relation

holds:

σ̂gg : σ̂qg : σ̂qq̄ =

(
9

4

)
: 1 :

(
4

9

)
(2.37)

The 9/4 factors are simply the ratios of the colour

factors for the coupling to gluons of a gluon (CA)

and of a quark (TF ), after including the respec-

tive colour-average factors (1/(N2 − 1) for the
gluon, and 1/N for the quark). Using eq. (2.37),

we can then write:

dσhadr =

∫
dx1 dx2

∑
i,j

fi(x1) fj(x2) dσ̂ij

=

∫
dx1 dx2 F (x1) F (x2) dσ̂gg(gg → jets)(2.38)

where the object:

F (x) = fg(x) +
4

9

∑
f

[qf (x) + q̄f (x)] (2.39)

is usually called the effective structure function.

This result indicates that the measurement of the

inclusive jet cross section does not allow in prin-

ciple to disentangle the independent contribution

Figure 5: Relative contribution to the inclusive jet-

ET rates from the different production channels.

of the various partonic components of the proton,

unless of course one is considering a kinematical

region where the production is dominated by a

single process. The relative contributions of the

different channels, as predicted using the global

fits of parton densities available in the literature,

are shown in fig. 5

2.3.1 Comparison of QCD with Tevatron

jet data

At the Tevatron, jets up to 450 GeV transverse

momentum have been observed [6, 7]. That is

x >∼ 0.5 and Q2 ' 160, 000 GeV2. This is a
domain of x and Q2 not accessible to DIS ex-

periments, such as those running at HERA. The

current agreement between theory and data is at

the level of 30 % over 8 orders of magnitude of

cross-section, from ET ∼ 20 to ET ∼ 450 GeV
(see fig. 6) In spite of the general good agree-

ment, a large dependence on the chosen set of

parton densities is present, as shown in fig. 7.

The presence of this uncertainty limits the use of

high-ET jet data to set constraints on possible

new physics.

An important question is therefore the fol-

lowing: to which extent do independent measure-

ments of parton densities constrain the knowl-

edge of PDFs at large-x, and what is the resid-

ual uncertainty on the jet ET distributions? To

address this issue, let us first show what is the

relative contribution of different initial state par-

14
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Figure 6: Inclusive jet transverse energy (ET ) dis-

tribution as measured by CDF, compared to the ab-

solute NLO QCD calculation.
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Figure 7: Deviations of QCD predictions from D0

jet data for various sets of PDFs.

tons to the jet cross section. This was plotted in

fig. 5, where some standard PDF set (CTEQ4M

in this case) was chosen. At the largest energies

accessible to today’s Tevatron data, 80% of the

jets are produced by collisions involving only ini-

tial state quarks. The remaining 20% comes from

processes where at least one gluon was present in

the initial state.

Quark densities at large-x quarks are con-

strained by DIS data to within few percent, lead-

ing to an overall uncertainty on the high-ET jet

rate of at most 5%. What is uncertainty on the

remaining 20% coming from gluon-induced pro-

cesses? How are we guaranteed that the gluons

Figure 8: Relative deviations between NLO QCD

and prompt photon data, as a function of xT =

2pT /
√
S, for various fixed target experiments.

are known to better than a factor of 2, limiting

the overall uncertainty to 20-30%?

The only independent constraint on fg(x,Q
2)

comes from fixed-target production of prompt

photons. This process is induced at LO by two

mechanisms:

In pN collisions g(x)� q̄(x), and

dσ

dET
(qg → qγ)� dσ

dET
(qq̄ → gγ) (2.40)

Data from FNAL and CERN fixed target exper-

iments are used to extract fg(x,Q
2) at large x.

• How reliable are these extractions?
• How reliable is the theory of prompt-γ pro-
duction?

