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Abstract

Using the OPAL detector at LEP, the running of the effective QED coupling α(t) is
measured for space-like momentum transfer from the angular distribution of small-angle
Bhabha scattering. In an almost ideal QED framework, with very favourable experimental
conditions, we obtain:

∆α(−6.07GeV2) − ∆α(−1.81GeV2) = (440 ± 58 ± 43 ± 30) × 10−5 ,

where the first error is statistical, the second is the experimental systematic and the third
is the theoretical uncertainty. This agrees with current evaluations of α(t). The null
hypothesis that α remains constant within the above interval of −t is excluded with a
significance above 5σ. Similarly, our results are inconsistent at the level of 3σ with the
hypothesis that only leptonic loops contribute to the running. This is currently the most
significant direct measurement where the running α(t) is probed differentially within the
measured t range.
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T. Krämer25, P. Krieger6,l, J. von Krogh11, T. Kuhl25, M. Kupper24, G.D. Lafferty16,

H. Landsman21, D. Lanske14, D. Lellouch24, J. Lettso, L. Levinson24, J. Lillich10, S.L. Lloyd13,
F.K. Loebinger16, J. Lu27,w, A. Ludwig3, J. Ludwig10, W. Mader3,b, S. Marcellini2,

A.J. Martin13, T. Mashimo23, P. Mättigm, J. McKenna27, R.A. McPherson26, F. Meijers8,
W. Menges25, F.S. Merritt9, H. Mes6,a, N. Meyer25, A. Michelini2, S. Mihara23, G. Mikenberg24,

D.J. Miller15, W. Mohr10, T. Mori23, A. Mutter10, K. Nagai13, I. Nakamura23,v, H. Nanjo23,
H.A. Neal33, R. Nisius32, S.W. O’Neale1,∗, A. Oh8, M.J. Oreglia9, S. Orito23,∗, C. Pahl32,

G. Pásztor4,g, J.R. Pater16, J.E. Pilcher9, J. Pinfold28, D.E. Plane8, O. Pooth14,
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D. Toya23, P. Tran4, I. Trigger8, Z. Trócsányi30,e, E. Tsur22, M.F. Turner-Watson1, I. Ueda23,
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1 Introduction

The electromagnetic coupling constant is a basic parameter of the Standard Model, known with
a relative precision of 4 × 10−9 [1] at zero momentum transfer. In QED the effective coupling
changes, or runs, with the scale of momentum transfer due to vacuum polarization. This is
due to virtual lepton and quark loop corrections to the photon propagator. This effect can also
be understood as an increasing penetration of the polarized cloud of virtual particles which
screen the bare electric charge of a particle as it is probed at smaller and smaller distance. The
effective QED coupling is generally expressed as:

α(q2) =
α0

1 − ∆α(q2)
(1)

where α0 = α(q2 = 0) ≃ 1/137.036 is the fine structure constant and q2 is the momentum
transfer squared of the exchanged photon.

Whereas the leptonic contributions to ∆α are calculable to very high accuracy in quantum
electrodynamics, the hadronic ones are more problematic as they involve quark masses and
hadronic physics at low momentum scales. The hadronic contribution can be evaluated through
a dispersion integral over the measured cross section of e+e− → hadrons, supplemented with
perturbative QCD at energies above the resonance region [2, 3]. The main difficulty of this
approach comes from the integration of experimental data in the region of hadronic resonances,
which gives the dominant uncertainty on ∆α. The effective QED coupling α(q2) is an essential
ingredient for many precision physics predictions. It contributes one of the dominant uncer-
tainties in the electroweak fits constraining the Higgs mass [4]. There are also many evaluations
which are more theory-driven, extending the application of perturbative QCD down to about
2 GeV, for example [5]. An alternative approach uses the Adler function [6] and perturbative
QCD in the negative q2 (space-like) region [7], where ∆α is a smooth function.

Precise measurements of the muon anomalous magnetic moment [8, 9] provide a powerful test
of vacuum polarization corrections to the photon propagator, due not only to electrons but
also to other leptons and hadronic states. Due to their very high precision, such measurements
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currently constitute a stringent overall test of the Standard Model, in which many classes of
radiative corrections are probed, involving electromagnetic, strong and weak interactions. They
also have sensitivity to potential physics beyond the Standard Model. Vacuum polarization
corrections affect the muon anomaly when integrated over all possible values for the q2 of
the photon, both positive and negative. In contrast, in this analysis, we present a direct

measurement of the running of the electromagnetic coupling in the space-like region, where by
direct we mean that the change in strength of the effective coupling is probed differentially as
a function of q2 of the photon propagator.

There have been only a few direct observations of the running of the QED coupling [10–14].
Most of these analyses involve measurements of cross sections and their ratios and obtain
values of α(q2) which are found to deviate from α0 or from the assumed value of the coupling
at some initial scale. Theoretical uncertainties on the predicted absolute cross sections as well
as experimental scale errors can influence such determinations or reduce their significance. The
TOPAZ [10] and the OPAL [11] experiments probed the running in the time-like region (positive
q2) from e+e− annihilations to leptonic final states. Far enough from the Z resonance these
processes are dominated by single photon exchange, although they substantially involve the
full electroweak theory. Large-angle Bhabha scattering has been studied by the VENUS [12]
and L3 [13, 14] experiments to measure the running in the space-like region. In this case both
s- and t-channel γ-exchange diagrams are important and the effective QED coupling appears
as a function of s or t respectively. Moreover, interference contributions due to Z-exchange are
also sizeable.

In this paper we measure the running of α in the space-like region, by studying the angular
dependence of small-angle Bhabha scattering using data collected by the OPAL detector at
LEP. Small-angle Bhabha scattering appears to be an ideal process for a direct measurement
of the running of α since the momentum transfer squared t is simply and unambiguously
related to the polar scattering angle, and the angular distribution is modified by the running
coupling which appears as α2(t). There has been only one similar previous study by the L3
experiment [13].

We confine ourselves to the small angular region used for the luminosity measurement, which
approximately corresponds to 2 ≤ −t ≤ 6 GeV2 at centre-of-mass energies near the Z resonance
peak (LEP 1). At this t scale the average ∆α is about 2%. The number of small-angle Bhabha
events is used to determine the integrated luminosity, so that we will not make an absolute
measurement of α(t); rather we will look only at the variation of ∆α across the acceptance,
which is expected to be about 0.5%, leading to a variation of the differential cross section of
about 1%. An interesting property of this low |t| region is that, although the absolute ∆α value
is dominated by the leptonic contributions, the leptonic and hadronic components contribute
about equally to its variation across the region accessible to our measurements.

A crucial element in this work has been the very high precision in measuring the scattering an-
gle provided by the OPAL Silicon-Tungsten (SiW) luminometer [15]. Among the experimental
advantages are also the high available statistics and the purity of the data sample. Not less
important is the cleanliness of this kind of measurement from a theoretical point of view, as
has been pointed out recently in [16]. Small-angle Bhabha scattering is strongly dominated
by single-photon t-channel exchange, while s-channel photon exchange is practically negligible.
The cross section is currently exactly calculable up to the leading O(α2) terms in the QED
photonic corrections (herein indicated as O(α2L2), where L = ln(|t|/m2

e) − 1 is the large log-
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arithm). Many existing calculations are described in [17] and were also widely cross-checked,
mainly to reduce the theoretical error on the determination of the luminosity at LEP 1. Higher
order terms are partially accounted for through exponentiation. A calculation accurate to the
subleading O(α2) terms [18] also exists. Corrections for Z interference are very small and well
known, so that small-angle Bhabha scattering near the Z pole can be considered an essentially
pure QED process. A comparison of data with such precise calculations can determine the value
of the effective QED coupling in the most accurate way without relying on the correctness of
the SU(2)×U(1) electroweak model.

The paper is organized as follows: we explain the analysis method in Section 2, the detector
and its Monte Carlo simulation are briefly described in Section 3 and the event selection in Sec-
tion 4. The procedure to correct the data distributions is explained in Section 5 and checked in
Section 6. The experimental systematic uncertainties are described in detail in Section 7. The
theoretical uncertainties are discussed in Section 8. The results are finally given in Section 9,
and a concluding summary in Section 10.

2 Analysis method

The Bhabha differential cross section can be written in the following form for small scattering
angle:

dσ

dt
=

dσ(0)

dt

(

α(t)

α0

)2

(1 + ǫ) (1 + δγ) + δZ (2)

where
dσ(0)

dt
=

4πα2
0

t2
(3)

is the Born term for t-channel single photon exchange, α0 is the fine structure constant and
α(t) is the effective coupling at the momentum transfer scale t. Here ǫ represents the radiative
corrections to the Born cross section, while δγ and δZ are respectively the contributions of photon
and Z s-channel exchange, both dominated by interference with t-channel photon exchange.
The contributions of δγ and δZ are much smaller than those of ǫ and the vacuum polarization.
Therefore, with a precise knowledge of the radiative corrections (ǫ term) one can determine the
effective coupling α(t) by measuring the differential cross section. The form of Equation (2) is
an approximation since the δγ term is not strictly factorizable with the effective coupling α2(t).
In fact the s-channel amplitude couples as α(s), where s is the centre-of-mass energy squared.
The practical validity of Equation (2) is a consequence of the smallness of the δγ term, which
could even be neglected.

