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Energy Dependence of the Cronin Effect from Non-Linear QCD Evolution∗
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The non-linear evolution of dense partonic systems has been suggested as one of the novel physics
mechanisms relevant to the dynamics of hadron–nucleus and nucleus–nucleus collisions at collider
energies. Here we study to what extent the description of Cronin enhancement in the framework of
this non-linear evolution is consistent with the recent observation in

√
s = 200 GeV d–Au collisions

at the Relativistic Heavy Ion Collider. We solve the Balitsky-Kovchegov (BK) evolution equation
numerically for several initial conditions encoding Cronin enhancement. We find that the properly
normalized nuclear gluon distribution is suppressed at all momenta relative to that of a single
nucleon. Calculating the resulting spectrum of produced gluons in p–A and A–A collisions, we
establish that the nonlinear QCD evolution is unable to generate a Cronin type enhancement, and
that it quickly erases any such enhancement which may be present at lower energies.

The observation that the ratio of particle yields in p–
A and A–A, scaled by the number of collisions, exceeds
unity in an intermediate transverse momentum range of
a few GeV, is commonly referred to as the Cronin ef-
fect. This was first seen at lower fixed target energies [1]
and was recently confirmed in

√
s = 200 GeV d–Au col-

lisions at RHIC [2]. The current interest focuses mainly
on comparing this Cronin enhancement in d–Au to the
relative suppression of produced hadrons in Au–Au colli-
sions at the same center of mass energy and in the same
transverse momentum range [3]. The opposite trend of
the two effects and their centrality dependence suggests
that d–Au data may serve as an efficient benchmark mea-
surement to distinguish between the two different physi-
cal mechanisms suggested for the relative suppression of
hadron spectra in Au–Au collisions: initial state parton
saturation[4] and final state jet quenching [5].

The physics of dense partonic systems and their non-
linear perturbative evolution to higher energy has mo-
tivated several attempts at understanding bulk proper-
ties of ultra-relativistic heavy ion collisions such as the
multiplicity, rapidity distribution and centrality depen-
dence of particle production [4, 6]. In particular it has
been suggested that saturation effects can account for the
suppression of the high-pT hadronic spectra in Au–Au
collisions at RHIC. On the other hand, it is known that
saturation models based on multiple scattering (the so
called Glauber-Mueller [7] or McLerran-Venugopalan [8]
models) exhibit Cronin enhancement in p–A [9, 10, 11]
and A–A [10, 12]. In these models, the saturation of low
pT gluons is the result of a redistribution of gluons in
transverse phase space [13, 14] which does not change
the total number of gluons, thus resulting in a compen-
sating enhancement at momenta just above the satura-
tion momentum Qs. What is not fully understood is i)

∗We dedicate this work to the memory of Ian Kogan.

whether such Cronin enhancement encoded in the initial
condition of a nuclear wave function persists in the non-
linear perturbative QCD evolution to higher energy and
ii) whether such Cronin enhancement can be generated
by the non-linear evolution itself. This paper goes beyond
earlier discussions [10, 11, 12] by providing the first com-
plete (numerical) answer to these questions. We do not
address other approaches to Cronin enhancement [15].

We start from the Balitsky-Kovchegov (BK) evolution
equation [16, 17], which describes the evolution of the
forward scattering amplitude N(r, y) of a QCD dipole of
transverse size |r| with rapidity Y and y = (αs Nc/π)Y ,

dN(|r|, y)

dy
=

1

2π

∫

d2
z

(r − z) · z
(r − z)2 z2

(1)

×[N(|r − z|) + N(|z|) − N(|r|) − N(|r − z|)N(|z|)] .

