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1. Introduction

Generalized dimensional reductions of higher-dimensional supergravity [1] and superstring

theories [2] provide elegant and efficient mechanisms for supersymmetry breaking. In short,

the periodicity conditions in the compact extra dimensions can be ‘twisted’ by an R-

symmetry of the higher-dimensional action. This induces four-dimensional gravitino mass

terms and breaks the supersymmetries that do not commute with the twist, without gener-

ating a four-dimensional vacuum energy. Also M-theory and superstring compactifications

with branes, orientifolds and fluxes (for a review and an extensive list of references, see

e.g. [3]) can be related with twisted tori by suitable dualities [4, 5]. The above theoret-

ical constructions can play a rôle in solving some crucial problems of higher-dimensional

supergravity and superstring theories: vacuum selection, supersymmetry breaking, moduli

stabilization, generation of hierarchies. The corresponding D = 4 effective theories are
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gauged extended (N > 1) supergravities,1 where a subgroup of the isometry group of the

scalar manifold (which includes the R-symmetry group) is promoted to a local invariance.

It has been known for quite some time that generalized dimensional reductions of D =

11 [6] or minimal D = 10 [7] supergravity give rise to gauged N = 8 [8] or N = 4 [9] D = 4

supergravities, and that daughter theories with a lower number of supersymmetries can be

obtained by suitable orbifold projections. Systematic investigations of the effective gauged

D = 4 theories have recently been performed starting from N = 8 [10, 11] or N = 2 [12]

supergravities; many results have been obtained also for theN = 4 theories [13, 14] that are

the focus of the present paper. Indeed, even in the case of N = 1 orbifolds of superstrings

or M-theory, the effective D = 4 superpotential for the light (bulk) states coming from the

untwisted sector can be associated with the gauging of the underlying N = 4 theory [15].

The goal of the present paper is to consider generalized dimensional reductions of

pure N = 4, D = 5 ungauged supergravity [16, 17], and to derive explicitly lagrangian

and transformation laws for the resulting low-energy theory, a gauged N = 4, D = 4

supergravity coupled to a single vector multiplet. Such a theory can be legitimately called

the minimal N = 4 no-scale model, in analogy with the minimal no-scale models with

N = 1 [18] and N = 2 [19] constructed long ago. It is also the minimal N = 4 no-

scale model that allows for the partial breaking to N = 2, whereas partial breaking to

N = 3 or N = 1 requires the presence of additional vector multiplets [20]: we will see that

the minimal N = 2 no-scale model with partial breaking [21], which contains one vector

multiplet and one hypermultiplet, corresponds to a consistent Z2 orbifold projection of

our minimal N = 4 no-scale model [22]. The choice of N = 4 for our detailed study is

motivated not only by the need of filling a gap in the existing literature, but also by the

fact that N = 4 is the minimal amount of supersymmetry shared by all stable superstring

theories, and their corresponding supergravities, in D = 10. Within N = 4 theories, the

choice of D = 5 as the starting point for the generalized dimensional reduction allows

for minimality (when no D = 5 vector multiplets are included) as well as for maximum

generality (when an arbitrary number of D = 5 vector or tensor multiplets are included),

and prepares the ground for further discussions of the minimal Randall-Sundrummodel [23]

with extended supersymmetry [24], which is based on a pure gauged N = 4, D = 5

supergravity [17, 25].

The paper is organized as follows. In section 2 we briefly recall the field content and

the symmetries of pure, ungauged N = 4, D = 5 supergravity. In section 3 we derive the

ungauged N = 4, D = 4 effective supergravity, coupled to a single vector multiplet, that

originates from standard dimensional reduction. In particular, we identify the ‘electric’

subgroup of the D = 4 duality group that acts linearly on the gauge potentials and on

the scalar fields. The gauged N = 4, D = 4 supergravity, originating from the pure

ungauged D = 5 theory by generalized dimensional reduction, is derived in section 4.

Twisting the periodicity conditions by an R-symmetry transformation, controlled by two

independent parameters, does not generate a potential, and leads to N = 4 no-scale models

1Throughout this paper, we shall count the number of supersymmetries in any dimension in terms of

the equivalent number N of four-dimensional supersymmetries.
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with spontaneous breaking of half or all of the supersymmetries. As already stressed in

similar contexts [20, 4, 10, 11], the effective N = 4, D = 4 gauged supergravity does not

fit the standard classification [26]: the reason is that formulations of the theory that are

equivalent, in the ungauged case, via duality transformations, are no longer equivalent in

the gauged case. For completeness, we also discuss the possibility of a non-compact twist,

which generates a positive-definite four-dimensional potential without critical points [27].

In section 5, we explain how our results can be applied to generalized dimensional reductions

of pure N = 4 supergravity from D to D − 1 dimensions, and we discuss the examples of

the non-chiral (2,2) and the chiral (4,0) theories reduced from six to five dimensions. In

the former case, we obtain new ‘flat’ gaugings of N = 4 in D = 5, not included in the

classification of [28], which was limited to gaugings of semisimple and abelian groups. In

the latter case, we generalize the flat gauging of ref. [25] to partial breaking. In section 6

we discuss consistent Z2 orbifold truncations in the presence of the Scherk-Schwarz twist,

and the main features of their N = 2, D = 4 effective theories: we find total or partial

supersymmetry breaking with vanishing potential, in agreement with previous results [21,

22, 12]. In the concluding section, we summarize again our results and we comment on

prospects for further work. Our conventions are explicitly spelled out in appendix A. The

lagrangian and the transformation laws of pure ungauged N = 4, D = 5 supergravity are

recalled in appendix B. The details of the N = 4, D = 4 lagrangian and transformation

laws, relevant to both standard and generalized dimensional reduction, are collected in

appendix C.

2. N = 4, D = 5 ungauged supergravity

The field content of pure N = 4, D = 5 supergravity, whose ungauged version was first

constructed in [16, 17], is just the gravitational multiplet: one graviton gMN , four gravitinos

ψMa, five plus one vectors V i
M + vM , four spin-1/2 fermions χa and one real scalar φ. The

automorphism group of theN = 4, D = 5 supersymmetry algebra (R-symmetry) is USp(4).

Fields with indices a = 1, . . . , 4 and i = 1, . . . , 5 transform in the 4 and 5 irreducible

representations, respectively; all the other fields are singlets. In a schematic notation

that will be convenient in the following, we summarize the content of the gravitational

multiplet as:

D=5[1, 4, 5 + 1, 4, 1]N=4m=0 . (2.1)

The numbers in brackets count the representations of different ‘spin’, with the latter de-

creasing from left to right in steps of 1/2. The subscript ‘m=0’ recalls that we are dealing

with a massless multiplet. Further details on our conventions can be found in appendix A.

The lagrangian and the supersymmetry transformations are collected in appendix B.

Before moving to the study of standard and generalized dimensional reductions to

D = 4, it is useful to recall the local and global symmetries of the D = 5 theory. The

local symmetries are general coordinate transformations, N = 4 supersymmetry and a

U(1)6 gauge invariance, associated with the six vector fields and with respect to which no

fields are charged. The global symmetry of the theory, or ‘U -duality’ group, is in this case

USp(4) × SO(1, 1). It is an electric subgroup of the D = 4 Sp(14,R) duality group acting
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on the space of the vector field strengths and their duals [29], in the sense that it acts

linearly on the vector potentials. The action of SO(1, 1) on the fields is:

V i
M → e−λ V i

M , vM → e2λ vM , φ→ φ+
√
6λ , (2.2)

while USp(4) ∼ SO(5) acts canonically on the a and i indices.

