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We study charge fluctuations within the statistical hadronization model. Considering both the
particle yield ratios and the charge fluctuations we show that it is possible to differentiate between
chemical equilibrium and non-equilibrium freeze-out conditions. As an example of the procedure
we show quantitatively how the relative yield ratio Λ/K− together with the normalized net charge
fluctuation v(Q) =

〈

∆Q2
〉

/ 〈Nch〉 constrain the chemical conditions at freeze-out. We also discuss
the influence of the limited detector acceptance on fluctuation measurements, and show how this
can be accounted for within a quantitative analysis.

PACS numbers: 25.75.-q,24.60.-k,24.10.Pa

I. INTRODUCTION

In relativistic heavy ion collisions a localized high en-
ergy density domain, a fireball, is created. The study
of the properties of this hot and dense matter is the
main objective of the experiments being conducted at
RHIC and as of 2007 at LHC. Event-by-event particle
fluctuations are the observables subject to intense cur-
rent theoretical [1, 2, 3, 4, 5, 6, 7, 8, 9], and experimen-
tal [10, 11, 12] interest. Fluctuation measurements are
important since they can be used: (i) as a consistency
check for existing models, e.g. within statistical parti-
cle production models [2, 3], (ii) as a way to search for
new physics, including QGP [4, 13, 14] (iii) as a test of
particle equilibration [2, 9].

The statistical hadronization model (SHM), intro-
duced by Fermi in 1950 [15, 16, 17], has been used exten-
sively in recent years in the study of strongly interacting
particle production. In this model, the properties of the
final state particles are determined by requiring that the
final state maximizes entropy given the physical proper-
ties of the fireball (energy, baryon content, etc.). When
the full spectrum of hadronic resonances is included [18],
the SHM turns into a quantitative model capable of de-
scribing in detail the abundances of all hadronic particles.

Fluctuations in conserved quantum numbers (such as
charge, baryon number, strangeness, or equivalently the
net multiplicities of up, down and strange quarks) can
be studied only in the Grand Canonical (GC) ensem-
ble, since in the micro-canonical and canonical ensembles
these quantities are fixed. We also mention here that fluc-
tuations of non-conserved observables, e.g. other hadron
multiplicities, differ for different ensembles even in the
thermodynamic limit [19, 20].

In this paper we will discuss the use of fluctuations
as a phenomenological tool within the framework of the

statistical model, and illustrate some issues pertinent in
analyzing fluctuations data. In section II we will mo-
tivate the choice of charge fluctuations as a useful ex-
perimental probe. After demonstrating, in section III,
how the statistical model implies a scaling between fluc-
tuations and yields, we show (section IV) that a mea-
surement of both particle yields and charge fluctuations
can distinguish between an equilibrium high temperature
statistical freeze-out from a super-cooled over-saturated
freeze-out from a high entropy phase. Finally, in sec-
tion V we discuss issues related to detector acceptance
which impact the fluctuation measurement even in a
boost-invariant azimuthally symmetric limit. We quanti-
tatively demonstrate how such limited acceptance effects
can be taken into account and the freeze-out temperature
and non-equilibrium parameters extracted from experi-
mental data.

II. GC OBSERVABLES

A study of GC SHM fluctuations of conserved quanti-
ties is of considerable interest at RHIC. Since the detec-
tors at RHIC (except for the PHOBOS detector) only see
small portions of the final phase space, using the grand-
canonical approach is justified in the following sense:
Provided the fireball is indeed locally thermalized, we
can take the experimentally observed source to be a sub-
system in contact with a larger reservoir.

The situation is of particular interest for reac-
tions at RHIC that exhibit a sizable central plateau
in the (pseudo-)rapidity spectrum, since a limited
(pseudo)rapidity acceptance window selects a suitable
subset of the source particles. Specifically, it can be
shown (sections [21]. The reasoning used there can be
generalized to Fermi-Dirac and Bose-Einstein statistics)
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that the rapidity spectrum of a boost invariant system
could be related to the multiplicity in a static GC sys-
tem with the same temperature and chemical potentials

〈dNi/dy〉b.i.

〈dNj/dy〉
b.i.

=
〈Ni〉GC

〈Nj〉GC

(1)

where i and j are species labels and the subscripts b.i.
and GC denote the boost invariant system and the grand
canonical system, respectively.