The unintegrated gluon distribution is related to the in-

clusive gluon distribution φ(k) ∝ d(xG(x,k2))
d2k d2b and is given

in terms of the dipole amplitude

φ(k) =

∫

d2r

2π r2
exp{i r · k}N(r) . (2)

In the following, we also use the modified gluon distribu-
tion

h(k) = k2 ∇2
k φ(k) . (3)

The two definitions coincide for the leading order per-
turbative distribution φ(k) ∝ 1

k2 , but are different in
general, and especially at low momenta.

Using the second order Runge-Kutta algorithm [18], we
solve the BK equation (1) numerically with 8000 equally
spaced intervals in ln k-space between −15 and 35 and
a step ∆ y = 0.0025. The accuracy of this algorithm is
better than 2 % in the entire range of k discussed below.
We evolve two initial conditions given by the McLerran-
Venugopalan [8] (MV) and Golec-Biernat–Wüsthoff [19]
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(GBW) model respectively:

NQs

MV = 1 − exp

[

−Q2
sr

2

4
ln

(

1

r2Λ2
QCD

+ e

)]

, (4)

NQs

GBW = 1 − exp

[

−Q2
sr

2

4

]

, (5)

where ΛQCD = 0.2 GeV. For momenta k ≥ O(1 GeV),
the sensitivity on the infrared cut off e is negligible. The
amplitudes NMV and NGBW are similar for momenta of
order Qs, but differ strongly in their high k behavior;
φGBW (k) decays exponentially while φMV has a power-
like tail 1/k2.

Fig.1 shows the evolution of h(k, y) and φ(k, y) for dif-
ferent initial conditions. The solutions for h(k, y) quickly
approach a universal soliton-like shape and do not change
further except uniformly moving in k on the logarithmic
plot. The position of the maximum is the evolved value
of the saturation momentum Qs(y). The solutions for
different initial conditions and different rapidities scale
as a function of the scaling variable ρ = k/Qs(y). The
shape of the initial condition affects only the value of the
saturation momentum Qs(y), but not the shape of the
evolved function h(ρ, y). The y-dependence of h(ρ, y) is
very weak: the function evolves fast towards a scaling
form h(ρ). As the rapidity changes between y = 4 and
y = 10, the ratio h(ρ, y1)/h(ρ, y2) varies by at most 40%
over three orders of magnitude of the scaling variable
ρ. Similar behavior was found for φ (results not shown).
This is consistent with previous numerical works [20, 21].

To get a quantitative idea of the behavior of the scal-
ing solution, we fitted the numerical solution of φ(ρ)
to two analytical expressions: s1(ρ) = aρ2(1−λ) and
s2(ρ) = a ln(bρ)ρ2(1−λ) for ρ > 5. The functional form
s1 with λ = 0.37 and lnQs ∝ y describes the scaling
behavior of solutions of the linear BFKL equation [22].
It was argued in Ref. [23] that s2 with the same value

of λ and lnQs ∝ 2χ(λ)
1−λ y − 3

2(1−λ) ln y accounts for the

effects of nonlinearities in Eq. (1). We find that s1 does
not give an acceptable fit to φ(ρ) in any extended range
of ρ. For values of ρ between 1 and 103 the value of
λ varies between 0.39 and 0.46. This is in contrast to
the BFKL equation, where we find numerically that s1

with λ = 0.37 does indeed approximate the solution over
several orders of magnitude with very good accuracy (re-
sults not shown). On the other hand, for 5 < ρ < 1000,
s2 gives a good fit with λ = 0.32. If, following [23] we fix
λ = 0.37, the fit is still good.

To study the effect of the evolution on the Cronin en-
hancement, we consider two initial conditions, N q

MV (r)

and NQ
MV (r) with q2 = 0.1 GeV2 and Q2 = 2 GeV2.