The counting rate of Bhabha events in the SiW luminometers is used to determine the integrated
luminosity, so that we cannot make an absolute measurement of α(t) without an independent
determination of the luminosity. Instead, the structure of the cross section as written in Equa-
tion (2) easily allows the variation of α(t) over the accessible t range to be determined, since
the dominant contribution to the cross section contains the factor (α(t)/α0)

2. At leading order
the variable t is simply related to the scattering angle, θ:

t = −s
1 − cos θ

2
≈ −s θ2

4
. (4)
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Photon radiation (in particular initial-state radiation) smears this correspondence. The event
selection that we use, described in Section 4, has been carefully chosen to reduce the impact of
radiative events. In particular the energy cuts and the acollinearity cut are very effective. As
a result the event sample is strongly dominated by two-cluster configurations, with almost full
energy back-to-back scattered e+ and e−. For such a selection Equation (4) represents a good
approximation. The scattering angle is measured from the radial position R of the scattered
e+ and e− at reference planes located within the SiW luminometers, at a distance z from the
interaction point:

tan θ = R/z . (5)

We use the BHLUMI [19] Monte Carlo generator for all calculations of small-angle Bhabha
scattering. It is a multiphoton exponentiated generator accurate up to the leading logarithmic
O(α2L2) terms. Higher order photonic contributions are partially included by virtue of the
exponentiation. The generated events always contain the scattered electron and positron plus
an arbitrary number of (non-collinear) photons. Small contributions from s-channel photon
exchange and Z interference are also included. Corrections due to vacuum polarization are
implemented with a few choices for the parameterization of the hadronic term [2,20]. We used
the option to generate weighted events, such that we could access all the available intermediate
weights which contribute to the final complete cross section event by event. In particular we
could also modify the parameterization of the vacuum polarization or set α(t) ≡ α0 to assume
a fixed coupling α0.

We compare the radial distribution of the data (and hence the t-spectrum) with the predictions
of the BHLUMI Monte Carlo to determine the running of α within the accepted region. If the
Monte Carlo is modified by setting the coupling to the constant value α(t) ≡ α0, the ratio f of
the number of data to Monte Carlo events in a given radial bin is:

f(t) =
Ndata(t)

N0
MC(t)

∝
(

1

1 − ∆α(t)

)2

. (6)

The dominant dependence of ∆α(t) expected from theory is logarithmic. We therefore fitted
the ratio f(t) as:

f(t) = a + b ln
(

t

t0

)

(7)

where a and b are the fit parameters and t0 = −3.3 GeV2 is chosen to be close to the mean
value of t in the data sample. The value of t in each bin is calculated according to Equation (4),
averaged over the bin, assuming the cross section dependence of Equation (3). The parameter a
(a ≈ 1) is not relevant since the Monte Carlo is normalized to the data. The slope b represents
the full observable effect of the running of α(t), both the leptonic and hadronic components. It
is related to the variation of the coupling by:

∆α(t2) − ∆α(t1) ≃ b

2
ln
(

t2
t1

)

(8)

where t1 and t2 correspond to the acceptance limits. The errors associated with these ap-
proximations are negligible, and discussed in Section 7.9. The fit error on b includes a small
contribution from the correlated error on a.

With the acceptance cuts specified in Section 4 and the average centre-of-mass energy
√

s =
91.2208 GeV, the reference t range is: t1 = −1.81 GeV2, t2 = −6.07 GeV2, ln(t2/t1) = 1.21.
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The expected value of the effective slope in this t range is b = 0.00761, determined by using
the Burkhardt-Pietrzyk parameterization [3] of the hadronic contributions.

It is important to realize which systematic effects could mimic the expected running or disturb
the measurement. The most potentially harmful effects are biases in the radial coordinate.
Most simply one could think of dividing the detector acceptance into two and determining
the slope using only two bins. In such a model the running is equivalent to a bias in the
central division of 70 µm. Biases on the inner or outer radial cut have a little less importance
and could mimic the full running for 90 or 210 µm systematic offsets respectively. Concerning
radial metrology, a uniform bias of 0.5 mm on all radii would give the same observable slope
as the expected running. Knowledge of the beam parameters, particularly the transverse offset
and the beam divergence, is also quite important.

3 Detector, data samples and Monte Carlo simulation

The OPAL detector and trigger have been described in detail elsewhere [21]. In particular
this analysis is based on the silicon-tungsten luminometer (SiW), which was used to determine
the luminosity from the counting rate of accepted Bhabha events from 1993 until the end of
LEP running. The SiW was designed to improve the precision of the luminosity measurement
to better than 1 per mille. In fact it achieved a fractional experimental systematic error of
3.4 × 10−4. The detector and the luminosity measurement are extensively described in [15].
Here we only briefly review the detector aspects relevant for this analysis.

The OPAL SiW luminometer consists of 2 identical cylindrical calorimeters, encircling the beam
pipe symmetrically at about ±2.5 m from the interaction point. Each calorimeter is a stack of 19
silicon layers interleaved with 18 tungsten plates, with a sensitive depth of 14 cm, representing
22 radiation lengths (X0). The first 14 tungsten plates are each 1 X0 thick, while the last 4 are
each 2 X0 thick. The sensitive area fully covers radii between 6.2 and 14.2 cm from the beam
axis. Each detector layer is segmented with R-φ geometry in a 32× 32 pad array. The pad size
is 2.5 mm radially and 11.25 degrees in azimuth. In total the whole luminometer has 38,912
readout channels corresponding to the individual silicon pads. The calibration was studied
with electrical pulses generated both on the readout chips and on the front-end boards, as well
as with ionization signals generated in the silicon using test beams and laboratory sources.
Overall pad-to-pad gain variations were within 1%. Particles originating at the interaction
point had to traverse the material constituting the beam pipe and its support structures as
well as cables from inner detector components before reaching the face of the SiW calorimeters.
The distribution of this material upstream of the calorimeters is shown in Fig. 1. The material
thickness was kept at a minimum especially in the crucial region of the inner acceptance cut
where it amounts to about 0.25 X0, while in the middle of the acceptance it increases to about
2 X0. The model used for the calculation of the material thickness only approximates the
actual situation, and dictates our strategy of determining the material effects from the data,
using the figure as an approximate guide. Controlling and correcting the possible biases in the
reconstructed position caused by this material was one of the most important aspects of this
analysis and is addressed in the following sections.

We use the data samples collected in 1993-95 at energies close to the Z resonance peak. In
total they amount to 101 pb−1 of OPAL data, corresponding to 12.0×106 accepted small-angle
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Bhabha events. In 1993 and 1995, energy scans were performed and data were taken at three
energy points: close to the Z peak and approximately 1.8 GeV above and below it. In 1994 all
data were taken near the Z peak. We divide the data into nine subsamples, depending on the
year, the centre-of-mass energy and the running conditions, such as the beam parameters, in
the same way as for the luminosity analysis [15]. The same notation is also used for labelling
the subsamples. One subsample at peak energy (94-b) includes 40% of the total number of
events, while the remaining statistics are divided roughly equally among the other, smaller,
subsamples. When LEP 2 data-taking started in 1996 the detector configuration changed,
with the installation of tungsten shields designed to protect the inner tracking detectors from
synchrotron radiation. These introduced about 50 radiation lengths of material in front of the
calorimeters between 26 and 33 mrad from the beam axis, thus reducing the useful acceptance
of the detector at the lower polar angle limit. Moreover the new fiducial acceptance cut fell
right in the middle of the previous acceptance, where the preshowering material was maximum.
For these reasons we have limited this analysis to the LEP 1 data samples.

The OPAL SiW detector simulation does not rely on a detailed physical simulation of electro-
magnetic showers in the detector. Instead it is based on a parameterization of the detector
response obtained from the data [15]. This approach gives a much more reliable description
of the tails of the detector response functions, which are primarily due to extreme fluctuations
in shower development, than we could obtain using any existing program which attempts to
simulate the basic interactions of electrons and photons in matter. The measured LEP beam
size and divergence, as well as the measured offset and tilt of the beam with respect to the
calorimeters, are also incorporated into this simulation. The Monte Carlo simulation is used
to correct the acceptance for the effects of the detector energy response, the coordinate res-
olution and LEP beam parameters. Corresponding to each data subsample we generated an
independent sample of BHLUMI events, using a slightly different set of parameters to match
the experimental conditions in each case. The statistics were always at least 10 times those of
the corresponding data set.

There are other effects which are not accounted for by the Monte Carlo simulation, but rather
studied directly in data. These include accidental background, detector metrology and, most
importantly, biases in the reconstructed radial coordinate. The latter is crucial for this analysis
and will be discussed in Section 5.

4 Event selection

The event selection criteria can be classified into isolation cuts, which isolate a sample of pure
Bhabha scattering events from the off-momentum background, and acceptance defining, or
definition cuts. The isolation cuts are used to define a fiducial set of events which lie within
the good acceptance of both calorimeters and are essentially background free. The definition
cuts then select subsets of events from within the fiducial sample.

Showers generated by incident electrons and photons are recognized as clusters in the calorime-
ters and their energies and coordinates determined. The fine segmentation of the detectors
allows incident particles with separations greater than 1 cm to be individually reconstructed
with good efficiency.
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The coordinate system used throughout this paper is cylindrical, with the z-axis pointing along
the direction of the electron beam, passing through the centres of the two calorimeter bores.
The origin of the azimuthal coordinate, φ, is in the horizontal plane, towards the inside of the
LEP ring. All radial coordinate measurements are projected onto reference planes at a distance
of ±246.0225 cm from the nominal intersection point. These reference planes correspond to
the nominal position of the silicon layers 7 X0 deep in the two calorimeters (hereafter we will
identify the relevant layers with expressions like layer 7 or layer 7 X0 without distinction).

The isolation cuts consist of the following requirements, imposed on (RR,φR) and (RL,φL),
the radial and azimuthal coordinates of the highest energy cluster associated with the Bhabha
event, in each of the Right and Left calorimeters, and on ER and EL, the total fiducial energy
deposited by the Bhabha event in each of the two calorimeters, explicitly including any detected
energy of radiated photons:

• Loose radial cut, Right (Left) 6.7 cm < RR < 13.7 cm
(6.7 cm < RL < 13.7 cm)

• Acoplanarity cut ||φR − φL| − π| < 200 mrad

• Acollinearity cut |∆R| = |RR − RL| < 2.5 cm

• Minimum energy cut, Right (Left) ER > 0.5 · Ebeam

(EL > 0.5 · Ebeam)

• Average energy cut (ER + EL) /2 > 0.75 · Ebeam

Note that by defining the energy cuts relative to the beam energy, Ebeam, the selection efficiency
is largely independent of

√
s.

The acollinearity cut (which corresponds to approximately 10.4 mrad) is introduced in order
to ensure that the acceptance for single radiative events is effectively determined geometrically
and not by the explicit energy cuts.