If we couple N = 4, D = 5 pure supergravity to n vector multiplets, the U -duality

group is enlarged to SO(5, n)× SO(1, 1), and the scalar manifold becomes:

SO(5, n)

SO(5)× SO(n)
× SO(1, 1) . (2.3)

In this case, the combination of generators used for the twist and giving rise to a flat D = 4

gauging can be embedded in the maximal compact subgroup of SO(5)× SO(n). However,

switching on the SO(n) sector does not increase the possibilities for supersymmetry break-

ing via generalized dimensional reduction, it just increases the dimension of the D = 4

gauge group.2 Moreover, some of the resulting non-minimal N = 4 no-scale models have

already been constructed as truncations of gauged N = 8 theories [13, 14]. For these rea-

sons, in the following we will focus on the minimal model (n = 0), corresponding to pure

N = 4, D = 5 supergravity.

3. Standard dimensional reduction

We now describe the salient features of the standard dimensional reduction of the N = 4,

D = 5 theory. For this purpose, we consider only the kinetic and Chern-Simons terms of

the D = 5 lagrangian eq. (B.1):

e−15 Lkin5 = −R5 −
1

2
∂Mφ∂

Mφ− 1

4
X4vMNv

MN − 1

4
X−2V i

MNV
MN
i −

−1

8
e−15 εMNRSTV i

MNV
i
RSvT −

i

2
ψ
a
Mγ

MNRDNψRa +
i

2
χaγMDMχa . (3.1)

The first step is to decompose the fields with five-dimensional indices into fields with four-

dimensional indices:

E A
M =

(
ρ−1/2eαµ ρAµ

0 ρ

)
, ψMa =

(
ψµa
ψya

)
, V i

M =

(
V i
µ

V i
5

)
, vM =

(
vµ
v5

)
.

(3.2)

We can then assume that the zero modes do not depend on the fifth coordinate y and

perform the following field redefinitions:

ψaµ = ρ−1/4ηaµ +

(
Aµ +

i

2
ρ−3/2γ̂γµ

)
ψay ,

ψya = ρ5/4ψ′ya , χa = ρ1/4χ′a ,

V i
µ = Bi

µ + V i
5Aµ , vµ = bµ + v5Aµ ,

t = ρX−2 , τ = v5 , ϕ0 =
√
2 ρX , ϕi = V i

5 . (3.3)

2More possibilities arise only when considering N = 4, D = 4 gaugings [20, 10, 11, 13, 14] that cannot be

originated just by Scherk-Schwarz reductions of N = 4 theories, but require instead generalized dimensional

reductions of N = 8 theories combined with a Z2 orbifold that explicitly breaks half of the supersymmetries.
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The first two lines allow us to ‘ortho-normalize’ the D = 4 fermionic kinetic terms, the

third one avoids mixing terms of the form ‘V µνAµ∂νϕ’, and the last one makes the duality

invariance of the scalar sector manifest.

After moving from the field basis (eαµ , ψµ, ψy, χ, V
i
µ, vµ, Aµ, V

i
5 , v5, ρ, φ) to the field ba-

sis (eαµ , ηµ, ψ
′
y, χ
′, Bi

µ, bµ, Aµ, ϕ
i, τ, ϕ0, t), the part of the reduced lagrangian coming from

eq. (3.1) reads:

e−14 L = −R4 −
1

2

∂µt∂
µt+ ∂µτ∂

µτ

t2
− ∂µϕ0∂

µϕ0 + ∂µϕi∂
µϕi

ϕ20
−

−1

4
t
(
Bi
µν + ϕiAµν

)2 − 1

8

ϕ20
t

(bµν + τ Aµν)
2 − t ϕ20

8
AµνA

µν −

−τ
8
e−14 εµνρσ

(
Bi
µν + ϕiAµν

) (
Bi
ρσ + ϕiAρσ

)
−

−ϕ
i

4
e−14 εµνρσbµν

(
Bi
ρσ +

1

2
ϕiAρσ

)
−

− i
2
ηaµγ

µνρDνηρ a +
i

2
χaγµDµχa +

3

4
i ψ

a
yγ

µDµψy a + · · · , (3.4)

where the dots stand for interaction terms and the primes in eq. (3.3) have been suppressed.

The lagrangian can be rewritten more compactly as:

e−14 L = −R4 −
1

2

∂µt∂
µt+ ∂µτ∂

µτ

t2
− ∂µϕ0∂

µϕ0 + ∂µϕi∂
µϕi

ϕ20
−

−1

4
gIJ F

I
µνF

J µν − 1

8
e−14 θIJ ε

µνρσF I
µνF

J
ρσ −

− i
2
ηaµγ

µνρDνηρ a +
i

2
χaγµDµχa +

3

4
i ψ

a
yγ

µDµψy a + · · · , (3.5)

where the field strengths F I
µν (I = 1, . . . , 7) are defined through

F I
µν = 2 ∂[µB

I
ν] , BI

µ = (Bi
µ, bµ, Aµ) , (3.6)

and the symmetric field-dependent matrices gIJ and θIJ are:

gIJ =




t δij 0 t ϕi

0
ϕ20
2 t

τ ϕ20
2 t

t ϕj
τ ϕ20
2 t t ϕi ϕ

i +
τ2 ϕ20
2 t +

t ϕ20
2




, (3.7)

θIJ =




τ δij ϕi τ ϕi

ϕj 0 ϕi ϕ
i

2

τ ϕj
ϕi ϕ

i

2 τ ϕi ϕ
i




. (3.8)
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Notice that the metric gIJ , which controls the vector kinetic terms, is a positive-definite

and non-singular symmetric matrix for all the allowed scalar field configurations (ϕ0 > 0,

t > 0, ϕi ∈ R and τ ∈ R).

The reduced theory is a USp(4), N = 4, D = 4 supergravity coupled to one vector

multiplet. In the schematic notation of eq. (2.1), we can write its spectrum as:

D=4[1, 4, 6, 4, 2]
N=4
m=0 + D=4[0, 0, 1, 4, 6]

N=4
m=0 . (3.9)

The eight scalar fields (one coming from the metric, six coming from the vector fields and

the D = 5 dilaton) parametrize the coset manifold:

SU(1, 1)

U(1)
× SO(6, 1)

SO(6)
. (3.10)

The first factor is a Kähler manifold, parametrized by the complex scalar

T = t+ i τ , (t, τ ∈ R) , (3.11)

with a Kähler potential

K = − log(T + T ) , (3.12)

which implies (remembering our convention for the Einstein term) the kinetic term:

−2KTT (∂µT )(∂
µT ) = −1

2

(∂µt)(∂
µt) + (∂µτ)(∂

µτ)

t2
. (3.13)

The second factor is the scalar manifold of the real fields (ϕ0, ϕi).

The U -duality group of the reduced theory is SU(1, 1)×SO(6, 1). It is associated with

a solvable Lie algebra, which can be decomposed as follows:

SU(1, 1) = SO(1, 1) + 1+ + 1− ,

SO(6, 1) = SO(1, 1) + SO(5) + 5+ + 5− . (3.14)

The U -duality group is not completely embedded in the electric subgroup of the full duality

group Sp(14,R), acting on the seven field strengths and their duals. As a result, only part

of the U -duality group can be gauged. In particular, the transformations associated with

the generators 1− and 5− do not have a well-defined action on the elementary fields. As

long as the theory remains ungauged, however, Sp(14,R) transformations can be used to

connect different equivalent formulations of the same theory: besides the USp(4) of this

paper, known examples are the SO(4) of [30] and the SU(4) of [31].