Unfortunately, a comparison of data and NLO

theory shows inconsistencies at smallET between

the various experiments, as shown in fig. 8 [8]

As a possible explanation for these discrep-

ancies, the presence of a large non-perturbative
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contribution from the intrinsic kT of partons in-

side the nucleon has been suggested [10]. The

effect of this intrinsic kT is to smear the pT dis-

tribution, as shown in fig. 9. Inclusion of these

effects, however, has a big impact also on the

rate at large ET (i.e. x ∼ 0.6). Due to the
large size of the effects, and to their intrinsic non-

perturbative nature (which means that they can-

not be understood from first principles, and need

to be described by ad hoc models), it is hard to

trust the theoretical predictions obtained in this

way, and to claim that prompt photons provide a

reliable way of extracting the gluon content of the

proton at large x. Recent theoretical improve-

ments, such as the resummation of large-xT log-

arithms [11, 12, 13], should help understanding

the large-x problem, but more work is necessary.

In conclusion, the issue of the large-x behaviour

of fg(x) is still an open problem.

Concerning the possible eccess observed by

CDF in its highest ET jet data, additional in-

put will be available with the the data from the

upcoming run of the Tevatron (due to start in

the Summer 2000), thanks to an increased en-

ergy (
√
S → 2 TeV, 10% increase). Should the

eccess be due to a problem with the gluon den-

sity at large x, a discrepancy similar to the one

observed at 1.8 TeV will appear at jet ET values

10% larger. If the eccess is instead due to really

new phenomena, one expects the excess to ap-

pear at the same value of ET as seen in the data

at 1.8 TeV. Time will tell!

2.3.2 630/1800 GeV cross-section ratios

The Tevatron has been able to run also at a re-

duced CM energy of 630 GeV. Data collected at

this energy provide another interesting jet ob-

servable, namely the ratio of cross-sections at

630 and 1800 GeV, plotted as a function of the

rescaled variable xT :

R(xT =
2ET√
S
) =

[E3T ds/dET ]
√
S=630

[E3T ds/dET ]
√
S=1800

(2.41)

It is expected that a large fraction of theoretical

and experimental systematics will cancel in this

ratio. In the exact scaling limit, R(xT ) = 1. De-

viations from 1 arise from scaling violations in

αs and in the parton densities. The NLO the-

oretical uncertainity on this ratio is better than

10%.

CDF and D0 observe instead serious devia-

tions from theory at xT <∼ 0.15 (E630T <∼ 50 GeV),
as shown in fig. 10 and 11. What’s more, the

pattern of deviations is inconsistent between the

two experiments. (For previous studies of power-

suppressed effects in the jet cross-sections and

ratios, see e.g. [14])

It is easy to get a good approximation for

the expected ratio of cross-sections. Let us ap-

proximate the inclusive jet cross-section with the

value of the differential cross-section at y = 0 for

both jets. In this case, at LO, one gets:

R(xT ) =
Σ(xT , 630 GeV)

Σ(xT , 1800 GeV)
(2.42)

with

Σ(xT ,
√
S) = α2s(µ) F

2(xT , µ), (2.43)

for µ ∼ xT
√
S/2 and

F (x) = G(x) +
4

9

∑
q,q̄

[
Q(x) + Q̄(x)

]
(2.44)

16



Corfu Summer Institute on Elementary Particle Physics, 1998 Michelangelo L. Mangano

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Jet Xt

R
at

io
 o

f S
ca

le
d 

C
ro

ss
 S

ec
tio

ns

Figure 10: 630 to 1800 GeV xT distribution ratios

at CDF, compared to NLO QCD

Figure 11: 630 to 1800 GeV xT distribution ratios

at D0, compared to NLO QCD

It turns out that this is indeed a very good ap-

proximation to the exact result, and in any case

Σ does embody most of the scaling violations ex-

pected of the exact cross-section.