The isolation cuts accept events in which the radial coordinate, on both the Right and the Left
side, is more than two pad widths (0.5 cm) away from the edge of the sensitive area of the
detector. The definition cuts, based solely on the reconstructed radial positions (RR, RL) of
the two highest energy clusters, then require the radial position on one side or the other to be
at least two further pads towards the inside of the acceptance. The Right and Left definition
cuts are chosen so as to correspond closely to radial pad boundaries in a given detector layer.
When the chosen layer is the reference layer at 7 X0, the definition cuts are:

• Right side 7.2 cm < RR < 13.2 cm

• Left side 7.2 cm < RL < 13.2 cm

Expressed in terms of polar angles, these cuts correspond to 29.257 and 53.602 mrad.

The measured radial distribution of Bhabha events will later be corrected with the procedure
explained in Section 5. This is based on one specific silicon layer, which can be varied with some
freedom. After a given layer is chosen, the acceptance cuts and all the radial bin boundaries are
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defined according to its pad boundaries, to match most closely with the correction procedure.
For example, when using the layer at 4 X0, the minimum and maximum radii become 7.2584 cm
and 13.3071 cm.

The radial distributions after the isolation cuts are shown in Fig. 2 for the complete data
statistics and compared to Monte Carlo distributions normalized to the same number of events.
The agreement is good except in the central part, where effects from the preshowering material
are expected. Their correction is described in the following section.

The acceptance specified by the definition cuts is 0.5 cm (corresponding to two radial pad
widths) wider than that used to define the OPAL luminosity [15]. In this way we extend the
lever arm for observation of the running of α. The compatibility of the added data is quite good
as can be seen from Fig. 2, where each point corresponds to one pad width. The agreement
has been quantified by determining the χ2 increase obtained when the fit in the former default
acceptance is extended by 2 or 3 pads at both the inner and outer radius. The ∆χ2 is consistent
with purely statistical fluctuations corresponding to the added degrees of freedom.

5 Radial coordinate anchoring

We exploit the fine radial and longitudinal granularity of the detector to produce precise and
continuous radial shower coordinates. Limiting and quantifying the systematic error in these
reconstructed coordinates is crucial to the current measurement. The key to ensuring that the
reconstruction does not depart from the absolute physical geometry of the Si pads, especially
behind the appreciable preshowering material which obscures the middle portion of the accep-
tance, is to study the radial coordinate as a function of depth, using each of the many layers
of the detector independently. We refer to this procedure as anchoring. Details of how the
coordinates are formed from the recorded pad information are found in [15], which should be
consulted for a full understanding, but the essentials are as follows. First the smoothed radial
coordinate is constructed:

• In each layer, the triplet of pads centred around the peak of the shower profile is used to
form a continuous radial coordinate for the shower in that layer. The algorithm preserves
two symmetry conditions, which hold to a good approximation. First, if the two largest
pad signals in the triplet are equal, the coordinate falls on the pad boundary. Secondly,
if the signals on the two extreme pads of the triplet are equal, the coordinate falls at the
centre of the central pad.

• Acceptable layer coordinates in layers 2 to 10 are projected onto the reference plane of the
detector, layer 7, which lies near the average longitudinal shower maximum, and averaged.

• This average coordinate is then smoothed to compensate for non-uniformities in the res-
olution across the pad structure of the detector. The smoothing algorithm imposes the
constraint that no coordinate is allowed to cross the radius of a pad boundary in the
reference layer 7.

This smoothed radial coordinate will be referred to as the unanchored coordinate. This coordi-
nate, derived from the pad signals in many layers of the detector, is robust against fluctuations
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in any single pad, and exhibits uniform, optimum, resolution. In averaging many layers, how-
ever, it does suffer from two inherent weaknesses: first, it does not preserve a transparent
relation to the absolute geometry of any particular pad. Second, and even more important, it
does not, in itself, allow the effect of the preshowering material to be studied as a function of
depth.

We therefore apply the anchoring procedure:

• We estimate the residual bias, or anchor, of the smoothed radial coordinate at each pad
boundary in a given layer of the detector, as explained in the following section. Here we
rely on the simple symmetry condition that two adjacent pads will each have a proba-
bility of 50% for recording the larger signal for an ensemble of events where the shower
axis lies on their common boundary. Having obtained the apparent displacement of the
pad boundaries through this condition, we then obtain bin-by-bin acceptance corrections
which will be applied to the radial distribution. We then refer to the coordinate as being
anchored.

Note that in contrast to the unanchored coordinate, which relies on the entire detector to
provide the optimum position of an individual shower, each anchor relies on the response of
just two rings of radially adjacent pads, over the ensemble of showers which pass through them.
Due to the cylindrical geometry of the detector, the radial coordinates of the pad boundaries,
projected to the reference layer 7, have a small relative shift between adjacent layers of about
200 µm at the inner radius and about 350 µm at the outer radius, and therefore provide a dense
net of benchmarks throughout the detector.

For the luminosity measurement, the anchoring procedure was essential in establishing the
absolute radius of the crucial inner acceptance boundary. In the current analysis it becomes
even more important, since it is used to correct the acceptance for every bin of the radial
distribution, as well as to demonstrate that the effects of the preshowering material as a function
of depth are under control. For this reason we discuss it here in some detail.

5.1 Anchoring corrections

As the radial position of the incoming particles is scanned across a radial pad boundary in a
single layer, the probability for observing the largest pad signal above or below this boundary
shifts rapidly, giving an image of the pad boundary as shown in Fig. 3. These plots are obtained
from OPAL data taken in 1993-94 and refer to three radial pad boundaries in layer 4 X0 of the
Right calorimeter. Similar plots were also made for test beam data. The pad boundary image
is modelled with an error function:

E(R; Roff , σa) =
∫

dr G(r; R, σa)Θ(r − Roff) (9)

where R is the distance from the nominal pad boundary, G(r; R, σa) is a Gaussian of width σa

and mean R, and Θ(r−Roff) is a step function with offset Roff from the nominal pad boundary.
The Gaussian width σa measures the radial resolution at the boundary. From Fig. 3 one can
see that the width is similar at the inner and outer radius, while it is considerably greater at
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the central radius. The offset Roff is found to be quite small at the inner edge while it increases
to ≈ 10-20 µm at the central and the outer radius.

Despite our reliance on the basic symmetry condition of the reconstruction described in Sec-
tion 5, in reality this symmetry is slightly violated due to the R-φ geometry of the pads. As
a result, the mean position of an ensemble of showers which share energy equally between two
radially adjacent pads will actually lie at a smaller radius than the pad boundary between them.
The displacement between the point where the energy, on average, is equally shared, and the
actual pad boundary is termed the pad boundary bias, δRRφ, and depends on the lateral extent
of the shower. The pad boundary bias has been measured in a test beam and parameterized
as a function of the apparent width of the shower, and varies from essentially zero to about
20 µm.

An additional, second order, effect also arises whenever a cut is imposed on a quantity with
a steeply falling distribution, such as the radial Bhabha spectrum. An acceptance change is
introduced due to the fact that more events actually on the uphill side of the cut will be
measured to fall on the downhill side than vice versa. This resolution flow, δRres, is estimated
to be a small (positive) additional bias, typically below 1 µm and increasing to about 8 µm in
the worst case.

The total net bias in the smoothed radial coordinate, δR (also called anchor), is therefore given
by:

δR = Roff + δRRφ + δRres (10)

where Roff is the observed offset of any particular pad boundary image, which may have positive
or negative sign, while both δRRφ and δRres are always positive.

The anchors determined from 1993-94 data for the layers at 4 X0 for all the pad boundaries
used in the analysis are shown in Fig. 4. A similar trend is visible on the two sides, in particular
the rise of the anchor from 5-10 µm at the inner edge to 20-25 µm around R = 9 cm. The error
bars include in quadrature the systematic errors from the fit method, pad gain variations, and
the assumed 1/R scaling and shower width dependence of the pad boundary bias as discussed
in Section 7.1. The inner error bars show the statistical errors in the fit of the pad boundary
images. More details on errors assigned to the anchors can be found in [15]. The anchors
determined from 1995 data have similar features although with lower statistics.

The anchors have been determined separately for the two homogeneous data combinations,
1993-94 and 1995 data, because the amount of preshowering material was different in these
two subsamples. A clear relation with the amount and distribution of the material upstream
of the calorimeters is visible from the apparent width σa as a function of radius, as shown in
Fig. 5. The noticeable difference between the Right and Left widths in 1993-94 data is due
to the presence, on the Left, of cables from the OPAL microvertex detector. For 1995 data
additional cables were installed on the Right side, which resulted in an almost symmetrical
situation. The presence of a non-negligible amount of preshowering material in the middle
of the acceptance constitutes the most delicate experimental problem for this analysis, since
the anchoring procedure was developed and checked using the test beam only for the amount
of preshowering material (< 1 X0) most relevant for the luminosity measurement. We have
therefore made extensive checks as described in Section 5.2 and 6 to identify a broad region
within the full depth of the detector where the anchoring procedure is valid, and derive our
results using only the middle of this region.
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To use the anchors, we do not actually correct the measured shower coordinates themselves,
but rather convert the anchors to appropriate acceptance corrections. The acceptance of an
individual radial bin with boundaries (Rin, Rout) is affected by the net biases of the edges
δRin, δRout determined as in Equation (10) according to the following formula, which gives the
fractional acceptance variation:

δA

A
= cin δRin − cout δRout (11)

The coefficients cin and cout are derived by a simple analytical calculation assuming a 1/θ3

spectrum for the angular distribution and are given by:

ck = 2
R2

inR
2
out

(R2
out − R2

in) R3
k

k = in, out (12)

The radial distribution is binned according to the nominal pad boundaries of the anchoring
layer, projected onto the reference layer 7 X0. These anchoring corrections for a single 2.5 mm
bin are at most 0.5% for the Right and 1.0% for the Left side in 1993-94 data and correspond-
ingly 0.8% and 0.7% in 1995 data.