The derivation in [21] can be applied to fluctuations at
hadronization (before resonance decays) to show

〈

d∆N2
i /dy

〉

b.i.

〈dNj/dy〉
b.i.

=

〈

∆N2
i

〉

GC

〈Nj〉GC

(2)

where we denote the variance (fluctuation) of any quan-

tity X as
〈

∆X2
〉

=
〈

X2
〉

−〈X〉2.
Given this, SHM average yields and yield fluctuations

can be calculated by a textbook method [22], as per sec-
tion III.

When studying finite systems the consideration of fluc-
tuations in extensive quantities such as of particle yield
has to address also volume fluctuations when the volume
cannot be fixed by experimental conditions. In our case
volume fluctuations can arise due to initial reaction ef-
fects, impact parameter variations, as well as from fluc-
tuations due to dynamics of the expanding fireball. It
is difficult to arrive at a reliable description of all these
effects. Therefore it is important to select fluctuation
observables in which volume fluctuation effects are sub-
dominant. Among extensive quantities, the net charge
fluctuation stands out as it is relatively easy to measure
and can be shown to be nearly independent of the volume
fluctuations [1].

In light of the above considerations we concentrate our
effort on the following net charge fluctuation measure:

v(Q) ≡
〈

∆Q2
〉

/ 〈Nch〉 (3)

(where Nch = N+ +N−) proposed in the past as a probe
of the QGP formation [4]. First results for v(Q) are also
available from RHIC experiments [11, 12].

In the SHM, the charged particle multiplicity is given
by summing all final state (stable) charged particle mul-
tiplicities. These can be computed by adding the direct
yield and all resonance decay feed-downs. The total yield
of a stable particle α is

〈Nα〉total = 〈Nα〉GC +
∑

j 6=α

Bj→α〈Nj〉GC (4)

where j labels resonances. Bj→α is the probability
(branching ratio) for the decay products of j to include
α. The charged particle multiplicity is given by the sum
of all charged stable particles.

The net charge fluctuation is given by

〈

∆Q2
〉

GC
=

∑

i

q2
i

〈

∆N2
i

〉

GC
(5)

where qi is the particle charge and i labels all particles
before resonance decays since net charge is conserved [3].

To use Eq.(5) quantitatively, however, the experimen-
tal rapidity window must be large enough to encompass
all decay particles of the resonances, yet small enough for
the GC ensemble to maintain it’s validity. See section V
for a discussion of the validity of this assumption, and
how to incorporate deviations from it in realistic experi-
mental situations.

III. STATISTICAL HADRONIZATION

For a hadron with an energy Ep =
√

p2 + m2, the GC
partition function for each species is given by

lnZi = (∓)V gi

∫

d3p

(2π)3
ln

(

1 ± λie
−Ei/T

)

(6)

where gi is the degeneracy factor and the upper sign is for
bosons and the lower sign is for fermions. Here λi is the
particle fugacity, related to particle chemical potential
µi = T lnλi.

The yield average and fluctuation is then given by:

〈Ni〉GC =
∂ lnZi

∂λi
= giV

∫

4πp2dp

(2π)3
ni(Ep), (7)

〈

∆N2
i

〉

GC
=

∂2 lnZi

∂λ2
i

= giV

∫

4πp2dp

(2π)3
ni(Ep) (1 ∓ ni(Ep)) . (8)

and

ni(Ep) =
1

λ−1
i eEpβ ± 1

, (9)

We note that λi enters the partition function in Eq.(6).
Hence, the validity of Eqs.(7) and (8) depends on weather
Eq.(6) can be used as a generating function for the prob-
ability distribution of states. It is important to underline
this as in a dynamical system the value of λi is not de-
termined solely in terms of entropy maximization, but is
subject to chemical conditions prevailing in the system,
and here importantly, includes effects related to chemical
non-equilibrium. Where Eq. 6 represents a generating
function but the system is not in chemical equilibrium,
the fugacity λi, is not anymore a Lagrange multiplier but
a parameter characterizing the quantum number density.

In a scenario where freeze-out occurs as a break-up
of a chemically equilibrated hadron gas, the fugacity of
the hadron i is given by the product of the fugacities of
conserved quantum numbers.