The non-trivial global symmetries of the theory with a well-defined action on the

elementary fields are the 5++1+ translations, the two dilatations and the SO(5) ∼ USp(4)

transformations.

The 5++1+ translations derive from the U(1)6 gauge symmetry of the D = 5 theory.

Their action on the ‘axions’ is then

τ → τ + α6 , ϕi → ϕi + αi . (3.15)

– 6 –
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The vectors transform as

bµ → bµ − α6Aµ , Bi
µ → Bi

µ − αiAµ , (3.16)

where we used the definitions of (bµ, B
i
µ) and the fact that (vµ, V

i
µ) do not transform. The

scalar sector is explicitly invariant. Since

δ (bµν + τ Aµν) = 0 , δ (Bi
µν + ϕiAµν) = 0 , (3.17)

it is easily shown that also the other terms are invariant, up to total derivatives coming

from the Chern-Simons term.3

The two dilatations act on the scalar fields as follows:

t→ βt , τ → βτ , ϕ0 → γϕ0 , ϕi → γϕi , (3.18)

and the invariance of the scalar sector is manifest. The invariance of the whole lagrangian

is obtained by requiring that the vector fields transform as

Bi
µ → β−1/2Bi

µ , bµ → β1/2 γ−1 bµ , Aµ → β−1/2 γ−1Aµ . (3.19)

Notice that the double SO(1, 1) is a symmetry of only the reduced theory, and it is

not valid when the Kaluza-Klein modes are retained, unless γ = β−1/2: in this case, the

five-dimensional SO(1, 1) symmetry of eq. (2.2) is recovered.

Finally, the invariance under the SO(5) ∼ USp(4) symmetry is manifest.

Summarizing, the reduced action is invariant under the global symmetry {[USp(4) ×
SO(1, 1)]sT 5} × [SO(1, 1)sT ], with a semidirect product structure, and under the local

U(1)7 group, with respect to which, however, no field is charged.

4. Generalized dimensional reduction

In the previous section we have identified the N = 4 supergravity, coupled to one vec-

tor multiplet, obtained from the pure ungauged D = 5 theory by standard dimensional

reduction. In particular, we have observed that the ungauged theory does not have the

form of the known SO(4) and SU(4) theories, but it is equivalent to them via a duality

transformation. However, as argued in [20, 4, 10, 11], inequivalent formulations of gauged

supergravities can be obtained by considering different embeddings of the U -duality group

in the full duality group Sp(14,R). We can then use the Scherk-Schwarz mechanism to ob-

tain a new N = 4, D = 4 gauged supergravity. We are going to find, in analogy with [10],

two remarkable properties. First, if the twist belongs to USp(4) the supergravity gauging

corresponds to a flat but non semisimple group, which guarantees a vanishing scalar poten-

tial at the minimum. Moreover, a four-dimensional Chern-Simons term is automatically

generated by the generalized reduction, thus preserving the consistency of the theory.

3As will be clear later, this is the reason why the gauging of shift symmetries requires extra Chern-Simons

terms to be added to the D = 4 lagrangian.
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The Scherk-Schwarz reduction is performed by imposing generalized periodicity con-

ditions on the fields:

Φ(x, y + 2πr) = U Φ(x, y) , (4.1)

where U is a constant matrix corresponding to a symmetry of the five-dimensional theory.

For the moment we consider only the case U ∈ USp(4). The case of a non-compact twist

U ∈ SO(1, 1) will be discussed separately at the end of this section: as we will see, in such a

case a positive-definite scalar potential without critical points is generated, and the theory

has no D = 4 maximally symmetric vacuum.

Since USp(4) has rank two, we can parametrize the twist U as

U = exp

[
i

(
α1
Y

2
+ α2

T3
2

)]
, (4.2)

where Y and T3 are two representative generators in the Cartan subalgebra of USp(4),

whose explicit representation is given in appendix A, and α1,2 ∈ R. Following the standard

procedure, we reparametrize the twisted fields in terms of periodic ones:

Φ(x, y) ≡ U(y) Φ̃(x, y) , Φ̃(x, y) = Φ̃(x, y + 2πr) , (4.3)

U(y) = exp

[
i y

2πr

(
α1
Y

2
+ α2

T3
2

)]
= exp

[
iy

(
m1

Y + T3
2

+m2
Y − T3

2

)]
≡ eiyM . (4.4)

For simplicity, tildes will be dropped from now on, and fields will always be understood

to be periodic.

With respect to the standard reduction, the generalized one produces extra terms in

the D = 4 effective lagrangian, proportional to

U−1(y) ∂y U(y) = i M . (4.5)

In our conventions, the explicit representations of the mass matrix M , acting respectively

on the 4 and the 5 of USp(4), are:

M4 = diag (m1 σ3 ,m2 σ3) , (4.6)

M5 = diag [(m1 +m2)σ2 , (m1 −m2)σ2 , 0] . (4.7)

Some of the extra contributions to the D = 4 lagrangian correspond to fermion mass terms.

The remaining ones can be consistently organized to describe the ‘gauging’ of the N = 4

theory: the upgrade of a subgroup of the global U -duality group of the D = 4 theory to a

local invariance. The gauge group, however, is not the direct product of simple and abelian

factors. It can be identified with the semidirect product of the U(1) ⊂ USp(4) associated

with the twist U , and four translations: U(1) s T 4. The associated Lie algebra is defined

by the commutation relations:

[
Xî, X7

]
= f ĵ

î 7
Xĵ ,

[
Xî, Xĵ

]
= 0 ,

f ĵ
î 7

= iM ĵ

î
, (4.8)
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where î = 1 . . . 6, M k̂
l̂
= diag [(M5)

k
l, 0], X7 is the twist generator (with vector potential

Aµ), and the Xi are the generators of 5
+ (with vector potentials Bi

µ). Notice that only four

independent Xi enter non-trivially in the Lie algebra, as the fifth one commutes with the

twist. Moreover, the generator X6 of 1+ always remains ungauged, since it belongs to the

SU(1, 1) sector, which does not carry charges with respect to USp(4). In the gauged theory,

according to the algebra of eq. (4.8), covariant derivatives replace the ordinary derivatives

of the ungauged theory, and covariant field strengths are modified accordingly:

D̂µϕ
i = ∂µϕ

i − i(M5)
i
j (Bj

µ + ϕj Aµ) ,

B̂i
µν = (∂µB

i
ν − ∂νBi

µ)− i(M5)
i
j (AµB

j
ν −Bj

µ Aν) ,

D̂µχa = ∂µχa − iAµ (M4)
b
a χb ,

D̂µην a = ∂µην a − i Aµ (M4)
b
a ην b ,

D̂µψy a = ∂µψy a − i Aµ (M4)
b
a ψy b . (4.9)

Consequently, the transformation laws under the gauged symmetry, with local parameters

ΞI (I = 1, . . . , 7), become:

δϕi = i(M5)
i
j (Ξ

j + ϕj Ξ7) ,

δBi
µ = ∂µΞ

i + i(M5)
i
j (Ξ7 Bj

µ − Ξj Aµ) . (4.10)

Under the gauged symmetry, the θIJ matrix of eq. (3.8) transforms non linearly. This

would require the addition of an extra Chern-Simons term in order to guarantee the gauge

invariance of the D = 4 theory [32], namely:

−2

3
i d

ı̂ ̂ k̂
M k̂

l̂
εµνρσB ı̂

µB
l̂
νB

̂
ρσ , (4.11)

where d
ı̂ ̂ k̂

is a symmetric SO(5)-invariant tensor, normalized to:

dij6 = di6j = d6ij = −
1

4
δij . (4.12)

As argued in [10], and verified explicitly in the present case, this term is automatically

produced by the generalized dimensional reduction.