Since q ∼ ΛQCD and Q is of order of the estimated
saturation momentum for a gold nucleus [6], this choice
mimics the gluon distributions of a proton and of a nu-
cleus respectively. At large transverse momenta the ratio

FIG. 1: Solutions of the BK equation. Upper-left: h(k)
evolved (left to right) from y = 0 to 5 and 10 for different
initial conditions: GBW with Q2

s = 0.36 GeV2 (solid lines),
MV with Q2

s = 4 GeV2 (dashed lines) and MV with Q2

s = 100
GeV2 (dotted lines). Upper-right: The same as upper left for
φ(k). Lower-left: the scaled function h(ρ) versus ρ = k/Qs

for y = 4, 6, 8, 10 and the same initial conditions and conven-
tions (lines cannot be distinguished). Lower-right: Ratio of
h(y, ρ)/h(y, ρ = 1) over h(y = 10, ρ)/h(y = 10, ρ = 1) for
y = 4 (solid line), 6 (dashed line), 8 (dotted line) and 10
(dashed-dotted line), and initial condition MV with Q2

s = 4
GeV2.

of the corresponding Fourier transforms is given by the
ratio of the saturation momenta,

hQ(k, y = 0)

hq(k, y = 0)
=

Q2

q2
= A1/3 . (6)

This relation also holds for φ. As discussed in [10, 11],
these initial conditions exhibit Cronin enhancement,

namely hQ(k,y=0)
A1/3hq(k,y=0)

> 1 for k ∼ Q. We solve the BK

equation with these two initial conditions and construct
the ratio R(k, y) = hQ(k, y)/A1/3hq(k, y) and the corre-
sponding ratio for φ, see Fig. 2. The initial Cronin en-
hancement at rapidity y = 0 is seen to be wiped out very
quickly by the evolution. Within less than half a unit
of rapidity y the ratios show uniform suppression for all
values of transverse momentum. The observed behaviour
persists if different amounts of Cronin enhancement are
included in the initial condition.

As seen in the lower panel of Fig. 2, the Cronin en-
hancement also disappears rapidly with rapidity when
gluon distributions are evolved according to the linear
BFKL equation. Qualitative differences between the
BFKL and BK dynamics are only visible at momenta
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FIG. 2: Ratio of distributions φ and h in nucleus and proton,
normalized to 1 at k → ∞. Upper plots: BK evolution, with
MV as initial condition with Q2

s = 0.1 GeV2 for p and 2 GeV2

for A. Lines from top to bottom correspond to y = 0, 0.05,
0.1, 0.2, 0.4, 0.6, 1, 1.4 and 2. Lower plots: BFKL evolution,
with MV as initial condition with Q2

s = 4 GeV2 for p and 100
GeV2 for A. Lines from top to bottom correspond to y = 0,
1 and 4.

k < Qs, where saturation effects are important. For
larger momenta k, the ratios are very similar for linear
and non-linear QCD evolution. We thus conclude that
the wiping out of the initial enhancement is primarily
driven by the linear BFKL dynamics which is contained
in the BK equation as well.

For the evolved gluon distributions determined above,
we have calculated the yield of produced gluons in p–A
and A–A collisions at central rapidity according to the
factorized expressions [24]

dNpA

dyd2p d2b
∝ 1

p2

∫

d2k hq(y, k)hQ(y, p − k) , (7)

dNAA

dy d2p d2b
∝ A2/3

p2

∫

d2k hQ(y, k)hQ(y, p − k) . (8)

From these spectra, we calculate the p- and y-dependent
ratios

RpA =

dNpA

dyd2p d2b

A1/3 dNpp

dyd2p d2b

, RAA =

dNAA

dyd2p d2b

A4/3 dNpp

dyd2p d2b

.

As seen in Fig. 3, the non-linear BK evolution quickly
wipes out any initial Cronin enhancement not only on
the level of single parton distribution functions but also
on the level of particle spectra. We have checked that
this behaviour is generic by evolving different initial con-
ditions corresponding to different initial amounts of en-

hancement. We note that in calculations of the gluon pro-
duction in p–A in the eikonal approximation [13, 25, 26],
the gluon distribution h rather than φ enters the right
hand side of (7), but no similar statement exists of
nucleus-nucleus collisions. We have checked that the re-
sults using φ are very close to those shown in Fig. 3. More
generally, the expressions (7) and (8) are based on rather
strong approximations discussed in Ref. [10]. However,
our conclusion about the disappearance of Cronin en-
hancement during QCD evolution is likely to persist in
more refined ways of calculating particle spectra, since
it is rooted directly in the rapidity dependence of gluon
distributions.