λeq
i = λq−q

q λs−s
s λI3

I3
, λeq

i
= (λeq

i )−1, (10)

where q, q is the number of light anti-quarks and quarks,
respectively and s, s is the number of strange anti-quarks
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and quarks, respectively and I3 is the isospin. This for-
mula implies that the fugacity for the antiparticle is, in
full chemical equilibrium, the inverse of the fugacity for
the particle, and the fugacity for a hadron carrying van-
ishing conserved quantum numbers is 1.

In our approach, we do not assume that that the chem-
ical equilibrium is reached [23, 24]. Hence Eq.(10) no
longer applies. The deviation from chemical equilibrium
can be parametrized by a phase space occupancy factor
γq (for u, ū, d, d̄ in hadrons) and γs (for s and s̄). In this
chemical nonequilibrium case the fugacity becomes

λi = λeq
i γq+q

q γs+s
s (11)

where λeq
i is given by Eq.(10) (Note that γi = γi).

A system undergoing collective expansion is unlikely
to be in chemical equilibrium, since collective expansion
and cooling will make it impossible for endothermic and
exothermic reactions, or for creation and destruction re-
actions of a rare particle, to be balanced. However, since
inelastic collisions have in general a slower relaxation
time than elastic ones, an approximately perfect fluid can
still have γ 6= 1 (it’s evolution will be a non-trivial func-
tion of time, since γ does not commute with the Hamilto-
nian). Furthermore, light quark chemical nonequilibrium
is well motivated in a scenario where an entropy rich de-
confined state quickly hadronizes [28]. In this scenario,
mismatch of entropies between the two phases requires
γq > 1.

Despite the lack of equilibrium and entropy maximiza-
tion w.r.t. conserved quantum numbers, we will argue
that the Eqs. 8 and 7 apply in such a situation, with
γ s contributing to the chemical potential via Eq.(11).
The validity of Eq.(8) and (7) depend on the extent that
Eq.(6) represents a probability generating function for
the statistically hadronizing system. Within a statisti-
cal hadronization scenario where hadrons are formed in
proportion to their phase space weight given (not neces-
sarily equilibrated) densities [25], this is indeed the case
provided the dynamics behind γ does not generate addi-
tional, non-statistical fluctuations. For an instance where
the last issue is a concern, fluctuations of a quantum
number produced mostly in initial-state processes (such
as charm [26, 27]) will likely be dominated not by the
statistical hadronization contribution but to fluctuations
in initial abundance.

Given that in the considered model non-equilibrium
arises due to the rapid hadronization of the collectively
expanding system [28], and since the observable charged
particles are produced not in in the initial state but dur-
ing the final break-up of a locally thermalized system,
such non-statistical fluctuations should not be significant
for the observable we are considering. Similarly, as we
have argued in the previous section, initial-state volume
fluctuations give a negligible contribution to the observ-
able under consideration.

However, it is possible that additional sources of irre-
ducible two-particle correlations and fluctuations could
arise near a phase transition. These effects go beyond

the scope of this work. We will however argue that the
applicability of our scenario, and the absence of further
correlations can be tested by requiring that the same tem-
perature and γ s describe both the yields and the fluctu-
ations of all soft hadronic observables. As we will show,
this is a very stringent requirement. If it turns out that
a single set of T , λeq and γq and γs is capable of de-
scribing all yields and fluctuations, then it certainly is
a strong indication that Eq.(6) can be interpreted as a
generating function of the probabilities. The goal of this
paper is then to find a way to experimentally determine
the additional parameter γq which can be then used to
compare the SHM calculation of yields and fluctuations
to the experimental measurements.

IV. FLUCTUATIONS IN CHEMICAL

NON-EQUILIBRIUM

Chemical nonequilibrium is of a particular interest
since it can result in a large pion fugacity which influ-
ences fluctuations much more severely than the yields.

If γq becomes large enough so that λπ approaches

emπ/T , then the pion yield and the fluctuations behave
like (c.f. Eqs.(7,8))

lim
ǫ→0

〈N〉 ∝ ǫ−1, lim
ǫ→0

(∆N)2 ∝ ǫ−2. (12)

where ǫ = 1 − λπe−mπ/T . The fluctuation grows much
faster than the yield as mentioned above.