The detailed expression of the gauged lagrangian can be found in appendix C. We

display here only its bosonic part:

e−14 LSSbos = −R4 −
1

2

∂µt∂
µt+ ∂µτ∂

µτ

t2
− ∂µϕ0∂

µϕ0 + D̂µϕiD̂
µϕi

ϕ20
−

−1

4
gIJ F̂

I
µν F̂

J µν − 1

8
e−14 θIJ ε

µνρσF̂ I
µν F̂

J
ρσ −

−2

3
i d

ı̂ ̂ k̂
M k̂

l̂
εµνρσB ı̂

µB
l̂
νB

̂
ρσ . (4.13)

For generic values of m1 and m2, the gauging of the four translations allows us to shift

away four spin-0 fields: they are absorbed by the corresponding vectors, which acquire a
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mass matrix proportional to M5. For |m1| = |m2|, only two spin-0 fields are absorbed by

the vectors gauging the euclidean group on the plane, U(1) s T 2.
In the fermionic sector, besides the covariantization of derivatives and field strengths

with respect to the gauged group, mass terms appear, proportional to M4, and a super-

Higgs effect takes place, with the ψya playing the role of goldstinos. This can be deduced,

for instance, by looking at the inhomogeneous terms in the supersymmetry transformations

of eq. (C.4).

Depending on the specific choice of the mass parameters m1 and m2 appearing in

the twist matrix, it is possible to break supersymmetry partially (N = 2) or completely

(N = 0). We summarize the spectrum for the different cases in our short-hand notation:

m1 6= m2 = 0 : [1, 2, 1, 0, 0]N=2m=0 +
{
2× [0, 1, 2, 1, 0]N=2m6=0

}
+ 2× [0, 0, 1, 2, 2]N=2m=0 ,

|m1| 6= |m2|,m1m2 6= 0 : [1m=0, 4m6=0, 4m6=0 + 3m=0, 4m6=0, 4m=0]
N=0 ,

|m1| = |m2| 6= 0 : [1m=0, 4m6=0, 2m6=0 + 5m=0, 4m6=0, 6m=0]
N=0 .

In the partially broken case, beside the gravitational multiplet and two vector multiplets

of N = 2, we can recognize a massive N = 2 BPS short multiplet of spin 3/2 [33].

The spectrum of the theory can be easily extracted from the lagrangian in eq. (C.1).

For the bosonic sector, it is useful to observe that the kinetic terms for the vector fields

are diagonal in the basis of the V î
µ = B î

µ + ϕîAµ:

−1

4
t V

i
µνV

µν
i − 1

4

ϕ20
2 t

vµνv
µν − 1

4

ϕ20 t

2
AµνA

µν , (4.14)

through covariantization with respect to the vector metric gIJ :

V
î
µν ≡ 2D[µV î

ν] ,

DµV
î
ν ≡ ∂µV

î
ν − (∂µϕ

î) Aν + i(M5)
î
ĵ
V ĵ
µAν = ∂µV

î
ν − (Dµϕ

î) Aν . (4.15)

The spectrum is twice degenerate and reads:

spin 3/2 (η1...4µ ) :
2

tϕ20
m2
1,2 ,

spin 1 (V 1...4µ ) :
2

tϕ20
(m1 ±m2)

2 ,

spin 1/2 (χ1...4) :
2

tϕ20
m2
1,2 ,

from which we can check the N = 4 mass sum rule Str M2 = 0.

4.1 Non-compact SO(1, 1) twist

If non-compact generators are used to perform the Scherk-Schwarz reduction, non-flat gaug-

ings are generated [1], with a positive-definite four-dimensional potential without critical

points. This is the case if we use the non-compact SO(1, 1) in the U -duality group for the

twist, in analogy with [27].
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Given the SO(1, 1) field transformations in eq. (2.2), we obtain the following relations

between periodic (with tildes) and non-periodic (without tildes) fields:

V i
M = eΛ y Ṽ i

M , vM = e−2Λ y ṽM , X = eΛ y X̃ . (4.16)

After the SO(1, 1) generalized dimensional reduction, and removing the tildes as usual,

we get the following D = 4 bosonic lagrangian:

e−14 L
SO(1,1)
bos = −R4 −

1

2

DµtD
µt+DµτD

µτ

t2
− Dµϕ0D

µϕ0 +DµϕiD
µϕi

ϕ20
−

−1

4
gIJ F̂

I
µν F̂

J µν − 1

8
e−14 θIJε

µνρσF̂ I
µν F̂

J
ρσ −

−1

6
e−14 Λ CIJK εµνρσBI

µB
J
ν F̂

K
ρσ −

6Λ2

tϕ20
, (4.17)

where the coefficients CIJK are fully symmetrized. The non-vanishing independent ones

are identified by

Ci67 = ϕi , Cij6 = −δij , C677 = ϕ2i . (4.18)

The scalar covariant derivatives are

Dµϕ0 = (∂µ − ΛAµ)ϕ0 , Dµϕ
i = ∂µϕ

i − Λ
(
Bi
µ + ϕiAµ

)
,

Dµt = (∂µ + 2ΛAµ) t , Dµτ = ∂µτ + 2Λ (bµ + τAµ) , (4.19)

and the covariant field strengths are

F̂ i
µν = Bi

µν − Λ
(
AµB

i
ν −Bi

µAν

)
,

F̂ 6µν = bµν + 2Λ (Aµbν − bµAν) ,

F̂ 7µν = Aµν . (4.20)

From eq. (4.17), we see that the SO(1, 1) twist produces a positive-definite, non-vanishing

scalar potential without critical points, which does not admit maximally symmetric D = 4

vacua.

In the fermionic lagrangian, all the field strengths and the scalar derivatives become

covariant as described above. The fermions remain neutral with respect to these gauge

interactions, but acquire a field-dependent mass term controlled by the scalar potential:

−1

2

(
6Λ2

tϕ20

)1/2
η̄aµγ̂γ

µχa . (4.21)

The theory now has a non-abelian gauge group, which is the semidirect product of

the six translations (Bi
µ, bµ) and the dilatation (Aµ), namely SO(1, 1) s T 6. All the seven

vectors acquire a field-dependent mass term proportional to the potential, absorbing the

corresponding seven spin-0 fields. The surviving scalar, associated with the ungauged

SO(1, 1), has a runaway behaviour described by the potential of eq. (4.17).
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5. N = 4, D ≥ 6 reductions

The discussion given in section 4 can be extended to higher dimensions. Starting from a

N = 4 pure ungauged supergravity in D dimensions, by generalized dimensional reduction

we can obtain a minimal4 no-scale model in D−1 dimensions. However, this strategy works

only for D ≤ 8, where there is a non-trivial R-symmetry for the twist. As an example,

in this section we will show that from the generalized reduction of an ungauged N = 4,

D = 6 pure supergravity we can obtain some new N = 4, D = 5 gauged supergravities,

spontaneously broken to N = 2 or N = 0. These theories were not considered in a previous

classification [28] that concentrated on semisimple and abelian gaugings. Analogous results

have recently been found [34] for theN = 8 andN = 2 cases, and the present discussion will

complete that analysis. Since there exist two inequivalent N = 4, D = 6 supergravities, the

non-chiral one, or (2,2) [35], and the chiral one, or (4,0) [36], we now discuss them in turn.