5.2 Limitations in the anchoring

Our best security against the presence of excess systematic error in the radial shower coordinate
is to check for consistency between the anchored and unanchored coordinates. As already
mentioned, the unanchored coordinates are robust, and derived from the signals observed on a
large number of pads throughout the detector, while the anchored coordinates rest on observing
equal signals, in the mean, inside and outside an individual radial pad boundary in a particular
detector layer. These anchored coordinates provide reliable benchmarks throughout most of
the detector, but are expected to become fragile at both very shallow and very deep layers of
the calorimeters, particularly in the region of the detector obscured by significant preshowering
material. Not only does the lateral shower profile broaden deep within the calorimeter, but
beyond shower maximum the energy in the shower also becomes smaller. Both these effects
make determination of the pad boundary transition increasingly subject to disturbance. At
shallow depths, particularly behind preshowering material located considerably upstream of
the detector, a shower can occasionally develop a long, asymmetric tail which can lead to a
significantly non-Gaussian error in the position determined in a single layer.

The pad boundary bias was determined in the test beam behind a maximum of 0.84 X0 of
preshowering material. Under such conditions, and at reasonable depths, we determined that
the pad boundary bias could be adequately parameterized as a function of the apparent shower
width alone. Behind greater amounts of preshowering material, the validity of this simplification
may break down, and we can expect that an additional, explicit, depth dependence may become
necessary to adequately describe the pad boundary bias at both very shallow and very deep
layers within the calorimeter.

We therefore compared the anchored and unanchored coordinates as a function of the layer
used for the anchoring to expose such effects. As expected, significant deviations are observed
at both very shallow and very deep layers, particularly on the Left side in the 1993-94 data,
where the preshowering material was greatest.
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The reconstructed radial coordinate can be studied by comparing data with Monte Carlo as
the radial acceptance cut is varied. The Monte Carlo here assumes the expected running
of α and that the radial coordinate is reconstructed without bias. Thus differences in the
acceptance of the data and Monte Carlo as the radial cut is varied, beyond those expected
from the finite statistics and any departure from the expected running of α, can indicate biases
in the radial coordinate. We indicate with N(R1; R2) the number of events falling between
radii R1 and R2. The acceptance change obtained by moving the inner radial cut to any given
position R is then proportional to ∆N = N(R; Rmax) − N(Rmin; Rmax), where Rmin = 7.2 cm
and Rmax = 13.2 cm are the acceptance limits. We normalize the Monte Carlo to the data,
NMC(Rmin; Rmax) = Ndata(Rmin; Rmax) and then form the quantity:

(

∆A

A

)

data
−
(

∆A

A

)

MC
=

Ndata(R; Rmax) − NMC(R; Rmax)

Ndata(Rmin; Rmax)
. (13)

This relative acceptance, as a function of R, is shown as a shaded band (the lower one) for the
Right and the Left side selection in Fig. 6 for 1993-94 data. The width of each band represents
the binomial errors with respect to the reference selection 7.2 cm ≤ R ≤ 13.2 cm. Note that,
by construction, both ends of the relative acceptance band at R = 7.2 cm and R = 13.2 cm lie
at zero.

The solid points show the anchoring results for all the relevant pad boundaries in layers between
1 X0 and 10 X0. The radial bias corresponding to each anchor is converted into an acceptance
variation using the formula:

δA

A
= 2

R2
minR

2
max

R2
max − R2

min

δR

R3
(14)

Since the normalization is the total acceptance, the low R points have a greater influence in
the plot, due to the 1/R3 weighting. Therefore any visible structure tends to be flattened at
increasing radius. Any of the anchors can be chosen to fix the absolute offset in the continuous
radial coordinate. Here we choose the anchor at R = 7.2 cm in layer 7 X0 and this point
correspondingly lies at zero.

Each group of nearby points, marked by either circles or triangles, refers to a given radial pad
boundary, and the individual points in each group to different layers, at variable depth in the
calorimeters. Due to the origin of the projection at the beam interaction point, the radial
coordinates of these boundaries, projected to the reference layer 7, have a small relative shift
between adjacent layers of about 200 µm at the inner radius and about 350 µm at the outer
radius. The arrows mark the position of a given pad boundary in layer 7 X0, deeper layers have
a lower R and shallower layers a higher R. Note that in contrast to the acceptance bands also
shown in this figure, these anchoring points are independent of the Monte Carlo, and do not
depend on the assumed running of α.

While the broad features of the acceptance bands are sensitive to the running assumed in the
Monte Carlo, the small-scale, local structure in the bands reveals even very small residual
imperfections in the reconstructed coordinate. The essential point of Fig. 6 is that where the
anchor points derived from individual pad boundaries follow these local variations in the relative
acceptance band the radial bias determined by the anchoring procedure is seen to be consistent
with this residual structure in the unanchored coordinate. In contrast, wherever the anchor
points exhibit a local pattern of divergence from the acceptance band, especially as a function
of depth, this indicates an anomaly in these anchors. Most anchors are found to be consistent
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with the relative acceptance band. However, clear discrepancies are apparent for the deepest
layers considered (8-10 X0), in particular for the Left side. This is most evident in the central
region of acceptance, where the amount of material between the detector and the interaction
point is large and the parameterization of the expected bias derived from the test beam is
evidently no longer applicable. The behaviour of the anchors with depth indicates that the
onset of these problems is abrupt, and a large region of the detector remains well understood
for use in our analysis. Notice that in the obscured region of the detector the run-away of the
anchors occurs almost exactly one layer earlier on the Left side of the detector, at layer 8 X0,
than it does on the Right, indicating that the 0.5 X0 of additional preshowering material has
an effect larger than an equivalent amount of compact absorbing material within the detector.

The plotted relative acceptance band depends on the running of α that we want to measure,
so its remarkably flat shape means that the data agree with the input α(t) in the Monte Carlo.
To make this clear we have also plotted the prediction for zero running as the hatched bands.
The highly significant “eyebrow” shape of the zero-running acceptance bands and their clear
separation from the flat Standard Model bands is a graphic representation of the sensitivity of
our measurement.

The run-away anchors in the deepest layers considered are consistent with the eyebrows, how-
ever, and show that the effects of the preshowering material for these deep layers, particularly
on the Left side, would give an apparent shape consistent with zero running. As mentioned
previously this is equivalent to biases of about 70 µm in the middle of the acceptance.

6 Finding safe anchors for the measurement

In order to see more directly the effect of anchoring imperfections on the fitted slope b, we have
made a series of test fits for each choice of anchoring layer. The fits are simple χ2 fits of the
ratio of data to Monte Carlo events observed in each bin to the two coefficients of Equation (7).
The Monte Carlo in this case assumes a constant coupling α(t) ≡ α0. Since anchoring problems
may manifest themselves either as increased fluctuations from bin to bin, or as broader, more
dangerous, systematic effects highly correlated between nearby bins, we pursue two lines of
investigation.

In the first we divide the radial distribution into the maximum number of bins: at each layer
a bin corresponds to one of the 24 pads in the fiducial region. Since the assessed systematic
errors are somewhat correlated from bin to bin, we consider only statistical errors, which are
in any case dominant. We focus on the difference in χ2 between the anchored and unanchored
distributions, which is shown in Fig. 7 as a function of the anchoring layer. The results are
shown separately for the two sides, and for the two homogeneous data combinations, 1993-94
and 1995. It is apparent that beyond layer 7 X0 the χ2 becomes progressively worse. This
agrees with the run-away of the anchors in deep layers which was shown in Fig. 6. In contrast,
the anchoring procedure appears stable in layers 1-6 X0.

Fig. 8 gives an illustration for the combination of all data, anchored at layer 4 X0. The fit
χ2 is 41.3/22 for the Right side and 133.2/22 for the Left side after the anchoring correction.
The fit quality is much worse for the Left side as is apparent from the greater dispersion of
the points. The anchoring procedure improves the χ2 for the Right side but not for the Left:
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unanchored distributions have χ2 = 47.9/22 and 124.6/22 respectively. Allowing for the known
anchoring systematic errors, as explained in Section 7.1, a good χ2 is obtained for the Right
side distribution, while the χ2 on the Left is still too large.

In the second study, we focus on broader systematic effects which have a direct impact on
the measured running. Here we optimise the number of bins for extraction of the slope b, as
specified in Table 1 (for layer 4 X0). This binning is more consistent with the small number of
parameters we wish to extract. The bin width grows with increasing radius to compensate the
diminishing statistics, and any noise associated with fluctuations at the suppressed intermediate
bin boundaries, which we tested in our first study, is reduced. Here, in addition to the statistical
errors, we also include the systematic errors of the anchoring procedure, determined as described
in Section 7.1. The fitted values of b for each layer are shown in Fig. 9. In each case the band
shows the result obtained from the unanchored radial distribution, where the width corresponds
to the statistical error. Unlike the anchored points, the unanchored results are independent of
depth, and the small shifts only arise from the rebinning of the distribution in each layer. By
applying the anchoring corrections the slope b does not change more than its statistical error
in layers 1-6 X0 and then shows a steady decrease with increasing depth in the calorimeters.
Layer 0 X0 shows a strong deviation from the unanchored result, in the opposite sense. For
1993-94 data the onset of deviations on the Left side precedes that on the Right by almost
exactly one layer, consistent with Fig. 6, due to the presence of the extra preshowering material
of the microvertex cables. In the 1995 data the observed deviations are similar on the two sides,
reflecting the fact that the preshowering material is then symmetric.

The anchored slope is remarkably flat for the broad region covering layers 1-6 X0 in the 1993-94
Right data. Here the individual results are consistent within the assigned systematic errors. For
the other datasets the values of the anchored slope in layers 1-6 X0 are distributed within twice
the assigned systematic errors. Similarly the difference between the individual values of the
anchored and unanchored slopes is within twice the assigned systematic error in each case. The
Left side appears to exhibit a pattern of deviations consistent with a residual depth-dependent
effect, particularly in the more statistically significant 1993-94 data. Due to the back-to-back
nature of Bhabha events, the two sides do not contribute independent statistical information.
We therefore choose to derive our final results from the Right side alone. Even though in
1995 the Right data are affected by extra preshowering material to an extent similar to the
1993-94 Left data, we consider that the gain of statistical precision in using these independent
data outweighs the risk of any potential increase in systematic error. Possible unaccounted
systematic errors related to the preshowering material are estimated in section 7.2. We also
choose the anchors in layer 4 X0 to correct our final results, since this layer lies in the centre of
the safe region, where the anchoring procedure is valid.