Some studies of yield ratios have indeed found the
value of γq that can potentially make ǫ small [24, 29, 30,
31]. However, other studies of yield ratios [32] concluded
that γq is not necessarily large due to the fact parameters
in such fits are highly correlated. In this case, adjusting
other parameters such as the temperature can accom-
modate current data without having γq 6= 1, but with
much reduced statistical significance. Since such conflict
is common when only the yields are considered, it be-
comes necessary to study fluctuations as an additional
constraint to determine the occupation factor γq more
convincingly.

We now discuss our specific analysis results. We used
the public domain SHM suite of programs SHARE [33],
expanded to include the fluctuations [34]. We evalu-
ate yields and fluctuations, allowing for production of
hadron resonances, their decay, and a possible absence
of chemical equilibrium. In the rest of this paper, we
set λeq

I3
= 1, λeq

q = eµB/3T = 1.05 and λeq
s = 1.027 in

accordance with [30]. However, the two observables we
consider, the net charge fluctuations and the Λ/K− parti-
cle yield ratio, are nearly independent of these quantities
as will be shown below.

Fig. 1 shows the variation in v(Q) as a function of γq

for T = 140, 170 MeV. The solid lines show v(Q) includ-
ing the resonance decays, dot-dashed lines comprise only
the direct effect of pion fluctuations. As the temperature
increases (solid lines from top to bottom) the number of
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FIG. 1: (Color online) v(Q) as function of γq (solid lines).
Dot-dashed lines, no resonance decays; dashed lines, Boltz-
mann fluctuations. Ellipses (blue) indicate the expected
result areas for the equilibrium (γq = 1, solid) and non-
equilibrium (γq 6= 1, dashed) models.

resonances increases. This in turn increases the unlike-
sign charge correlations and hence reverses the tempera-
ture dependence of the pure pion case (dot-dashed lines).
The short dashed lines show results for Boltzmann statis-
tics. Boltzmann charge fluctuations are nearly constant
as function of γq and primarily depend on chemical mix
of the directly produced and secondary decay particles,
which dominantly depend on the temperature T . The
solid and dot-dashed lines in Fig. 1 terminate when the
fluctuations start to diverge as in Eq.(12).

To determine both T and γq values we require an ad-
ditional observable. In this work, we choose the yield
ratio Λ/K−. This ratio depends linearly on γq, and
is nearly independent of λeq

s and γs as Λ = (sdu) and
K− = (sū). In Fig. 2 we show how the relative yield de-
pends on γq and T . The Λ yield we wish to consider does
not include weak decay feed from Ξ but it includes the
electromagnetic decay of Σ0 and the strong decays. K−

excludes feed-down from φ, but includes K∗ and higher
resonances. It is important to exclude the Ξ and φ cas-
cading in order to eliminate the dependence on γs and
λeq

s . Fortunately, this is experimentally feasible.
A similar ratio, which is experimentally easier to cor-

rect for, is Ξ/φ, also dependent on temperature and γq

only. See [37] for the equivalent discussion in terms of
Ξ/φ.

We now combine results in Figs. 1 and 2 into our main
result Fig. 3. Every point in this plane of v(Q) and Λ/K−

corresponds to a specific set of T and γq as indicated by
the grid. Note that some domains in this plane are not
allowed since they lie in the region where the (gener-
ating, GC) partition function cannot be defined. The
two highlighted regions indicate the expected chemical
equilibrium (solid line ellipse at small v(Q), correspond-

0 0.5 1 1.5 2
γq

0

0.1

0.2

0.3

0.4

0.5

0.6

Λ
/K

−

100 150 200
T [MeV]

T=200MeV

160

150

140

130

120

110

100

180

190

170

0.7

0.8

0.9

1.0

1.1

1.2

1.3
γq=1.4

γq=1.5

γq=1.6

γq=1.7

γq=1.8

FIG. 2: (Color online) Particle yield ratio Λ/K− as a func-
tion of T (right panel) and γq (left panel) The Λ yield does
not include Ξ → Λ and the K− yield is without the contri-
bution of φ → K+K− decays. Ellipses (blue) indicate the
expected result areas for the equilibrium (γq = 1, solid) and
non-equilibrium (γq 6= 1, dashed) models.

ing to γq = 1 and T = 170 MeV) and nonequilibrium
parameter domains (dashed line ellipse at larger v(Q),
corresponding to γq = 1.62 and T = 140 MeV). When
particle yields and fluctuations are considered, the sepa-
ration of these two domains confirms that we have found
a sensitive method to determine both γq and T . The re-
sults of having two extreme values, γs = 1 and γs = 2.5,
are also shown in Fig. 3. The γs values corresponds to
the equilibrium [35] and non-equilibrium [24] best fits.
Their difference, as seen in Fig. 3, is small and well be-
low the experimental error. The largest remaining sys-
tematic deviation is due to the baryon chemical potential
eµB/3T = λeq

q . It’s contribution to v(Q) is negligible, but

this is not true for the case of Λ/K−. Generally the value
of λeq

q is well determined by baryon to antibaryon yield
ratios in a model independent way.