We then conclude the section with a brief discussion of the remaining cases, D = 7 → 6

and D = 8→ 7, which complete the analysis of such gaugings for minimal N = 4 theories.

5.1 Reduction of D = 6 (2,2) supergravity

The R-symmetry of the D = 6 (2,2) non-chiral supergravity is USp(2) × USp(2). The

scalar manifold of the generic theory with n vectors is:

SO(4, n)

SO(n)× SO(4)
× SO(1, 1) , (5.1)

which reduces to SO(1, 1) in the pure n = 0 case. The U -duality group is then SO(1, 1) ×
SO(4) [with SO(4) ∼ SO(3) × SO(3) ∼ USp(2) × USp(2)]. The two-parameter twist can

be constructed with two generators of SO(4), one for each USp(2) subgroup. The (2,2)

gravitational multiplet is:

D=6[1, (2, 1) + (1, 2), (2, 2) + (1, 1), (2, 1) + (1, 2), 1]N=4m=0 , (5.2)

where we have made explicit the representations under USp(2) × USp(2), and the spin-

1 (1,1) entry is actually an antisymmetric 2-form (or equivalently one self-dual and one

anti-self-dual tensor).

The 2-form is inert under the R-symmetry, and after reduction toD = 5 it produces one

vector and one 2-form, which in D = 5 can be dualized to another vector. The remaining

four vector fields are all charged and participate in the gauging of the U(1) s T 4 group,

with the graviphoton e 6̂
M associated with the U(1) factor. The embedding of the gauged

group can be easily understood by looking at the decomposition of the N = 4, D = 5

U -duality algebra:

SO(1, 1) × SO(5, 1)→ SO(1, 1) + SO(1, 1) + SO(4) + 4+ + 4− . (5.3)

4As we will see below, in six dimensions there exist two different N = 4 theories, and only one of them

gives the ‘minimal’ D = 5 no-scale model.
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We thus get the following D = 5 theories:

m1 6= m2 = 0 : [1, 2, 1, 0, 0]N=2m=0 +
{
2× [0, 1, 2, 1, 0]N=2m6=0

}
+ 2× [0, 0, 1, 2, 1]N=2m=0 ,

|m1| 6= |m2|,m1m2 6= 0 : [1m=0, 4m6=0, 4m6=0 + 3m=0, 4m6=0, 2m=0]
N=0 ,

|m1| = |m2| 6= 0 : [1m=0, 4m6=0, 2m6=0 + 5m=0, 4m6=0, 4m=0]
N=0 , (5.4)

where the N = 2 and N = 0 cases are obtained by appropriate choices of the twist param-

eters in the two USp(2). The masses of fermions and vectors have the same dependence

on the twist parameters as in the D = 4 case.

5.2 Reduction of D = 6 (4,0) supergravity

Pure N = 4, D = 6 chiral supergravity is anomalous, and extra multiplets have to be

added to obtain a consistent theory. The choice is unique [36] and consists in adding 21

antisymmetric tensor multiplets. This produces a theory with the following field content:

D=6[1, 4, 5
−, 0, 0]N=4m=0 + 21× D=6[0, 0, 1

+, 4, 5]N=4m=0 . (5.5)

The spin-1 entries 5− and 1+ are (anti) self-dual tensors, transforming in the 5 and in the

1 of USp(4), respectively. The theory then has 105 scalars, parametrizing the manifold:

SO(5, 21)

USp(4)× SO(21)
. (5.6)

We could perform a Scherk-Schwarz twist with a generator in the maximal compact sub-

group of the U -duality group, namely USp(4)×SO(21). However, we consider only a twist

in the USp(4) factor, since a twist in SO(21) does not break supersymmetry. Notice also

that no vectors are present in this D = 6 theory, and that the only spin-1 fields charged

under USp(4) are anti-self-dual tensors. This means that in the present example there

are no shift symmetries to be gauged. Indeed, the only gauged symmetry can be a U(1)

subgroup of USp(4), via the vector potential e 6̂
M . The generalized reduction can then be

performed as in the D = 5 case, by choosing the twist of eq. (4.4). In the D = 5 reduced

theory, the fermions in the 4 of USp(4) acquire mass as in the D = 4 case. Four of the 5−

tensors transform into two complex D = 5 tensors (2c) with masses m1 ±m2. The other

22 tensors remain massless and neutral, so that they can be dualized to D = 5 vectors.

Finally, the scalars acquire a potential, which vanishes at its minimum. The potential has

21 flat directions, corresponding to 21 massless scalars. The other 42+42 scalars acquire

instead a mass m1 ±m2.

In terms of D = 5 multiplets, the spectrum can be summarized as follows:

m1 6= m2 = 0 : [1, 2, 1, 0, 0]N=2m=0 + [0, 2, 2c, 0, 0]N=2m6=0 + 22× [0, 0, 1, 2, 1]N=2m=0 +

+21× [0, 0, 0, 2, 4]N=2m6=0 ,

|m1| 6= |m2|,m1m2 6= 0 : [1m=0, 4m6=0, 2
c
m6=0 + 23m=0, 84m6=0, 84m6=0 + 21m=0]

N=0 ,

|m1| = |m2| 6= 0 : [1m=0, 4m6=0, 1
c
m6=0 + 25m=0, 84m6=0, 42m6=0 + 63m=0]

N=0 , (5.7)

where the massive fields are also charged with respect to the local U(1) ⊂ USp(4).
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We notice finally that, starting from the (anomalous) pure D = 6 (4,0) supergravity,

or performing a consistent truncation of the reduced theory, it is possible to recover the

flat pure D = 5 gauged theory of [25]. This happens because the reduction of the pure

(4,0) theory does not produce extra matter in D = 5. In particular, we can obtain the flat

case of [25] by setting m1 = m2. However, we can also choose m1 6= m2, which leads to

two massive complex anti-self-dual tensors. In particular, the case m2 = 0 gives partial

breaking of supersymmetry. All this generalizes the minimal N = 4, D = 5 no-scale model

given in [25].