7 Systematic uncertainties

Having discussed how we ensure that our anchoring corrections are chosen from a safe region
of the detector, we now quantify the residual errors we attribute to these anchors, as well as all
other systematic errors we identify as affecting the measurement. The analysis of these errors
closely follows their treatment in the SiW luminosity analysis [15]. The discussion here focuses
on those considerations specific to the current measurement, and quantifies their effect, δb, on
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the extracted value of b. The systematic uncertainties are grouped into classes and discussed
in detail below.

7.1 Anchoring errors

This error class includes all the uncertainties connected with the anchoring procedure described
in Section 5. Biases on the radial coordinate can directly affect the shape of the t distribution.
In particular a bias on the reconstructed position in the central part of the acceptance, behind
the preshowering material, can produce a significant error. As mentioned in Section 2, a bias
in the central region of 70 µm would double the expected apparent running or reduce it to zero
depending on the sign of the bias.

Shifts in the anchors can arise either through the measured value of Roff or through the deter-
mination of the pad boundary bias, δRRφ. The measurement of Roff is affected by pad gain
fluctuations and departures from the Gaussian model used for fitting the pad boundary im-
age. A global uncertainty in the pad boundary bias δRRφ has negligible effect on the current
measurement, but uncertainty in its radial dependence must be considered.

The observed Roff is affected by fluctuations in the individual pad gains. We have checked
these effects directly on data, by studying Roff for each of the 32 azimuthal divisions of the
calorimeters. The size of the extra azimuthal variations, after allowing for the statistical and
the metrology fluctuations, is taken as the systematic uncertainty due to pad gain variations.
We assign the statistically expected shift in the mean (Roff)extra

RMS/
√

32 as a systematic error in
the anchors. This is a genuine uncorrelated error as a function of radius, estimated to contribute
δb = 32(30) × 10−5 for the 1993-94 (1995) data.

Another error component uncorrelated with radius is the statistical error of the anchors, deter-
mined from the fits of the pad boundary images. This gives a further δb = 10(20) × 10−5 for
the 1993-94 (1995) data.

Fig. 3 shows that a Gaussian resolution does not perfectly describe the tails of the pad boundary
image. To the extent that this image maintains an odd symmetry about the apparent pad
boundary, its non-Gaussian behaviour does not affect the determination of Roff , as can be seen
from the close agreement of the data points and the fitted curve near the pad boundary. We
have also considered a model in which the apparent pad boundary is taken as the median of
the observed resolution function. The shift in the slope which is obtained with this alternative
method is taken as an error. In the safe region of the detector it is very small, δb = 2(12)×10−5

for 1993-94 (1995) data. In the deeper layers of the detector, however, this error source becomes
significant, and may be underestimated. In fact we suspect that this effect may contribute to
the observed run-away of the anchors at large depths.

The determination of the pad boundary bias in the test beam was carried out at a radial
position close to the inner acceptance cut to provide optimal information for the luminosity
determination. In this analysis we have a greater dependence on knowing the pad boundary
bias throughout the detector. The geometrical bias due to R-φ pads is expected to scale as
1/R, thus decreasing at a greater radius of pad curvature. Therefore we have scaled the bias
estimated using the test beam results, but assign an additional systematic error equal to 50%
of the expected bias to account for possible deviations from this behaviour. We have estimated

17



conservatively the effect of this additional error, by shifting in a correlated manner all the
anchors by this error and taking the resulting variation in the slope. This is found to be
δb = 25(32) × 10−5 for the 1993-94 (1995) data.

Further errors on the determination of δRRφ have been estimated for the worst case of a bias
anticorrelated between the inner and the outer radius. Under this conservative hypothesis, the
uncertainty on the shower width dependence of the pad boundary bias may contribute a shift
of δb = 11 × 10−5, common to all the datasets. The uncertainty on the input apparent width
σa may shift the slope by 10(19) × 10−5 for the 1993-94 (1995) data.

All these error contributions have been summed in quadrature, giving finally a total anchoring
error on the slope b of 45(52) × 10−5 for the 1993-94 (1995) data. This corresponds to an
effective anchoring error of about 4 µm.

7.2 Preshowering material

To cover in a conservative way possible effects of the preshowering material we made a few
direct tests using the data. The amount of preshowering material is maximum in the middle of
the accepted radial range, as is reflected in the σa distribution shown in Fig. 5. We have thus
defined two regions:

• clean region, R ≤ 8.2 cm and R ≥ 11.7 cm, corresponding to the first 4 pads starting
from the inner radial cut and the last 6 pads close to the outer cut;

• obscured region, 8.2 < R < 11.7 cm, corresponding to the central 14 pads.

The fitted slopes determined separately in the two regions and in the full acceptance are given
in Table 2. We see that the results obtained in the clean region are quite close to the results
of the fit over the full acceptance. Moreover the independent values obtained in the obscured
region are consistent within the statistical errors. It is natural to expect a possible extra pad
boundary bias in the obscured region, particularly on the Left side. We have checked for its
presence by introducing a new parameter x in the fit, related to this assumed extra bias, using
two alternative models:

• Box-model, a naive choice assuming a constant extra bias within the obscured region and
no extra bias in the clean region. Here x is the constant extra bias.

• W-model, the extra bias δRextra is assumed to follow the pattern of the apparent shower
width σa versus R:

δRextra = x
σa(R) − σa(Rmin)

σmax − σa(Rmin)
(15)

where Rmin is the inner acceptance cut (where σa is minimum) and σmax is the maximum
value of σa, which is reached near the centre of the detector (R ≈ 10.2 cm). Therefore
δRextra = x when σa(R) = σmax.
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No evidence for an extra bias is found under either of the two hypotheses. We take the statistical
sensitivity of the check as a systematic uncertainty, quantified as the additional contribution to
the error on the slope generated by allowing the possibility that such an extra bias might exist.
We obtain 30(53) × 10−5 for the Right (Left) side in 1993-94 data and 87(94) × 10−5 for the
Right (Left) side in 1995 data. Notice that such uncertainties cover the observed shifts between
fits in the restricted clean region and in the full acceptance in each of the various cases.

7.3 Position resolution

The radial resolution at pad boundaries in the clean acceptance near the inner edge of the
detector has been measured using the test beam to be 130 µm. The apparent resolution at
the outer edge and in the central portion of the detector, behind the bulk of the preshowering
material, is degraded by a factor of 2 to 2.5, according to the pattern of Fig. 5. The Monte
Carlo simulation includes a radial dependence accounting for this variation. The impact of any
unaccounted degradation of the radial resolution as a function of radius is tiny. For example,
to get an effect the same size as the running, the resolution behind the material would have to
be wrong by 2 mm. We conservatively assessed the uncertainty related to the radial resolution
by dividing the acceptance into two radial bins and calculating the full effect of the resolution
flow on the slope. It amounts to 15(25) × 10−5 for 1993-94 (1995) data. The contribution of
the resolution flow across the acollinearity cuts is negligible in comparison, amounting to less
than 5 × 10−5 in all cases.

The resolution of the reconstructed azimuthal coordinate is not critical because of the cylindrical
symmetry of the detector. It only enters through the cuts on the acoplanarity distribution as a
resolution flow effect, which is taken into account by the detector simulation. Radial variation
of the azimuthal resolution and unaccounted non-Gaussian tails give uncertainties on the slope
smaller than 3 × 10−5 and have been neglected.

7.4 Acollinearity bias

In contrast to the radial distribution, the acollinearity distribution, with the selection cut
|∆R| ≤ 2.5 cm, is not corrected for radial biases. It is therefore subject to biases of the order of
the anchors themselves. In the worst case there could be a first order effect causing a net gain
or loss of events at both the positive and the negative ∆R cut. This is conservatively estimated
by considering a bias with absolute value ∆Rbias = 30 µm, which is the maximum reached by
the anchors. This corresponds to an uncertainty on the slope of 9 × 10−5.

7.5 Metrology

The detector geometry was carefully determined and monitored for the luminosity measurement
[15]. The most crucial quantity in that analysis was the inner radius of the calorimeters, since
the internal geometry of the Si wafers is inherently excellent. This analysis is much less sensitive
to the absolute radial scale, and it would require a radial shift of about 0.5 mm to mimic the
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expected α running. Even without averaging over the measurements of the two sides, the inner
radii are known with a precision of 7 µm, which gives an error on the slope of only 12 × 10−5.

In operating conditions thermal effects also contributed variations to the nominal radial di-
mensions of the detector on the order of 2-10 µm. These were calculated independently for
each data set, according to the average temperature measured by thermistors located on each
detector layer. Such thermal effects give contributions to the slope of 3-13 × 10−5, which have
been considered correlated between all the data samples.

This analysis is insensitive to longitudinal metrology errors. In fact an error in the longitudinal
separation between the Right and Left calorimeters would be equivalent to a shift in the z
position of the interaction vertex which has no effect on the slope. Also the inter-layer separation
gives negligible uncertainties: for a change of 100 µm in the spacing between layers, the effect
on the slope is about 1 × 10−5 for all layers considered (1-10 X0).

7.6 Beam parameters

The geometry of the colliding beams with respect to the detector can have quite important
effects on the apparent slope. The expected α running has an effect comparable to an uncor-
rected transverse offset of the beams of 4 mm or a beam angular divergence of 1.4 mrad. These
values are much larger than those we experienced. Moreover we were able to determine such
parameters from the data.

Variations in the beam parameters modify the geometric acceptance of the definition cuts in
a manner which can be adequately calculated analytically by assuming a simple 1/θ3 angular
distribution. The effect of the isolation cuts is less tractable analytically, but since they con-
siderably decrease the variations calculated from the acceptance cuts alone, their neglect yields
a conservative estimate of the uncertainties. The effects on the slope b may be estimated with
sufficient precision by dividing the radial acceptance into two bins.