To transform the diagram in Fig. 3 (or Ξ/φ in [37])
to an equivalent result applicable to lower reaction en-
ergy where λeq

q is greater, one has to allow for this

change: We note that Λ/K− ∝ (λeq
q )3, and thus we need

to multiply the axis in Figs. 2 and 3 by (λeq
q )3/1.053.

One can actually use the Λ/K ratio in this. Since
ΛK+/ΛK− ∝ (λeq

q )6, the axis rescaling would be done

with (ΛK+/ΛK−)1/2/1.053 (Λ, K corrected for Ξ and φ
feed-down).

V. ISSUES RELATED TO DETECTOR

ACCEPTANCE

The main phenomenological issue that prevents the
straight-forward extraction of parameters from graphs
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v(Q)

0

0.2

0.4
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0.8

1

1.2

Λ
/K

−

T=200 MeV

T=170 MeV

T=140 MeV

T=100 MeVγq=0.8 1 1.4 1.6 1.8

FIG. 3: (Color online) Particle ratio Λ/K− and particle fluc-
tuation v(Q) plane: a point in plane corresponds to a set
of values γq, T . Black Lines correspond to results at fixed
T = 200 (top), 170, 140, 100 MeV (bottom). The red dashed
lines are for γq = 0.8, 1, 1.4, 1.6, 1.8 from left to right. Thick
lines correspond to γs = 2.5, thin lines correspond to γs = 1.
Ellipses (blue) indicate the expected result areas for the equi-
librium (γq = 1, solid) and non-equilibrium (γq 6= 1, dashed)
models.

such as Fig. 3 are effects relating to the detector ac-
ceptance. First of all, it has long been known that v(Q)
is not a “robust” observable, but in general depends on
the detector’s kinematic (rapidity and pT ) cuts. This dif-
ficulty, however, can be lessened via mixed event back-
ground subtraction. It can be shown [7] that observables
corrected this way are in certain limits “robust” w.r.t.
kinematic cuts and detector response.

We have discussed how to generalize the methods de-
scribed in this paper to robust observables elsewhere
[36, 37, 38], and hence will not dwell on this topic, be-
yond noting that, while diagrams such as Fig. 3 need
to be re-thought since dynamical observables generally
also depend on the (average) system volume, the sen-

sitivities of the fluctuation and yield observables to the
statistical model parameters follow the pattern described
by this paper. Hence, generalizing the methods described
by this paper to dynamical observables (whether via fits,
as was done in [38] or three-dimensional diagrams), is not
a difficult task.

An issue that needs to be addressed separately, how-
ever, is the acceptance dependence of particle correla-

tions. If the detector’s pseudo-rapidity coverage is too
large, than the small volume assumption required for
the Grand-Canonical ensemble becomes untenable, and
long-range correlations (such as global conservation laws)
can modify fluctuations. If the detector’s pseudo-rapidity
coverage is too small, correlations due to resonance de-
cays acquire a rapidity-dependent correction (which is
not eliminated by mixed-event subtraction since it cor-

rects two-particle correlations). We will address these
issues in the next sub-sections.

A. Influence of conservation laws on fluctuations

If the detector can capture the full phase space of the
system than, barring dramatic departure from standard
model physics, the net charge of the event can not fluc-
tuate. More generally, if the phase space size of the de-
tected system becomes comparable to the total system
size, observables will not anymore be given by the Grand-
Canonical ensemble.

If the system is a fluid (or in general not in global equi-
librium) no ensemble is expected to provide a good de-
scription of fluctuations beyond the small volume Grand
Canonical limit, since the observable region of phase
space will include many locally equilibrated volume el-
ements exchanging energy and quantum numbers via hy-
drodynamic flow. While yields could still be approxi-
mated by some ensemble, the long range correlations and
global non-equilibrium should break all simple scaling of
fluctuations with yields.