FIG. 3: Ratios RpA and RAA of gluon yields in p–A (upper
plot) and A–A (lower plot) for BK evolution, with MV as
initial condition with Q2

s = 0.1 GeV2 for p and 2 GeV2 for A.
Lines from top to bottom correspond to y = 0, 0.05, 0.1, 0.2,
0.4, 0.6, 1, 1.4 and 2.

We now comment on a recent formal argument [11]
which - in contrast to our numerical findings - suggests
that Cronin enhancement survives the non-linear evolu-
tion. It is based on the observation that at very short dis-
tances r → 0, the dipole amplitude N(r) is not affected
by evolution. Thus, the integral of the gluon distribution
function φ over the transverse momentum is expected to
be rapidity independent,

∫

d2k φ(k) =
1

r2
N(r)|r=0 . (9)

One thus obtains the sum rule
∫

d2k φA(k, y) = A1/3

∫

d2k φp(k, y) (10)

valid for any rapidity, since it is satisfied by the initial
condition φMV . Since the nonlinear evolution leads to
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the depletion of the gluon distribution φA(k) relative to
A1/3φp(k) at low momenta, it must follow that in some
range of momenta this effect is compensated by enhance-
ment of φA. Similar arguments can be made about the
distribution h and also about the gluon yield in p–A and
A–A collisions.

However, this argument breaks down since the quan-
tity defined in Eq. (9) is infinite. As such Eq. (10) relates
only the divergent parts of the integrals which are dom-
inated by ultraviolet, and carries no information about
possible behaviour at finite momentum. To be more spe-
cific, we use the scaling property φ(k, y) = φ(k/Qs(y))
of the solution of the BK equation established above.
It is known that the ratio of the saturation momenta
for any two solutions is preserved by the BK evolution
[20, 21, 22]. For our two solutions representing a nu-

cleus and a nucleon, this implies
QA

s (y)
Qp

s(y)
= A1/6. We now

rewrite the sum rule (10) by regulating the divergent in-
tegrals with a large but finite UV cutoff aQA

s (y),

∫ a2(QA
s )2

0

d2kφA(k, y) = (QA
s )2

∫ a2

0

d2ρφ(ρ) (11)

= A1/3(Qp
s)

2

∫ a2

0

d2ρφ(ρ) = A1/3

∫ a2(Qp
s)2

0

d2kφp(k, y) .

In the formal limit a → ∞, we recover Eq. (10). How-
ever, since QA

s ≫ Qp
s, the regularized sum rule (11) is

easily satisfied even if the nuclear distribution is sup-
pressed relative to that of a single nucleon uniformly at
all momenta. Thus, the sum rule (10) carries no infor-
mation about either presence or absence of the Cronin
enhancement.

In summary, we have found that the nonlinear QCD
evolution to high energy is very efficient in erasing any
Cronin type enhancement which may be present in the
initial conditions. For realistic initial conditions this dis-
appearance occurs within half a unit of rapidity. We
note that in our units the evolution from 130 GeV to
200 GeV corresponds to δy ≃ 0.1 for αs = 0.2, and
thus is not sufficient to completely eliminate an initial
enhancement at central rapidity. For forward rapidity,
δy is greater. The evolution to the LHC energy corre-
sponds to δy ∼ 1. Thus the BK evolution suggests the
reduction of the Cronin effect in d–Au for forward ra-
pidities at RHIC and it predicts the disappearance of the
Cronin effect for p–A collisions at LHC.
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