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Energy Dependence of the Cronin Effect from Nonlinear QCD Evolution
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The nonlinear evolution of dense partonic systems has been suggested as a novel physics mechanism
relevant for the dynamics of p-A and A-A collisions at collider energies. Here we study to what extent
the description of Cronin enhancement in the framework of this nonlinear evolution is consistent with
the recent observation in

���
s

p
� 200 GeV d-Au collisions at the Relativistic Heavy Ion Collider. We

solve the Balitsky-Kovchegov evolution equation numerically for several initial conditions encoding
Cronin enhancement.We find that the properly normalized nuclear gluon distribution is suppressed at all
momenta relative to that of a single nucleon. For the resulting spectrum of produced gluons in p-A and
A-A collisions, the nonlinear QCD evolution is unable to generate a Cronin-type enhancement, and it
quickly erases any such enhancement which may be present at lower energies.
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enhancement encoded in the initial condition of a nuclear better than 2% in the entire range of k discussed below.
The observation that the ratio of particle yields in p-A
and A-A, scaled by the number of collisions, exceeds
unity in an intermediate transverse momentum range of
a few GeV is commonly referred to as Cronin effect. The
effect was first seen at lower fixed target energies [1] and
has recently been confirmed in

���
s

p
� 200 GeV d-Au col-

lisions at Relativistic Heavy Ion Collider (RHIC) [2]. The
current interest focuses mainly on comparing this Cronin
enhancement in d-Au to the relative suppression of pro-
duced hadrons in Au-Au collisions at the same center of
mass energy and in the same transverse momentum range
[3]. The opposite trend of the two effects and their cen-
trality dependence suggests that d-Au data may serve as
an efficient benchmark measurement to distinguish be-
tween the two different physical mechanisms suggested
for the relative suppression of hadron spectra in Au-Au
collisions: initial state parton saturation [4] and final state
jet quenching [5].

In particular, it has been suggested that, due to quan-
tum evolution, saturation effects can account for the
suppression of the high-pT hadronic spectra in Au-Au
collisions at RHIC above the saturation scale [4]. On the
other hand, it is known that saturation models based on
multiple scattering (the so-called Glauber-Mueller [6] or
McLerran-Venugopalan [7] models) exhibit Cronin en-
hancement in p-A [8–10] and A-A [9,11]. In these models,
quantum evolution is not implemented, and the saturation
of low pT gluons is the result of a redistribution of gluons
in transverse phase space [12,13] which does not change
the total number of gluons, thus resulting in a compensat-
ing enhancement at momenta just above the saturation
momentum Qs. These models are now being used to
understand bulk properties of ultrarelativistic heavy ion
collisions such as the multiplicity, rapidity distribution,
and centrality dependence of particle production [14].
What is not fully understood is (i) whether such Cronin
0031-9007=04=92(8)=082001(4)$22.50 
wave function persists in the nonlinear perturbative QCD
evolution to higher energy and (ii) whether such Cronin
enhancement can be generated by the nonlinear evolution
itself. This Letter goes beyond earlier discussions [9–11]
by providing the first complete (numerical) answer to
these questions. We do not address other approaches to
Cronin enhancement [15].

We start from the Balitsky-Kovchegov (BK) evolution
equation [16,17], which describes the evolution of the
forward scattering amplitude N�r; y� of a QCD dipole of
transverse size jrj with rapidity Y and y � ��s Nc=��Y,

dN�jrj; y�
dy

�
1

2�

Z
d2z

r2

�r� z�2 z2

� �N�jr� zj� 	 N�jzj� � N�jrj�

� N�jr� zj�N�jzj�
: (1)

The unintegrated gluon distribution is related to the in-
clusive gluon distribution ��k� / fd�xG�x; k2�
g=�d2kd2b�
and is given in terms of the dipole amplitude

��k� �
Z d2r

2�r2
expfir � kgN�r�: (2)

In the following, we also use the modified gluon
distribution

h�k� � k2r2
k��k�: (3)

The two definitions coincide for the leading order pertur-
bative distribution ��k� / 1=k2, but are different in gen-
eral, and especially at low momenta.

Using the second order Runge-Kutta algorithm [18],
we solve the BK Eq. (1) numerically with 8000 equally
spaced intervals in lnk space between �15 and 35 and a
step � y � 0:0025. The accuracy of this algorithm is
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P H Y S I C A L R E V I E W L E T T E R S week ending
27 FEBRUARY 2004VOLUME 92, NUMBER 8
We evolve two initial conditions given by the McLerran-
Venugopalan [7] (MV) and Golec-Biernat –Wüsthoff [19]
(GBW) model, respectively:

NQsMV � 1� exp

�
�
Q2
sr

2

4
ln

�
1

r2�2
QCD

	 e
��
; (4)

NQsGBW � 1� exp

�
�
Q2
sr

2

4

�
; (5)

where �QCD � 0:2 GeV. For momenta k � O�1 GeV�,
the sensitivity on the infrared cutoff e is negligible. The
amplitudes NMV and NGBW are similar for momenta of
order Qs, but differ strongly in their high k behavior;
�GBW�k� decays exponentially while �MV has a power-
like tail 1=k2.