Hence, the configuration space coverage needed for a
statistical description needs to be appropriately small for
the corrections to the GC ensemble to be kept under
control.

To investigate these corrections quantitatively, con-
sider the Taylor-expansion of the entropy of the “reser-
voir”:

S(Ntot − N) ≈ S(Ntot) − N
∂S

∂N

∣

∣

∣

∣

Ntot

+
1

2
N2 ∂2S

∂N2

∣

∣

∣

∣

Ntot

+ ... (13)

where Ntot is the total number of particles in the reser-
voir and the small subsystem, and N is the number of
particles in the subsystem. The first and second terms
result in the usual Grand-Canonical ensemble result [22]
through the identification of the equilibrium chemical po-
tential µ = −T (∂S/∂N).

The third term gives the first correction; The Grand-
Canonical ensemble is therefore a valid approximation
when

ζGC =
〈N〉

2

(∂2S/∂N2)Ntot

(∂S/∂N)Ntot

≪ 1 (14)

This quantity can be easily related to more common ther-
modynamic quantities

ζGC =
1

2

T 〈N〉

µ
kV tot (15)

where 〈N〉 is the average multiplicity of the observed vol-

ume and kV tot is the susceptibility of the total volume.
For the relativistic ideal gas, this is given by

ζGC =
V

2Vtot

[

∑∞
n=0 λnm2TK2

(

nm
T

)

lnλ
∑∞

n=0 λnm2 T
n K2

(

nm
T

)

]

(16)
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and, as shown in section II

V

Vtot
=

∆η

(∆η)tot

where ∆η is the detector’s (pseudo)rapidity coverage and
(∆η)tot is the system’s rapidity interval.

Thus, we discover that the larger the susceptibility
is, the smaller the system size V/Vtot has to be for the
Grand-Canonical limit to hold.

In fact, the physics determining the departure from
this limit is precisely the same as the physics determining
the divergence of fluctuations within an over-saturated
pion gas. This is unsurprising, since over-saturation is
argued for as a signature of a phase transition, and in
finite systems undergoing phase transitions it is the finite
size of the system that gives a cut-off for fluctuations.

The pion chemical potential of the system created at
RHIC, however, is kept below divergence, so it is hoped
that one unit of rapidity, corresponding to V/(2Vtot) ∼
7%, provides a safe limit for the Grand Canonical en-
semble. In such a small rapidity interval, however, corre-
lations due to resonances need to be suitably accounted
for. The next sub-section shows how to do that.

B. Disappearance of resonance correlations at

small ∆η

If charge fluctuations are calculated after all resonances
have decayed, then Eq. 5 becomes

〈

(∆Q)2
〉

=
〈

(∆N+)2
〉

+
〈

(∆N−)2
〉

− 2 〈∆N+∆N−〉
(17)

where the last term accounts for unlike-sign charge corre-
lations coming from the decay of neutral resonances. For
a conserved charge, and full acceptance of all resonances,
this expression is equivalent to Eq.(5), with the correla-
tion term exactly balancing out the amplification of res-
onance abundance fluctuations through the greater mul-
tiplicity of resonance decay products. within a hadron
gas the correlation term will be given by decays of the
resonance j into N+ and N−

〈∆N+∆N−〉 =
∑

j

bj→+− 〈Nj〉 (18)

while the fluctuation of each stable N± has to be aug-
mented by contributions to it from resonance decays [1]

〈

(∆N±)2
〉

=
∑

i

〈

(∆N±)2
〉

i
+ (19)

+





∑

j

bj→i(1 − bj→i) 〈Nj〉 + b2
j→i

〈

(∆Nj)
2
〉





For a finite acceptance window in general not all reso-
nances produced can be reconstructed, even if the effi-
ciency of the detector were 100%. Hence these contribu-
tions must be weighted with acceptance weight factors,

and this applies here in particular to the limited rapidity
acceptance. For a neutral resonance j decaying into n+

positive particles and n− negative particles, three such
coefficients are needed:

Two will be the fractions of the positively charged and
the negatively charged decay products which land in the
acceptance window, and the third will give the fraction
of the +− pairs that will land in the window. These coef-
ficients will modify the branching ratios bj→i in Eq.(19)
and bj→+− in Eq.(18).