The definition cuts are sensitive only to the sum of the transverse beam offset and the beam
tilt. The transverse beam offset is measured run-by-run with a precision better than 10 µm and
gives a negligible uncertainty on the fitted slope. The beam tilt is therefore the most important
effect. Its two components are determined run-by-run as the difference of the eccentricities of
the unscattered beams as they pass through the bore of each calorimeter. These eccentricities
are measured by the azimuthal modulation of the Bhabha intensity, and the statistical accuracy
with which they can be determined is 200-300 µm for typical runs. For the nine data sets the
beam tilt contributes 2-9 × 10−5 to the uncertainty in the slope. These errors have been
conservatively taken twice: both correlated and uncorrelated. Although they are unlikely, we
have no way of measuring rapid tilt variations, on a time scale shorter than an individual run,
we have therefore taken as an additional uncertainty the slope variation corresponding to the
extreme hypothesis of setting the beam tilt to zero. This uncertainty ranges from 2 × 10−5

for the largest sample (94-b) to 32 × 10−5 in the worst case. We have taken such numbers as
uncorrelated errors, with an additional common correlated systematic error equal to 2 × 10−5.

The transverse beam size and divergence give effects similar to the radial resolution and can
be estimated, in an analogous way, from the related resolution flow. The full effect of the
beam size on the slope is about 1 × 10−5, and has been neglected. The uncertainty on the
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beam divergence, estimated by comparing two independent determinations, is about 100 µrad
for 1993-94 data and about 130 µrad for 1995 data. The resulting uncertainties on the slope
are 4×10−5 and 7×10−5 respectively. These errors have been conservatively taken twice: both
correlated and uncorrelated.

The longitudinal position of the beam spot has a constant effect on the radial acceptance so
gives no contribution to the slope. The same holds for the longitudinal size of the beam spot.

The uncertainties estimated analytically have been checked with the results of Monte Carlo
simulations where one parameter at a time can be varied. In this manner the isolation cuts are
included, at the price of some statistical limitation. The results are consistent.

7.7 Energy response

The essential problem here is how the preshowering material degrades the energy response and
causes events to be lost from the accepted sample. Uncertainties due to the energy response
have been assessed by varying the parameters in the detector simulation within the precision
to which they have been estimated from the data. They include the Gaussian width of the
energy response function, the exponential low-energy tail, the nonlinearity and the method
used to extrapolate the energy resolution to lower energies. We determined the variation in
the fitted slope in a conservative way, by dividing the radial acceptance into two bins and
then by changing in turn each parameter in the simulation of the outer bin, leaving unchanged
the parameters for the inner bin. Then we took the sum in quadrature of all the variations.
The dominant uncertainty is caused by the low-energy tail of the response function, which is
generated by events that shower very late in the detector, events not fully contained and events
with electrons and positrons that scatter in upstream material. The resulting uncertainty is
27 × 10−5.

7.8 Accidental background

Off-momentum electrons and positrons generated by beam-gas scattering generate the majority
of single showers observed in the luminometer. Accidental coincidences between background
clusters in the Right and Left calorimeters can occasionally produce events which are selected
as Bhabha scatterings, although in general these events are rejected by the minimum energy
cuts or fail the acollinearity cuts. This background was studied by special triggers including
random bunch crossings and delayed coincidences. The background fractions were found to
vary between 0.1 and 0.6 × 10−4 depending on the data set [15]. We have estimated the effect
on the slope by dividing the acceptance into two radial bins and assuming that the background
is concentrated in the inner bin. The radial distribution of background is indeed sharply peaked
at low radius. To account for the enlarged acceptance used in this analysis we increased the
background fractions by 50%, which covers the variations observed by studies of the background
distributions. The effect on the slope is a slight decrease of between 2 and 16× 10−5, for which
no correction has been applied. The full effect is taken as an uncertainty correlated between
the data samples.

The accidental overlap of a background cluster with a Bhabha event can also change the values

21



of reconstructed quantities, modifying the acceptance. This has been evaluated by incorpo-
rating the measured background into the detector simulation, by adding to BHLUMI events
background clusters with rates determined from random triggers. Likewise we have also com-
bined the measured background with data. In both cases the resulting shift in the slope is
smaller than 10−5 and has been neglected.

7.9 Physics biases in the fitted slope

The fit method used to determine the slope b has been studied on Monte Carlo samples.
The logarithmic t dependence expressed by Equation (7) is followed very well. Actually in
data we have no statistical sensitivity to the difference between a logarithmic and a simple
linear behaviour. However, the parameterization in Equation (7) has the advantage that the
logarithmic slope b is almost constant for small variations of the t range or the different centre-
of-mass energies which we have in data. The fit method has a small bias at off-peak energies,
due to effects of Z interference, of about δb = ±14×10−5, where the plus sign applies to energies
above the peak energy and the minus sign below. This bias has been corrected on each data
subsample, with negligible uncertainty. The final average would not suffer in any case from this
small effect, which cancels when averaged over the roughly equal samples above and below the
peak.

The reconstructed t has a small positive bias, due to initial-state radiation, with respect to the
exchanged four-momentum between the electron and positron line. From a study of BHLUMI
Monte Carlo events this bias is found to be almost zero at the inner acceptance cut, increasing
to about 0.1 GeV2 at the outer cut. This small variation of the t range has a negligible effect
on the slope b.

Our selection contains a small irreducible physics background from the process e+e− → γγ, for
which we apply a correction. Its cross section within our idealized acceptance is found to be
16.9 pb at 91.1 GeV using a Monte Carlo generator including O(α3) terms [22]. The correction
to the slope b is −18 × 10−5, practically constant with respect to our range of centre-of-mass
energies, with negligible uncertainty.

7.10 Summary of systematic errors

The dominant systematic errors are those related to anchoring and preshowering material,
described in Sections 7.1 and 7.2.

The experimental systematic uncertainties are summarized in Table 3, where the nine data
samples are labelled as in [15]. The final experimental error correlation matrix (including the
statistical errors) is given in Table 4. The correlations reach at most 10%. The classification
of the detailed sources of error into correlated and uncorrelated components given in Table 3
does not reveal the complete pattern of correlations embodied in the full correlation matrix. In
that table the errors classified as correlated are fully correlated between all data samples, while
some classified as uncorrelated are actually correlated within a given year, but uncorrelated
between years.
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8 Theoretical uncertainties

It is important to assess the theoretical uncertainties associated with our reference cross section
calculated by the BHLUMI Monte Carlo. In fact a reliable determination of the running
coupling constant from Equation (2) needs a precise knowledge of the radiative corrections.

The BHLUMI Monte Carlo is a multiphoton exponentiated generator for small-angle Bhabha
scattering. Its matrix element includes complete O(α) and O(α2L2) photonic corrections.
Higher order contributions are partially included by virtue of the exponentiation. The theoreti-
cal uncertainty in the BHLUMI calculation has been studied extensively for the event selections
of the LEP experiments. The fractional theoretical error is 6.1 × 10−4 for the integrated cross
section at LEP 1 [17, 23] which was relevant for the determination of the luminosity. Alter-
native existing calculations have been widely cross-checked with BHLUMI [17]. Moreover the
extensive comparisons between data and the predictions of the Monte Carlo by the four LEP
collaborations decrease the chances that it contains significant residual technical imperfections.

We also use two other Monte Carlo generators which are included in the same BHLUMI package.
OLDBIS [24, 25] is an exact O(α) calculation, based on a Monte Carlo program written by an
independent group. LUMLOG [19, 26] implements a Leading-Log calculation up to O(α3L3),
based on a structure function approach, assuming purely collinear radiation. The BHLUMI
package gives access to many intermediate weights which compose the final calculations, so
that we have also checked several different approximations.

For the purpose of assessing the theoretical uncertainties, the OPAL experimental selection
has been described by a slightly modified version of the code used in [17] and included in the
BHLUMI package (subroutine TRIOSIW). Events have been generated within a safely enlarged
angular region to protect against loss of visible events. Smearing effects are neglected and
an ideal beam geometry is assumed. Nearby particles are combined by a clustering algorithm
which has a window matched to the experimental resolution. The energy is defined by summing
all the particles inside the isolation cuts in each calorimeter. The position variables R and φ
are defined as the coordinates of the highest energy particle reconstructed on each side. We
have applied all the isolation cuts listed in Section 4 to these reconstructed variables. The
size of the window used by the clustering algorithm (in R and φ) has been varied over a large
range to verify the stability of the result. As further checks we have used alternative selections,
for example SICAL (following the nomenclature of [17]) which mostly differs in its lack of
acollinearity cuts, and BARE, a non-calorimetric selection.

The differential cross section obtained at different perturbative orders is shown in Fig. 10
normalized to the reference BHLUMI cross section. Here vacuum polarization, Z-exchange
interference and s-channel photon interference have been switched off. Radiative corrections
reduce the Born cross section by about 5-15%, depending on the polar angle. Most of the
reduction is obtained by the leading O(αL) corrections, which give a result uniformly about 1%
above the reference. When the complete O(α) corrections are considered, including subleading
terms, the result lies below, generally within 1% of the reference but with stronger edge effects.
The most precise alternative calculation shown in Fig. 10 is the sum of the complete O(α) given
by OLDBIS and the leading higher orders (O(α2L2) and O(α3L3)) given by LUMLOG. This
combination was previously used in [17], and is termed OLDBIS+LUMLOG in what follows.

Examination of the canonical coefficients [27] indicates that for a calorimetric detector accep-
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tance such as ours the O(α2L) and O(α3L3) terms dominate the approximately calculated
portion of the complete BHLUMI cross section.

The effect of O(α3L3) terms on the slope b measured within our selection can be directly
calculated using LUMLOG and is found to be small, (−10 ± 9) × 10−5. Moreover such terms
are known to be almost completely accounted for by the exponentiation in BHLUMI.

The magnitude of the O(α2L) corrections can be roughly estimated from the product of the
leading O(αL) and the subleading O(α) corrections. This is about 0.5 × 10−3 times the Born
cross section when integrated over the entire acceptance. The effect on the slope b is estimated
by calculating this product for the inner and outer halves of the acceptance separately and then
taking the difference. In this way we obtain δb = 20 × 10−5, which is expected to be correct
within a factor of about 2.