Figure 1 shows the evolution of h�k; y� and ��k; y� for
different initial conditions. The solutions for h�k; y�
quickly approach a universal solitonlike shape and do not
change further except uniformly moving in k on the loga-
rithmic plot. The position of the maximum is the evolved
value of the saturation momentum Qs�y�. The solutions
for different initial conditions and different rapidities
scale as a function of the scaling variable � � k=Qs�y�.
The shape of the initial condition affects only the value of
the saturation momentum Qs�y�, but not the shape of the
FIG. 1. Solutions of the BK equation. Upper left: h�k� evolved
(left to right) from y � 0 to 5 and 10 for different initial
conditions: GBW with Q2

s�0:36GeV2 (solid lines), MV with
Q2
s � 4 GeV2 (dashed lines), and MV with Q2

s � 100 GeV2

(dotted lines). Upper right: The same as upper left for ��k�.
Lower left: The scaled function h��� versus � � k=Qs for y �
4, 6, 8, and 10, and the same initial conditions and conventions
(lines cannot be distinguished). Lower right: Ratio of h�y; ��=
h�y; � � 1� over h�y � 10; ��=h�y � 10; � � 1� for y � 4
(solid line), 6 (dashed line), 8 (dotted line), and 10 (dash-
dotted line), and initial condition MV with Q2

s � 4 GeV2.
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evolved function h��; y�. The y dependence of h��; y� is
very weak: The function evolves fast towards a scaling
form h���. As the rapidity changes between y � 4 and
y � 10, the ratio h��; y1�=h��; y2� varies by at most 40%
over 3 orders of magnitude of the scaling variable �.
Similar behavior was found for � (results not shown).
This is consistent with previous numerical works [20,21].

To get a quantitative idea of the behavior of the scaling
solution, we fitted the numerical solution of ���� to two
analytical expressions: s1��� � a�2�1��� and s2��� �
a ln�b���2�1��� for � > 5. The functional form s1 with
� � 0:37 and lnQs / y describes the scaling behavior of
solutions of the linear Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [22]. It was argued in Ref. [23] that s2
with the same value of � and lnQs/f�2����
=�1���gy�
f3=�2�1���
g lny accounts for the effects of nonlineari-
ties in (1). We find that s1 does not give an acceptable fit
to ���� in any extended range of �. For values of �
between 1 and 103, the value of � varies between 0.39
and 0.46. This is in contrast to the BFKL equation, where
we find numerically that s1 with � � 0:37 does indeed
approximate the solution over several orders of magnitude
with very good accuracy (results not shown). On the other
hand, for 5< �< 1000, s2 gives a good fit with � � 0:32.
If, following [23], we fix � � 0:37, the fit is still good.

To study the effect of the evolution on the Cronin en-
hancement, we consider two initial conditions, NqMV�r�
andNQMV�r� with q2 � 0:1 GeV2 andQ2 � 2 GeV2. Since
q��QCD and Q is of the order of the estimated satura-
tion momentum for a gold nucleus [14], this choice
mimics the gluon distributions of a proton and of a
nucleus, respectively. At large transverse momenta, the
ratio of the corresponding Fourier transforms is given by
the ratio of the saturation momenta,

hQ�k; y � 0�

hq�k; y � 0�
�
Q2

q2
� A1=3: (6)

This relation also holds for �. As discussed in [9,10],
these initial conditions exhibit Cronin enhancement,
namely, �hQ�k;y� 0�
=�A1=3hq�k;y� 0�
> 1 for k�Q.
We solve the BK equation with these two initial con-
ditions and construct the ratio R�k; y� � hQ�k; y�=
A1=3hq�k; y� and the corresponding ratio for � (see
Fig. 2). The initial Cronin enhancement at rapidity y�0
is seen to be wiped out very quickly by the evolution.
Within less than half a unit of rapidity y, the ratios
show uniform suppression for all values of transverse
momentum. The observed behavior persists if different
amounts of Cronin enhancement are included in the
initial condition.

As seen in the lower panel of Fig. 2, the Cronin en-
hancement also disappears rapidly with rapidity when
gluon distributions are evolved according to the linear
BFKL equation. Qualitative differences between the
BFKL and BK dynamics are only visible at momenta
k < Qs, where saturation effects are important. For larger
082001-2



FIG. 3. Ratios RpA and RAA of gluon yields in p-A (upper plot)
and A-A (lower plot) for BK evolution, with MV as initial
condition with Q2

s � 0:1 GeV2 for p and 2 GeV2 for A. Lines
from top to bottom correspond to y � 0, 0.05, 0.1, 0.2, 0.4, 0.6,
1, 1.4, and 2.

FIG. 2. Ratio of distributions � and h in nucleus and proton,
normalized to 1 at k! 1. Upper plots: BK evolution, with MV
as initial condition with Q2

s � 0:1 GeV2 for p and 2 GeV2 for
A. Lines from top to bottom correspond to y � 0, 0.05, 0.1, 0.2,
0.4, 0.6, 1, 1.4, and 2. Lower plots: BFKL evolution, with MV
as initial condition with Q2

s � 4 GeV2 for p and 100 GeV2 for
A. Lines from top to bottom correspond to y � 0, 1, and 4.
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momenta k, the ratios are very similar for linear and
nonlinear QCD evolution. We, thus, conclude that the
wiping out of the initial enhancement is primarily driven
by the linear BFKL dynamics which is contained in the
BK equation as well.