If boost-invariance is a good symmetry, the first two co-
efficients can be fixed to unity, since particles coming out

of the acceptance region are exactly balanced by particles
coming in. However, this is not true for the number of
detectable pairs. If the resonance is out of the detector’s
acceptance window it is impossible for all of it’s decay
products to be in a window. Hence, Eq.(17) will have to
include a term giving the percentage of resonances whose
decay products are both within the detector’s acceptance
region.

〈

(∆Q)2
〉

=
〈

(∆N+)2
〉

+
〈

(∆N−)2
〉

− 2RF (T, ∆y) 〈∆N+∆N−〉 (20)

The dependence of the observed fluctuations on RF is
shown in Fig. 4, left panel.

We note two effects not considered here and believed
to be unimportant:
1) the rescattering after formation is unlikely to alter
RF , since the typical momentum exchange in each col-
lision the exchanged momentum 〈q〉 ∼ T/3 tends to be
considerably softer than what is required to bring parti-
cles outside the acceptance region (in most decays, the
characteristic momentum of the decay products in a reso-
nance’s rest frame p∗ tends to be significantly larger than
this value);
2) The higher-momentum pseudo-elastic “regeneration”
processes, where detectable resonances would be created,
are also unlikely to modify RF since, by local thermal
equilibrium, two particles coming into the acceptance re-
gion through kinematically allowed pseudo-elastic inter-
actions will be balanced out by two particles originally in
the acceptance region which come out as a result of the
re-interaction.
Thus, a measurement of fluctuations can still be relied
upon to gauge the number of resonances present at chem-

ical freeze-out. This underscores the importance of fluc-
tuations as a probe for freeze-out dynamics.

We now obtain RF for a azimuthally symmetric perfect
detector having a pseudo-rapidity coverage ∆η. We shall
follow the formalism in [39] to relate the resonance’s rest
frame (denoted by ∗) to the lab frame.

For both particles + and − to be within the detector’s
acceptance region, −∆η/2 < η+, η− < ∆η/2 where

η± =
1

2
log





√

E2
± − m2

± − pL±

√

E2
± − m2

± + pL±



 = ln

[

cot

(

θ±
2

)]

(21)
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If all angular dependence in the resonance’s decay ma-
trix elements is neglected (a valid approximation if
many resonances are produced, with an approximately
azimuthally invariant distribution)the fraction of de-
tectable +− pairs will then be simply given by a phase
space integral

Ω+−(ηR, pTR) =

∫

d3p∗+
E∗

+

d3p∗−
E∗

−

∏

i

d3p∗i
E∗

i

Θ+− (22)

where:

Θ+− = Θ

[

η+ −
∆η

2

]

Θ

[

η+ +
∆η

2

]

Θ

[

η− −
∆η

2

]

Θ

[

η− +
∆η

2

]

and the function Θ(z) is the usual step function

Θ(z) = 0 z < 0
Θ(z) = 1 z > 0

Now, for two body decays this reduces to

Ω+−(ηR, pTR) =
1

4π

∫ 2π

0

dφ

∫ 1

0

d

(

p∗L
p∗

)

Θ+− (23)

while for three body decays we use the Monte-Carlo rou-
tine MAMBO [40] to generate points in phase space.

To calculate η+ and η− from the resonance rest frame
kinematic variables we Lorentz-transform to the lab
frame, and get [39]

pL± = ±p∗L± +
pLR

mR

(

E∗
± +

~p∗. ~pR

ER + mR

)

(24)

pT± = ±p∗T± +
pTR

mR

(

E∗
± +

~p∗. ~pR

ER + mR

)

(25)

To get an over-all fraction of accepted resonances which
will enter Eq.(20) , one has to convolute Eq.(22) with a
resonance distribution function in momentum space

RF =

∫ ∞

0

dpTR

∫ ∆η/2

−∆η/2

dηRP (ηR, pTR)Ω+−(ηR, pTR)

(26)
where P (ηR, pTR) is a suitable distribution function for
resonances normalized to unity. A suitable function in
the low energy region at mid-rapidity is

P (ηR, pTR) =
mα

TRe−bmTR

∆ηR

∫ ∞

m dmTRmα
TRe−bmTR

(27)

We have performed this integral using a Monte-Carlo
method. The result is shown in the right panel of Fig.
4. We note that the most abundant resonance decays
for charge fluctuations do not depend strongly on the
inverse slope parameter b−1: Going from b−1 = 200 MeV
to b−1 = 300 MeV while staying in the same rapidity bin
changes the ρ → ππ correction by at most 5 %, and the
less abundant but more sensitive η → π+π−π0 correction
by no more than 20%.