A better test of the O(α2L) corrections, which also takes into account the limited technical pre-
cision of the Monte Carlos, can be obtained by comparing the reference O(α2L2) exponentiated
calculation of BHLUMI to the combination of the two independent Monte Carlos, OLDBIS
and LUMLOG. The OLDBIS+LUMLOG combination is shown together with other precise
calculations at our disposal in Fig. 11. To quantify possible deviations from the expected t
shape, we fit the ratios of alternative calculations to the reference BHLUMI with a linear t
dependence. The effect, δb, on our measured slope b is then estimated by accounting for the
factor |t2 − t1|/ ln(t2/t1) = 3.52 which converts from a linear to a logarithmic t range. We
obtain:

δb [(OLDBIS + LUMLOG)/BHLUMI] = (−38 ± 20) × 10−5

δb [Exp.O(α)/BHLUMI] = (+22 ± 16) × 10−5

δb [Unexp.O(α2L2)/BHLUMI] = (−11 ± 61) × 10−5 .

The ratio of the exponentiated O(α) calculation to the full BHLUMI is quite flat as a func-
tion of t, with a clear normalization shift of 0.2%, which is however irrelevant to our analysis.
The unexponentiated O(α2L2) also seems flat, albeit with much larger statistical error bars.
The OLDBIS+LUMLOG combination is rather flat with somewhat larger than expected fluc-
tuations. The extreme points on either end show downward deviations with respect to the
reference BHLUMI, but removing them does not change the fit significantly. We take the shift
δb determined from the (OLDBIS + LUMLOG)/BHLUMI fit as the uncertainty due to missing
higher orders, which are mainly O(α2L), plus the technical precision of the calculations. This
amounts to 38× 10−5, which is in agreement with our cruder estimate obtained from the prod-
uct of the leading O(αL) and the subleading O(α) terms, above. This estimate is also seen
to be in line with the differences observed for the exponentiated O(α) and the unexponenti-
ated O(α2L2) calculations. Changing the size of the window used by the clustering algorithm
produces negligible variations. Similar results are also obtained for the SICAL selection.

The interference with the Z-exchange amplitude in the s-channel is a small correction, desig-
nated δZ in Equation (2), which is not factorized with respect to the main contribution and the
running coupling constant. It is energy dependent, vanishing at

√
s = mZ and changing sign

across the Z pole. In BHLUMI it is calculated up to exact O(α) photonic corrections, which
can also be exponentiated [28]. Vacuum polarization can be included. Event samples have
been generated at three different energies: the Z-peak energy (

√
s = 91.1 GeV) and energies

offset by ±2 GeV. At each energy we consider independently the shifts in the slope b produced
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by switching off the exponentiation or the vacuum polarization for the calculated interference
term δZ, and then add these shifts in quadrature. The maximum value of 30 × 10−5, which is
obtained at the peak, is taken as the uncertainty due to Z interference.

Concerning the contribution of the vacuum polarization to the δZ term, this subtle effect could
in principle perturb the asserted cleanliness of the measurement. However such an effect is
vanishingly small at the peak energy ( δb = −6×10−5 at

√
s = 91.1 GeV) and has approximately

equal and opposite values smaller than ±20×10−5 above and below the pole. The overall effect
is therefore negligible.

BHLUMI does not include diagrams with extra light lepton pairs (e+e−, µ+µ−). Their con-
tribution was calculated explicitly for the OPAL selection, giving a fractional correction of
(−4.4± 1.4)× 10−4 [29] on the integrated cross section. The leading order contribution can be
checked with LUMLOG, and gives effects on the slope b below 11×10−5 with the OPAL or the
SICAL data selections.

The estimated theoretical uncertainties are summarized in Table 5. Their quadratic sum is
50 × 10−5 and will be added to the experimental errors.

9 Results

The final results are based on the radial distribution observed in the Right side calorimeter,
corrected by the anchoring procedure, as explained in Sections 5-6. The correction employs the
anchors determined in layer 4 X0, which is in the middle of the safe region. Within this region
the anchored and unanchored results have been shown to be in fairly good agreement. The
decision to use only the Right calorimeter and to use anchored coordinates, as well as the choice
of the anchoring layer, are aimed to achieve our best experimental accuracy and to minimize
possible unassessed systematic errors. Consistent results, within the quoted final systematic
error, are in fact obtained if any of these choices are changed.

The radial distribution is binned as specified in Table 1. The numbers of data and Monte Carlo
events in each bin for the largest subsample (94b) are reported in Table 6. Note that here
the Monte Carlo assumes α(t) ≡ α0. The bin-by-bin acceptance corrections, obtained from
Equations (11) and (12) by inserting the estimated radial biases at the relevant bin boundaries,
are also given.

The ratio of data to Monte Carlo is fitted with the logarithmic t-dependence of Equation (7)
separately for each dataset and the results are reported in Table 7. Both the dominant statistical
errors and the experimental systematic errors, which are determined as described in Section 7,
are shown. The small corrections for the irreducible background and Z interference have been
applied to the quoted b values. The nine subsamples (labelled as in [15]) give consistent results,
with χ2/d.o.f = 6.9/8 for the average b considering only statistical errors. We have checked for
a possible residual energy dependence of the measured slope b, which might be observed if the
calculated Z interference contribution disagreed with the data. Within the statistical errors of
the data we find no such energy dependence.

We combine the results of the nine subsamples using the error correlation matrix in Table 4,
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obtaining:
b = (726 ± 96 ± 70 ± 50) × 10−5

where here, and also in the results quoted below, the first error is statistical, the second is
the experimental systematic and the third is the theoretical uncertainty, discussed in section 8.
The total significance of the measurement compared to the hypothesis of b = 0 is 5.6 σ.

The result for the combined data sample is illustrated in Fig. 12. The error bars shown are
statistical only, since many of the systematic errors are estimated only for the fitted slope in
the individual subsamples and not bin-by-bin. The logarithmic fit to Equation (7) describes
the data very well, χ2/d.o.f = 1.9/3, although a simple linear fit would also be adequate, giving
χ2/d.o.f = 2.7/3. The data are clearly incompatible with the hypothesis of a fixed coupling.
The fitted logarithmic dependence agrees well with the full Standard Model prediction including
both leptonic and hadronic contributions, with the hadronic part obtained by the Burkhardt-
Pietrzyk parameterization [3]. Older parameterizations of the hadronic component, like [2]
or [20], would be indistinguishable from the curve shown. Our result is consistent with the
similar measurement by L3 [13]. If the latter is expressed as a slope according to (8), it gives
b(L3) = (1044 ± 348) × 10−5, where the error is dominated by experimental systematics.

Our measurement of the effective slope gives the variation of the coupling α(t) from Equa-
tion (8):

∆α(−6.07 GeV2) − ∆α(−1.81 GeV2) = (440 ± 58 ± 43 ± 30) × 10−5 .

This is currently the most significant direct measurement where the running α(t) is probed
differentially within the measured t range. The result is in good agreement with the Standard
Model prediction, which gives δ (∆α) = (460 ± 8) × 10−5 for the same t interval. Here the
error has been calculated by assuming the uncertainties on ∆αhad at t = −1.81 GeV2 and
t = −6.07 GeV2 (of 2.5 % and 2.7 % respectively [30]), which arise from the hadronic component,
are fully correlated. If the errors on ∆αhad at the extreme values of t are assumed to be
uncorrelated, the error would increase to 23 × 10−5.

The absolute value of ∆α in our range of t is expected to be dominated by e+e− pairs, with the
relevant fermion species contributing in the approximate proportions: e : µ : hadron ≃ 4 : 1 : 2.
Our measurement is sensitive, however, not to the absolute value of ∆α, but only to its variation
within our t range. Contributions to the slope b in this range are predicted to be in the
proportion: e : µ : hadron ≃ 1 : 1 : 2.5. Fig. 12 shows these expectations graphically. We can
discard the hypothesis of running due only to virtual e+e− pairs with a significance of 4.4 σ.

The data are also incompatible with the hypothesis of running due only to leptons. If we
subtract the precisely calculable theoretical prediction for all leptonic contributions, δ(∆αlep) =
202 × 10−5, from the measured result, we can determine the hadronic contribution as:

∆αhad(−6.07 GeV2) − ∆αhad(−1.81 GeV2) = (237 ± 58 ± 43 ± 30) × 10−5 .

This differs from zero by 3.0 σ, considering all the errors. In comparison to other existing direct
measurements of the QED coupling, our result has sufficient sensitivity to expose clearly the
hadronic contribution to the observed variation of α as a function of the momentum transfer.
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10 Conclusions

We have measured the scale dependence of the effective QED coupling α(t) from the angu-
lar distribution of small-angle Bhabha scattering using the precise OPAL Silicon-Tungsten
calorimeters. Despite the narrow accessible t range, the method has high sensitivity due to the
large statistics and excellent purity of the data sample. The challenging aspect of the analysis
is controlling the residual bias in the reconstructed radial coordinate of Bhabha electrons in
the detector to a level below ≈10 µm uniformly throughout the acceptance. From a theoretical
point of view the measurement is almost ideal. For this kinematic range the process is almost
purely QED, Z interference is very small and the dominant diagram is t-channel single-photon
exchange, while s-channel photon exchange is negligible. Due to its utility in determining the
LEP luminosity, small-angle Bhabha scattering is one of the most precisely calculated pro-
cesses at these energies. We verified that there is no significant disturbance from theoretical
uncertainties.

We determined the effective slope of the Bhabha momentum transfer distribution which is
simply related to the average derivative of ∆α as a function of ln t in the range 2 GeV2 ≤ −t ≤
6 GeV2. The observed t-spectrum is in good agreement with Standard Model predictions. We
find:

∆α(−6.07 GeV2) − ∆α(−1.81 GeV2) = (440 ± 58 ± 43 ± 30) × 10−5 ,

where the first error is statistical, the second is the experimental systematic and the third is
the theoretical uncertainty.