Any change in the jet energy, due to either

detector effects or to unaccounted-for theoretical

effects, would lead to a correction to Σ of the

following form:

Σ(xT ,
√
S)→ Σ(xT ,

√
S)×

(
1 +

A

ET

)
,

(2.45)

Possible sources of A 6= 0 include:

• Energy lost outside the jet cone (A < 0)

• Energy from the underlying event inside
the jet cone (A > 0)

• Intrinsic kT effects (A > 0)

PT contributions to the energy gain/loss can be

evaluated and removed. However this can be

done at LO only, since they are effects of O(α3s)
in PT. Some energy changes induced by non-PT

effects can be extracted from data and corrected

for. E.g. the energy deposited in the cone by

at least a part of the Minimum Bias underlying

event. Finally, there is class of non-PT effects

(e.g. parton recombinations with the beam frag-

ments and with nearby jets) which are out of

control.

When the experiments correct for these ef-

fects before the comparison with the data, they

may be left with a residual A of arbitrary sign,

depending on whether the correction is over- or

under-done. This seems like a plausible explana-

tion for why CDF and D0 get a discrepancy of

opposite sign relative to the data.

Is the scale of the discrepancy reasonable?

The scale for all these effects is Λ ∼ O(1 GeV).
Assuming a 1/EnT fall-off of the cross-section, ones

gets A ∼ nΛ. Values of A ∼ 5 GeV should there-
fore NOT be surprising.

For A ∼ ±5 GeV the effects are large, as
shown in Fig. 12, and can be consistent with the

deviations observed by CDF and D0.

Fig. 13 shows a fit of the CDF data per-

formed using the exact NLO jet cross-section

(CTEQ3M, µ = ET /2), parameterised by an ad-

ditional constant shift in the jet energy. A good

fit is obtained with a shift in the parton-level jet

energy of −2.8 GeV, which is a plausible value
given the current uncertainties on the higher-
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Figure 12: 630 to 1800 GeV xT distribution ratios

at D0, compared to NLO QCD

Figure 13: Fit of the jet-energy shifted NLO QCD

calculation for the 630 to 1800 GeV xT distribution

ratios at CDF

order corrections to the jet development and the

underlying event structure.

Conclusions on the jet data at the Tevatron:

• There is no evidence for departures from
QCD

• Current discrepancies (ET spectrum at CDF,
xT ratios 630/1800 at both CDF and D0)

are within theoretical and experimental un-

certainties once proper account is taken of:

– true uncertainties on the extraction of

the gluon density

Figure 14: Comparison of NLO QCD with D0 data

for the integrated b-quark pT spectrum.

– power corrections

2.4 Bottom quark production at the Teva-

tron

The prediction of bottom cross-sections in hadronic

collisions is a sore point for perturbative QCD.

NLO calculations have been available for several

years now for the total cross sections [15], for

single-inclusive distributions [16] and for corre-

lations [17]. As pointed out in the original pa-

pers [15], the inclusion of NLO corrections in-

creases the rates by factors of order 2, and leaves

a large scale dependence (of order 2 or more, if

renormalisation and factorisation scales are var-

ied independently). As a result, any compari-

son with data (for a recent complete review, see

ref. [18]) will at best be qualitative, and certainly

will not provide a compelling test of the theory.

The current comparison of single-inclusive rates,

as measured by CDF and D0, with NLO QCD,

is summarised in Fig. 14 (D0 [19]) and Fig. 15

(CDF).

Within the theoretical uncertainties, the agree-

ment with data is acceptable. The comparison

indicates that smaller values of the renormalisa-

tion and factorization scales are favoured. In-

deed, if one were to push the scale down to val-

ues of the order of
√
m2b + p

2
T /4, the theory curve

would exactly overlap the data. In spite of the

large uncertainty in the prediction of the abso-

lute rates, the NLO predictions for the shapes
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Figure 15: Comparison of NLO QCD with CDF data for the integrated b-quark pT spectrum (left) and for

the differential B-meson pT distribution (right).

of the bb̄ correlations are better defined. Evi-

dence was given in the past [18], and confirmed

recently in [19], that NLO QCD provides a good

description of the shape of azimuthal bb̄ correla-

tions. It was shown by CDF that the theory pro-

vides also a good description of the bb̄ rapidity

correlations [20]. All of these observations make

therefore rather intriguing the anomaly observed

by D0 in the inclusive forward production of b

quarks [21]. In this paper, D0 reports a factor of

2 excess in the production of forward b’s, rela-

tive to what expected by extrapolating the rate

measured in the central rapidity region. Possi-

ble mechanisms have been proposed to increase

the expected rates for forward production of B

mesons (e.g. a harder non-perturbative fragmen-

tation function [22]), but none of them can ex-

plain the large effect observed by D0.