5.3 Reductions from D = 7 and D = 8

We complete the higher-dimensional case with a brief discussion of D = 7 and D = 8. In

pure N = 4, D = 7 supergravity, we have the global USp(2) × SO(1, 1) group, and the

gravitational multiplet is:

D=7[1, 2, 12 + 3, 2, 1]N=4m=0 , (5.8)

where we made explicit the USp(2) irreducible representations. The spinors are symplectic

Majorana in D = 7, and the spin-1 singlet (12) is a 2-form. Standard reduction gives a

non-chiral USp(2), N = 4, D = 6 supergravity5 coupled to one vector multiplet:

D=6[1, 2 + 2, 12 + 1 + 3, 2 + 2, 1]N=4m=0 + D=6[0, 0, 1, 2 + 2, 1 + 3]N=4m=0 , (5.9)

with scalar manifold
SO(4, 1)

SO(4)
× SO(1, 1) . (5.10)

The algebra of the duality group decomposes into

SO(1, 1) + SO(1, 1) + USp(2) + 3+ + 3− . (5.11)

After a twist in USp(2), we end up with:

D=6[1m=0, 4m6=0, (12)m=0 + 2m=0 + 2m6=0, 4m6=0, 3m=0]
N=0 , (5.12)

the fermions getting a mass m proportional to the twist, and two vectors getting a mass

2m, via the gauging of the semidirect product U(1) s T 2.
Finally, the D = 8 theory is globally invariant only under SO(2) × SO(1, 1). With

respect to SO(2), the gravitational multiplet can be decomposed as

D=8[1, 1
+, 12 + 2, 1−, 1]N=4m=0 , (5.13)

where (1±) means a complex Weyl spinor charged under U(1) ∼ SO(2). As in the previous

case, the reduced theory is coupled to one vector multiplet:

D=7[1, 2, 12 + 1 + 2, 2, 1]N=4m=0 + D=7[0, 0, 1, 2, 1 + 2]N=4m=0 . (5.14)

The scalar manifold is
SO(3, 1)

USp(2)
× SO(1, 1) , (5.15)

5This USp(2) is the diagonal subgroup of the full D = 6 R-symmetry group, USp(2)×USp(2).
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and the algebra of the duality group decomposes into

SO(1, 1) + SO(1, 1) + U(1) + 2+ + 2− . (5.16)

Again, a U(1) twist leads to the gauging of the subgroup U(1) s T 2, with matter content

D=7[1m=0, 2m6=0, (12)m=0 + 2m=0 + 2m6=0, 4m6=0, 2m=0]
N=0 , (5.17)

fermions of mass m and vectors of mass 2m.

6. Z2 orbifold

We have seen that generalized dimensional reduction can give either partial or complete

breaking of supersymmetry, but the number of residual supersymmetries is always even, as

the mechanism cannot generate chirality. However, with the additional help of an orbifold

projection, it is also possible to obtain a reduced theory with an odd number of unbroken

supersymmetries. It is then interesting to study how the results obtained in section 4 can

be modified by orbifold projections. With only one internal dimension, it is not restrictive

to consider the Z2 orbifold associated with the parity y → −y, which leaves the classical

D = 5 action invariant. The corresponding action on the fields can be written as:

Φ(xµ,−y) = Z2 Φ(xµ, y) , (6.1)

where for consistency Z2 must square to 1. In the absence of a twist, a consistent assignment

of the Z2 parities to the fields is the following:

eαµ : +

ρ , φ , v5 : +

Aµ , vµ : −
V i
µ : (+,+,−,−,−)
V i
5 : (−,−,+,+,+)

ψµa : (+,−,+,−)
ψya , χa : (−,+,−,+) . (6.2)

In our conventions, the above assignment corresponds to the following Z2 representation:

ψµa(−y) = γ̂ Y b
a ψµb(y) , (6.3)

where Y is the U(1) ⊂ USp(4) generator given in appendix A. All other parity assignments

follow from eq. (6.3), and the other admissible choices for Z2 are physically equivalent.

The standard reduction on the orbifold S1/Z2 produces an unbroken N = 2, D = 4

theory, with one gravitational multiplet [eαµ , ψ
1,3
µ , V 1µ ], one vector multiplet [V 2µ , ψ

2,4
y , V 3,45 ]

and one hypermultiplet [χ2,4, (ρ, φ, v5, V
5
5 )]:

[1, 2, 1, 0, 0]N=2m=0 + [0, 0, 1, 2, 2]N=2m=0 + [0, 0, 0, 2, 4]N=2m=0 . (6.4)
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We are now ready to discuss what happens if the Z2 orbifold projection and general-

ized dimensional reduction are combined. For a consistent space-time interpretation, the

orbifold symmetry Z2 and the twist U must obey the relation:

Z2 U Z2 U = 1 . (6.5)

If we express the twist as U = exp(i T ), we can identify two ways of satisfying eq. (6.5):

either [T,Z2] = 0 or {T,Z2} = 0. In the first case, eq. (6.5) reduces to U 2 = 1, which

discretizes the possible values of the twist T . In the second case, instead, eq. (6.5) is

satisfied for every value of the twist.

In both cases the gauging identified in section 4 is nullified by the orbifold, since the

projection removes the zero mode of Aµ, which gauges USp(4) and is crucial for the non-

abelian character of the algebra in eq. (4.8). However, there is still room for a smaller

abelian group to be gauged. We therefore analyse the two cases in more detail.

To satisfy [T,Z2] = 0, we must search for generators of USp(4) that commute with Y ,

but the most general twist with these properties is the one already analysed in section 4.

To satisfy also U 2 = 1, we must choose α1 ± α2 = 0 (mod. 2π), or, equivalently, m1,2 =

(0,±1)/(2r). If we do so, also the twist acts like a parity, in particular U = Z2 · Z ′2, where
Z2 is the reflection with respect to y = 0 and Z ′2 the one with respect to y = π. This is

equivalent to imposing a Z2×Z ′2 projection on a circle of radius 2r. Choosing for instance

m1 = 0, m2 = 1/(2r), the (Z2 ,Z ′2) parity assignments will be:

eαµ , ρ , φ , v5 ψµa ψya , χA Aµ , vµ V i
µ V i

5

(+,+)




+,+

−,−
+,−
−,+







−,−
+,+

−,+
+,−


 (−,−)




+,−
+,−
−,+
−,+
−,−







−,+
−,+
+,−
+,−
+,+




. (6.6)

This means that the reduced theory is an N = 1, D = 4 unbroken supergravity with one

gravitational multiplet [eαµ , ψµ1] and two chiral multiplets [(ψy2, χ2), (ρ, φ, v5, V
5
5 )]:

[1, 1, 0, 0, 0]N=1m=0 + 2 × [0, 0, 0, 1, 2]N=1m=0 . (6.7)

We can finally move to the more interesting case {T,Z2} = 0. Six generators of USp(4)

have this property, namely those in the coset USp(4)/[SU(2) × U(1)]. We can easily find

two of these generators that commute with each other (and obviously anticommute with

Y ). Without loss of generality we choose:

T31 = −iΓ31 = 1⊗ σ2 ,
T24 = −iΓ24 = σ3 ⊗ σ2 . (6.8)

Our twist then reads:

U = exp

[
i

(
α1
T31
2

+ α2
T24
2

)]
. (6.9)
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The action of the twist gives the same results as those in section 4, but with different

matrices M4,5. In particular, we have now:

M4 = diag
(
m1 σ2 ,m2 σ2

)
,

M5 = diag
(
−(m1 +m2)(σ2)13 , (m1 −m2)(σ2)24 , (0)5

)
, (6.10)

where (σi)ij means a σi matrix taken in the subspace (ij).

The Z2 orbifold projection removes some fields from the reduced theory, in particular

the field Aµ, responsible for the gauging described in section 4. However, only half of

the gauged translations are removed, while the others survive. Observe that the orbifold

preserves only the vectors V 1,2
µ and the scalars V 3,4,55 . However, now the twist connects

1 → 3 and 2→ 4, still allowing the surviving scalars to be gauged. This can be explicitly

checked in the covariant derivative for the scalars, eq. (4.9):

D̂µϕ
3,4 = ∂µϕ

3,4 − i(M5)
3,4
1,2 V

1,2
µ . (6.11)

The mass matrices in eq. (6.10) are non-diagonal, but their squares are:

M2
4 = diag

(
m2
1 ,m

2
1 ,m

2
2 ,m

2
2

)
,

M2
5 = diag

(
(m1 +m2)

2 , (m1 −m2)
2 , (m1 +m2)

2 , (m1 −m2)
2 , 0
)
. (6.12)

The Z2 orbifold projection removes the second and the fourth entry in M4, as well as the

last three entries in M5. The resulting N = 2 theory is spontaneously broken either to

N = 1 or to N = 0, with two independent mass parameters, and inherits the N = 4 mass

sum rule StrM2 = 0.