This measurement is one of only a very few experimental tests of the running of α(t) in the
space-like region, where ∆α has a smooth behaviour. We obtain the strongest direct evidence
for the running of the QED coupling ever achieved differentially in a single experiment, with
a significance above 5 σ. Moreover we report clear experimental evidence for the hadronic
contribution to the running in the space-like region, with a significance of 3 σ.
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Bin Rin Rout −tin −tout < −t >
(cm) (GeV2)

1 7.2584 8.2665 1.81 2.35 2.05
2 8.2665 9.2746 2.35 2.95 2.63
3 9.2746 10.7868 2.95 3.99 3.42
4 10.7868 11.7949 3.99 4.77 4.36
5 11.7949 13.3071 4.77 6.07 5.37

Table 1: Bin definitions for the radial distribution. The corresponding −t values are determined
assuming a reference energy

√
s = 91.2208 GeV.

Detector side - Radial range 1993-94 1995 All

Right - full acceptance 757 ± 109 470 ± 198 690 ± 95
Right - clean 739 ± 129 566 ± 236 699 ± 113
Right - obscured 778 ± 239 247 ± 436 655 ± 210

Left - full acceptance 685 ± 108 417 ± 198 623 ± 95
Left - clean 680 ± 129 417 ± 236 620 ± 113
Left - obscured 766 ± 239 414 ± 437 685 ± 210

Table 2: Fitted slope for the full, clean and obscured radial range of acceptance in units of
10−5, for homogeneous data subsamples and all data. Both the Right and the Left side results
are given. The errors are statistical only.
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Uncertainty 93 −2 93 pk 93 +2 94 a 94 b 94 c 95 −2 95 pk 95 +2

M.C. Statistics
uncorrelated 56. 56. 56. 56. 28. 103. 56. 56. 56.
correlated 0. 0. 0. 0. 0. 0. 0. 0. 0.

Anchoring
uncorrelated 10. 10. 10. 10. 10. 10. 29. 29. 29.
correlated 44. 44. 44. 44. 44. 44. 44. 44. 44.

Preshowering Material
uncorrelated 0. 0. 0. 0. 0. 0. 81. 81. 81.
correlated 30. 30. 30. 30. 30. 30. 30. 30. 30.

Radial Resolution
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 15. 15. 15. 15. 15. 15. 25. 25. 25.

Acollinearity Bias
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 9. 9. 9. 9. 9. 9. 9. 9. 9.

Radial Metrology
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 12. 12. 12. 12. 12. 12. 12. 12. 12.

Radial Thermal
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 3. 3. 3. 4. 4. 4. 12. 12. 12.

Beam Parameters
uncorrelated 19. 31. 20. 8. 5. 12. 12. 25. 33.
correlated 7. 7. 7. 7. 5. 9. 8. 8. 8.

Energy
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 27. 27. 27. 27. 27. 27. 27. 27. 27.

Background
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 16. 12. 7. 4. 2. 5. 4. 2. 2.

Sum
uncorrelated 60. 65. 61. 58. 30. 104. 104. 106. 108.
correlated 66. 65. 64. 64. 64. 65. 68. 68. 68.

Total Systematic Error 89. 92. 89. 86. 71. 122. 124. 126. 128.

Table 3: Summary of the experimental systematic uncertainties on the measurement of the
effective slope b for the nine data sets on the Right side. They are broken down into the
components correlated and uncorrelated among the data sets. All errors are in units of 10−5.

Sample 93 −2 93 pk 93 +2 94 a 94 b 94 c 95 −2 95 pk 95 +2

93 −2 1.00 0.04 0.04 0.04 0.07 0.02 0.04 0.03 0.04
93 pk 0.04 1.00 0.04 0.04 0.07 0.02 0.04 0.03 0.04
93 +2 0.04 0.04 1.00 0.04 0.07 0.02 0.04 0.03 0.04
94 a 0.04 0.04 0.04 1.00 0.07 0.02 0.04 0.03 0.04
94 b 0.07 0.07 0.07 0.07 1.00 0.04 0.07 0.06 0.07
94 c 0.02 0.02 0.02 0.02 0.04 1.00 0.02 0.02 0.02
95 −2 0.04 0.04 0.04 0.04 0.07 0.02 1.00 0.08 0.10
95 pk 0.03 0.03 0.03 0.03 0.06 0.02 0.08 1.00 0.08
95 +2 0.04 0.04 0.04 0.04 0.07 0.02 0.10 0.08 1.00

Table 4: The experimental correlation matrix for the nine data sets, considering both the
statistical and the systematic errors.
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Error source δb (×10−5)

Photonic corrections 38.
Z interference 30.
Light pairs 11.
Total 50.

Table 5: Estimated theoretical uncertainties on the effective slope b.

Ratio f = Ndata/N
0
MC

Bin Ndata N0
MC anchoring corrected

correction value
1 1310496 1314605 −0.00019 0.99668 ± 0.00087
2 927931 930603 +0.00082 0.99795 ± 0.00104
3 941500 938601 −0.00181 1.00128 ± 0.00103
4 431654 430355 +0.00116 1.00418 ± 0.00153
5 458295 455712 −0.00032 1.00534 ± 0.00149

Table 6: Detailed inputs to the fit for the largest data subsample (94b). Each row corresponds
to a radial bin and gives the number of data events and the number expected from Monte
Carlo (normalized to the total number of data events), the applied anchoring correction, and
the corrected ratio with its statistical error.

Dataset
√

s Number slope b
(GeV) of events (×10−5)

93 −2 89.4510 879549 662 ± 326 ± 89
93 pk 91.2228 894206 670 ± 324 ± 92
93 +2 93.0362 852106 640 ± 332 ± 89
94 a 91.2354 885606 559 ± 326 ± 86
94 b 91.2170 4069876 936 ± 152 ± 71
94 c 91.2436 288813 62 ± 570 ± 122
95 −2 89.4416 890248 839 ± 325 ± 124
95 pk 91.2860 581111 727 ± 402 ± 126
95 +2 92.9720 885837 156 ± 325 ± 128

Average 91.2208 10227352 726 ± 96 ± 70
χ2/d.o.f. (stat.) 6.9/8
χ2/d.o.f. (stat.+syst.) 6.5/8

Table 7: Fit result for each data subsample and average. Each row gives the average centre-of-
mass energy, the number of events and the fitted slope b, with the first error statistical and the
second the full experimental systematic. The average is obtained by using the error correlation
matrix given in Table 4. The χ2 of the average is given both considering statistical errors only
and for the full error matrix.
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Figure 1: The calculated thickness of material traversed by particles originating at the inter-
action point as a function of calorimeter radius for the 1993-94 detector configuration. The
solid curve corresponds to the Left, the dotted curve to the Right side. The larger amount of
material on the Left is due to cables from the OPAL microvertex detector. The arrows show
the location of the acceptance definition cuts on shower radius.
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Figure 2: Radial distributions after the isolation cuts for the complete data statistics in the Left and Right calorimeters (mean√
s = 91.2208 GeV). The points show the data and the histogram the Monte Carlo prediction, assuming the expected running of α,

normalized to the same number of events. The lower plots show the ratio between data and Monte Carlo.
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Figure 3: Pad boundary images obtained for the Si layer at 4 X0 at three different radial posi-
tions corresponding to the inner edge, the middle portion and the outer edge of the acceptance.
The solid curve shows the fitted function, whose parameters Roff and σa are given.
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Figure 4: The total net bias δR (anchor) as a function of radius for the Left and the Right
radial coordinate determined for the pad boundaries in the Si layer at 4 X0, for the combined
1993-94 data sample. The full error bars show the total error, the inner bars the statistical
component where this is larger than the size of the points.
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Figure 5: The apparent width σa as a function of radius determined from the anchoring pro-
cedure for the Si Layer at 4 X0 for homogeneous data subsamples. The errors are statistical
only.
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Figure 6: Study of the reconstructed radial coordinate. The shaded band shows the relative change in acceptance between data and
Monte Carlo as a function of the definition cut on the inner radius for the combined 1993-94 data sample. The width of the band shows
the (highly correlated) statistical errors. The solid points show the acceptance variation determined by the anchoring procedure in Si
layers from 1 X0 to 10 X0, with the total errors shown. Triangles and circles designate even and odd rings of radial pads respectively.
Within each group of points the arrow shows the location of the radial pad boundary in layer 7 X0, with deeper layers to the left and
shallower layers to the right. The anchor at R = 7.2 cm is fixed to lie at zero. The hatched band shows the prediction for zero running
(α(t) ≡ α0).
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Figure 7: Difference in χ2 (for 22 degrees of freedom) between the fits of anchored and unan-
chored radial distributions as a function of the anchoring layer for homogeneous data subsam-
ples. Only statistical errors are considered.
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Figure 8: Ratios of numbers of data and Monte Carlo events (with ∆α set to zero) for the
complete data statistics, for the Left and Right sides. Each point corresponds to a bin of one
radial pad. The solid triangles show the data corrected with anchors in layer 4 X0, the empty
circles the unanchored data (slightly shifted horizontally for clarity), with statistical errors in
both cases. The line shows the fit to the anchored data.
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Figure 9: Fitted values of b as a function of the anchoring layer for homogeneous data subsam-
ples. In each case the band shows the result obtained from the unanchored radial distribution,
where the width corresponds to the statistical error and the small shifts depend on the rebinning
of the distribution in each layer. The solid triangles show results from distributions corrected
by anchoring, with the error bars representing only the systematic errors.
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Figure 10: Differential cross section as a function of the polar scattering angle, in different
perturbative approximations normalized to the reference BHLUMI calculation, for the OPAL
selection. The reference BHLUMI (O(α2L2) exponentiated) is shown as the dashed horizontal
line at σ/σref = 1. Vacuum polarization, Z-interference and s-channel photon contributions are
switched off.

41



0.995

1

1.005

1.01

1 2 3 4 5 6 7
-t (GeV2)

σ/
σ re

f

OLDBIS +LUMLOG  O(α3 L3)

BHLUMI  O(α2 L2) unexp.

BHLUMI  O(α) exp.

OPAL selection
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Figure 12: |t| spectrum normalized to the BHLUMI theoretical prediction for a fixed coupling
(∆α = 0). The points show the combined OPAL data with statistical error bars. The solid
line is our fit. The horizontal line (Ratio=1) is the prediction if α were fixed. The dot-dashed
curve is the prediction of running α determined by vacuum polarization with only virtual e+e−

pairs, the dashed curve includes all charged lepton pairs and the dotted curve the full Standard
Model prediction, with both lepton and quark pairs.
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