Recent progress in theory [23, 24] has led to

the the resummation of the large-pT logarithms

appearing at all orders in PT ([αs log(pT /mb)]
n).

The main result of these additional contributions

is the improvement in the scale dependence of the

results, compared to the fixed-order NLO calcu-

lation. In addition, in the region of pT where the

data are available, the resummed calculation pre-

dicts a rate which is closer to the upper estimate

of the NLO result, obtained with the choice of

the low scale µ = µ0/2. This is shown in fig. 16.

The result goes in the right direction to agree

with the CDF and D0 data.
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Figure 16: The differential pT spectrum for bottom

quarks at the Tevatron, as predicted by NLO QCD

(dotted lines), and by the NLL resummed calculation

of Cacciari et al [24] (solid lines). The bands repre-

sent the range in the predictions induced by the vari-

ation of the renormalization and factorization scales

in the interval µ0/2 < µ < 2µ0, with µ
2
0 = p

2
T +m

2.

2.5 Top quark production at the Tevatron

Theoretical predictions for tt̄ production at the

Tevatron are expected to be rather robust, given

the large value of the top mass and the corre-

spondingly small value of the coupling, αs(mtop),

appearing in the QCD perturbative expansion.

The next-to-leading-log (NLL) resummation of

Sudakov threshold effects has been carried out in

19



Corfu Summer Institute on Elementary Particle Physics, 1998 Michelangelo L. Mangano

Figure 17: Scale dependence of σtt̄ at the Tevatron

(1.8 TeV), for various degrees of accuracy in the QCD

calculation.

the past year [11, 25] Results indicate a good re-

duction in scale uncertainty, to the level of ±5%,
as shown in Fig. 17 [25]

In addition to the scale-variation uncertainty,

a ±7% variation in the theoretical predictions is
present due to the choice of PDF’s (MRST: [26];

CTEQ5: [27]). The NLO+NLL results from [25],

using the prescription for the inverse Mellin trans-

form introduced in [28], are given in the following

table:

PDF µ = mtop/2 µ = mtop µ = 2mtop
MRST 5.04 4.92 4.57

MRSTg ↑ 5.22 5.09 4.72

MRSTg ↓ 4.90 4.79 4.45

MRSTαs ↓ 4.84 4.74 4.42

MRSTαs ↑ 5.20 5.07 4.68

CTEQ5M 5.41 5.30 4.91

CTEQ5HJ 5.61 5.50 5.10

A new determination of the tt̄ cross-section was

recently presented by CDF. The new value is ap-

proximately 1 standard deviation lower than the

previous one [29], and in much better agreement

with the QCD predictions. The overall cross-

section averages from CDF and D0 (in this last

case rescaled to mtop = 175 GeV) are shown in

Table 2, and compared to various theoretical re-

sults appeared in the literature. Now that the

CDF number has come down a bit, the average of

the experimental determinations (5.9±1.3 pb) is
within less than one standard deviation from the

QCD NLO+NLL resummed result of 5.0±0.6 pb,
extracted from the previous reslts, with scale and

PDF uncertainties added linearly. It is interest-

ing to notice that both CDF [29] and D0 [31]

report significantly lower values for σ(tt̄) in the

single-lepton plus jets channels than in the all-jet

or dilepton ones. These lower values are in closer

agreement with QCD than the overall average.

It is clearly premature to draw any conclusion

on this small discrepancy between the determina-

tions obtained using the various channels. Sev-

eral studies of kinematical properties of top final

states have been presented by CDF and D0. All

results are in good agreement with the predic-

tions from NLO QCD [34].
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