For the evolved gluon distributions determined above,
we have calculated the yield of produced gluons in p-A
and A-A collisions at central rapidity according to the
factorized expressions [24]

dNpA
dyd2pd2b

/
1

p2

Z
d2k hq�y; k�hQ�y;p� k�; (7)

dNAA
dy d2pd2b

/
A2=3

p2

Z
d2k hQ�y; k�hQ�y;p� k�: (8)

From these spectra we compute the p- and y-dependent
ratios

RpA �

dNpA
dyd2pd2b

A1=3 dNpp
dyd2pd2b

; RAA �
dNAA

dyd2pd2b

A4=3 dNpp
dyd2pd2b

:

As seen in Fig. 3, the nonlinear BK evolution quickly
wipes out any initial Cronin enhancement not only on the
level of single parton distribution functions but also on
the level of particle spectra. We performed several checks
to establish that this behavior is generic. First, we
checked the disappearance of Cronin enhancement by
evolving different initial conditions corresponding to
different initial amounts of enhancement. Second, we
note that, in some calculations of gluon production in
082001-3
p-A, the gluon distribution � [25] rather than h
[24,26,27] enters the right-hand side of (7). Results using
� were found to be close to those shown in Fig. 3. Third,
different calculations of (7) employ h defined in terms of
the scattering amplitude either of the fundamental [24]
dipole used here, or of the adjoint [10,26,27] one. By
expressing the adjoint dipole amplitude in terms of the
fundamental one, Nadj � 2N � N2, we checked that our
results remain qualitatively the same for the adjoint case.
To summarize, the expressions (7) and (8) are subject to
uncertainties as discussed in more detail in [9]. However,
our conclusion about the disappearance of Cronin en-
hancement during QCD evolution is likely to persist in
more refined ways of calculating particle spectra, since it
is rooted directly in the rapidity dependence of gluon
distributions [9].

We now comment on a recent formal argument
which — in contrast to our numerical findings — suggests
enhancement survives the nonlinear evolution. It is
based on the observation that at very short distances
r! 0,N�r� is not affected by evolution. Thus, the integral
of � over the transverse momentum is expected to be
rapidity independent,Z

d2k��k� �
1

r2
N�r�jr�0: (9)

One thus obtains the sum ruleZ
d2k�A�k; y� � A1=3

Z
d2k�p�k; y�; (10)

valid for any rapidity, since it is satisfied by the initial
condition �MV. Since the nonlinear evolution leads to the
082001-3
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depletion of the gluon distribution �A�k� relative to
A1=3�p�k� at low momenta, it must follow that in some
range of momenta this effect is compensated by enhance-
ment of �A. However, this argument breaks down since
the quantity defined in (9) is infinite. As such, (10) relates
only the (UV) divergent parts of the integrals, and carries
no information about possible behavior at finite momen-
tum. To be more specific, we use the scaling property
��k; y� � ��k=Qs�y�
 of the solution of the BK equation
established above. It is known that the ratio of the satu-
ration momenta for any two solutions is preserved by the
BK evolution [20–22]. For our two solutions representing
a nucleus and a nucleon, this implies �QAs �y�
=�Q

p
s �y�
 �

A1=6. We now rewrite the sum rule (10) by regulating the
divergent integrals with a large but finite UV cutoff
aQAs �y�,Z a2�QAs �2

0
d2k�A�k; y� � �QAs �2

Z a2

0
d2�����

� A1=3�Qps �2
Z a2

0
d2�����

� A1=3
Z a2�Qps �2

0
d2k�p�k; y�: (11)

The formal limit a! 1 recovers Eq. (10). However,
since QAs � Qps , the regularized sum rule (11) is satisfied
even if the nuclear distribution is suppressed relative to
that of a single nucleon uniformly at all momenta. Thus,
the sum rule (10) carries no information about either
presence or absence of Cronin enhancement.

In summary, we have found that the nonlinear QCD
evolution to high energy is very efficient in erasing any
Cronin-type enhancement which may be present in the
initial conditions. For ‘‘realistic’’ initial conditions, this
disappearance occurs within half a unit of rapidity. We
note that in our units the evolution from 130 to 200 GeV
corresponds to #y ’ 0:1 for �s � 0:2, and thus is not
sufficient to completely eliminate an initial enhancement
at central rapidity. For forward rapidity, #y is greater. The
evolution to the LHC energy corresponds to #y� 1. Thus,
the BK evolution suggests the reduction of the Cronin
effect in d-Au for forward rapidities at RHIC and predicts
its disappearance for p-A collisions at LHC.
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Note added.—After appearance of this work,
Refs. [9,10] were revised. Reference [10] no longer invokes
the sum rule argument criticized above, and both now
agree with our main conclusion.
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