The spectrum of the N = 4, D = 5 theory, after the orbifold and the partial (m1 6=
0,m2 = 0) or total (m1m2 6= 0) Scherk-Schwarz breaking, reads:

N = 4, D = 5

↓ Z2

[1, 2, 1, 0, 0]N=2m=0 + [0, 0, 1, 2, 2]N=2m=0 + [0, 0, 0, 2, 4]N=2m=0

↓ SS (m1 6= 0,m2 = 0)

[1, 1, 0, 0, 0]N=1m=0 + [0, 1, 2, 1, 0]N=1m6=0 + 2× [0, 0, 0, 1, 2]N=1m=0

↓ SS (m1m2 6= 0)

[1m=0, 2m6=0, 2m6=0, 2m6=0, 4m=0]
N=0

Notice that in the partially broken theory the massive multiplet is a long spin-3/2 multiplet,

because this is the only possibility with N = 1 (the short one, being BPS-charged, requires

an even number of supersymmetries).
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This mechanism, already considered in [22], allows us to break an N = 2 supergravity,

via generalized reduction, with two independent parameters, starting from the Z2 orbifold
of an N = 4, D = 5 theory. The corresponding D = 4 effective theory is the minimal

N = 2 no-scale model with partial breaking of [21].

If we start from N = 8, D = 5 supergravity, we can get a N = 4, D = 4 spontaneously

broken supergravity with four independent mass parameters, recovering the results of [14]

for a type-IIB supergravity compactified on a T 6/Z2 orientifold with fluxes.

7. Conclusions and outlook

In this paper we constructed the minimal N = 4 no-scale model in four dimensions, by gen-

eralized dimensional reduction of pure N = 4, D = 5 supergravity. We explicitly derived

lagrangian and transformation laws of the D = 4 effective theory, a N = 4 supergravity

where a flat, non-semisimple group is gauged, and half or all of the supersymmetries are

spontaneously broken. We found that the Scherk-Schwarz reduction automatically gener-

ates the extra Chern-Simons term that must be added to the D = 4 lagrangian to ensure

gauge invariance. We also studied how this procedure extends to non-compact twists and

to higher dimensions, and found new N = 4 gauged supergravities not included in ear-

lier classifications. Finally, we discussed the consistent orbifold projections of the theory,

recovering the minimal partially broken N = 2 no-scale model of refs. [21, 22].

An interesting extension of the present work would consist in performing a similar

investigation with pure but gauged N = 4, D = 5 supergravity [17, 25] as the starting

point. This may lead to a better understanding of spontaneous supersymmetry breaking

and boundary actions for warped compactifications, in the context of the Randall-Sundrum

model [23] with an underlying N = 4 supersymmetry [24], explicitly broken to N = 2 by

the Z2 orbifold projection.
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A. Conventions

We specify here our conventions on USp(4) transformations and on space-time spinors.

A.1 USp(4): group, algebra and representations

The generic USp(4) group element is defined as 4× 4 complex matrix U ≡ U b
a such that:

U † U = 1 , UT Ω U = Ω , (A.1)
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where Ω ≡ Ωab is for us a real, antisymmetric symplectic metric with upper indices:

Ωab ≡




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 = 12×2 ⊗ iσ2 . (A.2)

The matrix U acts from the left on column, four-component vectors with lower indices,

v ≡ va, as v ′ = U v, or v ′a = U b
a vb. The second equation in (A.1) expresses the

invariance of the symplectic product uT Ω v ≡ ua Ωab vb:

(uT Ω v) ′ = uT (UT Ω U) v = uT Ω v . (A.3)

We can then define symplectic vectors with upper indices by:

ua ≡ Ωab ub , (A.4)

and write the symplectic product as:

uT Ω v = ua Ωab vb = −ub vb ≡ −u v . (A.5)

As a short-hand notation for the symplectic product, we adopt the NW-SE convention

on the contraction of symplectic indices:

u v ≡ ub vb . (A.6)

Our convention on how to lower the indices is set by defining the inverse symplectic

metric with lower indices:

ua ≡ Ωab u
b ⇔ Ωab Ω

bc = Ωcb Ωba = δca . (A.7)

The generators a ≡ a b
a of the USp(4) Lie algebra, defined by U = exp(a), satisfy:

a = −a† , aT Ω+Ω a = 0 . (A.8)

Exploiting the isomorphism Spin(5) ∼ USp(4), the ten USp(4) generators a can be identi-

fied with those of Spin(5), whose elements (Γi)
b

a satisfy the euclidean Clifford algebra

{Γi,Γj} b
a = 2 δij δ

b
a , (A.9)

where i, j = 1, . . . , 5 are the indices6 of Spin(5) and a, b = 1, . . . , 4 are those of USp(4).

Notice that we can define antisymmetric Γ matrices with upper USp(4) indices by:

Γaci ≡ Ωab (Γi)
c

b , Γaci = −Γcai . (A.10)

6We are entitled to use indifferently upper or lower indices of type i, j = 1, . . . , 5; we thus move them

around freely for notational convenience.
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Then, the antisymmetric two-index representation of Spin(5) of dimension 10, with

generators

Γij ≡
ΓiΓj − ΓjΓi

2
, (A.11)

satisfies the algebra of eq. (A.8) automatically. This means that the generic tensor Sa1...an

transforms under USp(4) as

S′a1...an = U b1
a1

. . . U bn
an Sb1...bn , U b

a = exp

(
1

2
αij Γij

) b

a

, (A.12)

where the αij are real coefficients.

The generic USp(4) algebra element with two indices can now be decomposed as

S b
a = S δba + Si (Γi)

b
a + Sij (Γij)

b
a , (A.13)

where

S =
1

4
S a
a , Si =

1

4
S b
a (Γi)

a
b , Sij = −1

2
S b
a (Γij)

a
b . (A.14)

The last two relations link the 5 and the 10 of USp(4) to those of SO(5).

An explicit representation of the (Γi)
b

a appearing in (A.9), useful for discussing the

gaugings and the Scherk-Schwarz twists in N = 4, D = 5 supergravity is:

Γi=1...3 = −σ2 ⊗ σi=1...3 , Γi=4 = σ1 ⊗ 1 , Γi=5 = σ3 ⊗ 1 . (A.15)

A convenient embedding of U(1) × SU(2) ⊂ USp(4) is:

T1 ≡ −iΓ45 = −σ2 ⊗ 1 , T2 ≡ −iΓ53 = σ1 ⊗ σ3 , T3 ≡ −iΓ34 = σ3 ⊗ σ3 , (A.16)

Y ≡ −iΓ12 = 1⊗ σ3 , [Ti, Tj ] = 2 i εijk Tk , [Y, Ti] = 0 . (A.17)

The fields of N = 4, D = 5 supergravity fall only in the 1, 4 and 5 irreducible

representations of USp(4): we denote them here by the generic symbols φ, χa and Aab,

with Aab antisymmetric and Ω-traceless. If we parametrize the generic transformation by

U = U b
a = exp

( i
2
αij Tij

) b

a
= 1 +

i

2
αij Tij

b
a + · · · , (A.18)