Thus, ∆η should be as small as possible, statistics per-
mitting, due to the not easily controllable corrections
described in section VA. A subsequent SHM analy-
sis of the experimental data can than calculate RF for
each resonance decay important for charge fluctuations.
Hence, a v(Q) , properly corrected for experimental ac-
ceptance, can be computed from SHM parameters via
Eqs.(3) and (20), and fed into Fig. 1 and similar figures
or fits [36, 37, 38]. The computational tools needed to
perform such an analysis have been published separately
as open-source software [34].

It is important to underline that to perform this anal-
ysis it is not necessary to understand the full freeze-out
dynamics of the fireball (local temperature, flow field,
hadronization hypersurface). It is enough to have a sen-
sible parametrization of b−1 in terms of particle mass.
This function is commonly obtained from particle spec-
tra at thermal freeze-out [41], and is approximately lin-
ear in particle mass. The question is weather we can
extrapolate b−1 to chemical freeze-out conditions with
enough precision in a model-independent way. The rela-
tively mild dependence of RF on b−1, together with the
fact that hadronic re-interaction decreases the tempera-
ture and increases the flow and the high viscosity of the
hadron gas [42] makes us confident that we can do it.

VI. SUMMARY AND CONCLUSIONS

We have studied in this work how a simultaneous mea-
surement of charge fluctuations and a ratio such as Λ/K−

can differentiate between chemical equilibrium and non-
equilibrium freeze-out, and to constrain the magnitude
of the deviation from equilibrium as well as the freeze-
out temperature. Our results show that it is possible to
distinguish the chemical equilibrium freeze-out condition
γq = 1 [30] with T = 170 MeV [35]) from the chemical
non-equilibrium freeze-out condition γq = 1.6 [24, 30].
This is mainly due to the increase in the fluctuations in-
herent to an oversaturated Bose gas, see Eq.(12).

We have further discussed the dependence of two-
particle correlations on the detector acceptance region,
and have shown that it can be calculated to a reason-
able precision in a model-independent way. The “right”
experimental detector acceptance for a detailed study of
fluctuations, therefore, is one that is appropriately small
yet sizable to ensure the appropriate ensemble under
study is Grand-Canonical, provided that acceptance cor-
rections to resonance decays are properly taken into ac-
count using the methods described in section VB. Quan-
titative corrections to Grand Canonical yield/fluctuation
relations for the best fit parameters can be estimated
quantitatively via Eq.(14)

Provided the detector acceptance region for a given
fluctuation measurement is published, Eq.(26) can be
used to calculate a correction coefficient RF to the
〈N+N−〉 correlation for each decay of a neutral reso-
nance. Using a calculated RF for each resonance de-
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FIG. 4: (Color online) Left: Sensitivity of the charge fluctuation measure on RF , the fraction of resonance decay products which
remains in the detector acceptance window (c.f. Eq.(20)). Thin black lines denote T = 170 MeV, thick red lines T = 140 MeV.
Right: Acceptance fraction for different resonance decays as a function of the inverse slope b (c.f. Eq.(27)) and the detector
pseudo-rapidity acceptance ∆η (NB: η in this context means the pseudo-rapidity. Not to be confused with the decay of the η
particle, shown on the right panel of the image). Acceptance regions of ∆η = 6, 4, 2, 1, 0.5, 0.1 are considered, top to bottom in
descending order

cay, together with the statistical model parameters, the
charge fluctuation variable v(Q) can be calculated from
Eqs.(3) and (20). This v(Q) will still retain the sensitiv-
ities to temperature and γq demonstrated in section IV,
since γq impacts the primordial fluctuation terms rather
than the correlation. It can therefore be used, together
with a measurement such as Λ/K− as in Fig. 3, or within
a fit as in [36, 37, 38], to test the validity of the statistical
model, unambiguously constrain its parameters, and dif-
ferentiate between the high-temperature equilibrium and
supercooled over-saturated freeze-out scenarios.

It is our intent to perform a complete data analysis as
outlined here, including consideration of acceptance cor-
rections and of resonance decays, once final RHIC fluc-
tuation data becomes available.
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