Tij
b
a = −iΓij b

a , (A.19)

the non-trivial field transformations read

χa → χ′a = exp

(
i

2
αij Tij

) b

a

χb , (A.20)

Aab → A′ab = exp

(
i

2
αij Tij

) c

a

exp

(
i

2
αhk Thk

) d

b

Acd . (A.21)

Using the decomposition in eq. (A.13) and the Clifford algebra in eq. (A.9), the infinitesimal

transformation for Aab in the 5 of USp(4) reads

δAi = αhk (δihδjk − δikδjh)Aj = i αhk (Ohk)ijA
j , (A.22)
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and is just the transformation law for the fundamental representation of SO(5). We can

thus exploit this further isomorphism to rewrite the finite transformation of eq. (A.21):

Ai → Ai
′ = exp(i αhk Ohk)

j
i Aj , (A.23)

where Ohk are the 10 generators of SO(5). Hence the U(1)×SU(2) generators in eqs. (A.16)

and (A.17) correspond to the SO(2) × SO(3) subgroup of this SO(5). A generic field Ai

transforming in the 5 of USp(4) can then be decomposed as

A± ≡ A1 ∓ iA2√
2

≡ A
1∓i 2√

2 ∼ 1± , AI=3,4,5 ∼ 30 , (A.24)

where Xc denotes a X of SU(2) with U(1) charge equal to c, and we have introduced

another short-hand notation to identify the composition of a charged field.

Considering only two commuting generators of U(1)× SU(2) ⊂ USp(4), Y and T3, we

can write the explicit transformation laws of the relevant fields as

U = e
i
2
(α1Y+α2T3) , χa → (U4)

b
a χb , Ãi → (U5)

j
i Ãj , (A.25)

where

U4 = diag
(
e
i(α1+α2)

2 , e−
i(α1+α2)

2 , e
i(α1−α2)

2 , e−
i(α1−α2)

2

)
, (A.26)

U5 = diag
(
eiα1 , e−iα1 , eiα2 , e−iα2 , 1

)
, (A.27)

ÃT =
(
A

1−i 2√
2 , A

1+i 2√
2 , A

3−i 4√
2 , A

3+i 4√
2 , A5

)
= (A+1 , A

−
1 , A

+
2 , A

−
2 , A0) . (A.28)

A.2 Space-time and spinors

We choose a ‘mostly plus’ metric:

ηAB = diag(−1,+1,+1,+1,+1) , (A.29)

with Clifford algebra {
γA , γB

}
= −2 ηAB . (A.30)

Curved space-time indices are denoted withM = (µ, 5), flat tangent-space indices with

A = (α, 5̂). The fünfbein is E A
M , its determinant e5 = det E A

M . The total antisymmetric

tensor εMNPQR is defined in such a way that:

εMNPQR = e5 E
M
A E N

B E P
C E Q

D E R
E εABCDE , ε0̂1̂2̂3̂5̂ = +1 , (A.31)

εαβγδ5̂ = εαβγδ , εµνρσ = e4 e
µ
αe

ν
βe

ρ
γe

σ
δ ε

αβγδ . (A.32)

Our explicit representation for the Dirac matrices is:

γα =

(
0 σα

σα 0

)
, γ5̂ =

(
−i 0
0 i

)
, γ̂ = iγ 5̂ =

(
1 0

0 −1

)
, (A.33)

σα = (−I, ~σ) , σα = (−I,−~σ) , (A.34)
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with

γM = E A
M γA , γAB =

1

2

[
γA, γB

]
= 2ΣAB , (A.35)

γABCDE = −εABCDE , γABCD = εABCDE γE , γABC = εABCDE ΣDE .(A.36)

Connections, covariant derivatives and curvature tensors are defined as follows:

ΓMNR =
1

2
GMS (∂NGRS + ∂RGNS − ∂SGNR) ,

ω AB
M = 2EN [A∂[NE

B]
M ] −E

N [AERB]EMC∂RE
C
N ,

DME
A
N = ∂ME

A
N − ΓRMNE

A
R − ω A

M BE
B
N = 0 ,

R AB
MN = 2∂[Mω

AB
N ] + 2ω AC

[N ω B
M ] C ,

R = R AB
MN E M

A E N
B ,

RM
NRS = R BA

RS E M
A ENB = 2∂[RΓ

M
S]N + 2ΓMT [RΓ

T
S]N ,

DMΨ = ∂MΨ+
1

2
ωMABΣ

ABΨ , [DM , DN ]Ψ =
1

2
RMNABΣ

ABΨ , (A.37)

where

A[MBN ] ≡
1

2
(AMBN −ANBM ) . (A.38)

The D = 5 charge conjugation matrix C must obey, in any conventions, the following

two general properties:

C γAC−1 = (γA)T , CT = −C . (A.39)

We can then formulate the symplectic Majorana condition on spinors as

ψa = C ψa
T
= C(ψ

T
)a , (A.40)

where in writing the second equality we have exploited our previous conventions for raising

and lowering symplectic indices. From the above conventions, the following hermiticity

relations for symplectic Majorana spinors follow:

ψ
a
γA1 . . . γAn χa = −χa γAn . . . γA1 ψa = −(ψa γA1 . . . γAn χa)

† . (A.41)

Notice also that the symplectic metric acts like the charge conjugation matrix in the

symplectic space of the Γi:

ΩΓiΩ
−1 = ΓTi , Ω = −ΩT , (A.42)

so that:

ψ
a
(Γi1 . . .Γin)

b
a χb = −χa(Γin . . .Γi1) b

a ψb = −[ψ
a
(Γi1 . . .Γin)

b
a χb]

† . (A.43)

Then, all fermionic bilinears of the form ψ
a
(Γi1 . . .Γin)

b
a γ

A1 . . . γAn χb are anti-hermitian.
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B. Ungauged N = 4, D = 5 supergravity

In our conventions, and neglecting four-fermion terms that are not relevant to the present

work, the ungauged N = 4, D = 5 lagrangian for pure supergravity [16, 17] reads:

e−15 L = −R5 −
1

2
∂Mφ∂

Mφ− 1

4
X4vMNv

MN − 1

4
X−2V i

MNV
MN
i −

−1

8
e−15 εMNRSTV i

MNV
i
RSvT −

i

2
ψ
a
Mγ

MNRDNψR a +
i

2
χaγMDMχa −

− i

8
√
2

(
X−1V i

MNΓ b
i a +

1√
2
X2δ b

a vMN

)
ψ
a
Rγ

[RγMNγS]ψS b −

− i

4
√
6

(
X−1V i

MNΓ b
i a −

√
2X2δ b

a vMN

)
ψ
a
Rγ

MNγRχb +

+
i

24
√
2

(
X−1V i

MNΓ b
i a − 5√

2
X2δ b

a vMN

)
χaγMNχb +

+
i

2
√
2
∂Nφψ

a
Mγ

NγMχa , (B.1)

where:

X = exp

(
− φ√

6

)
, V i

MN = 2 ∂[MV
i
N ] , vMN = 2 ∂[MvN ] . (B.2)

Neglecting three-fermion terms, the supersymmetry transformation laws are:

δE A
M =

i

4
ψ
a
Mγ

Aεa ,

δV i
M =

i

2
√
2
X

(
ψ
a
M +

1√
3
χaγM

)
Γi b

a εb ,

δvM =
i

4
X−2

(
ψ
a
M − 2√

3
χaγM

)
εa ,

δφ =
i

2
√
2
χaεa ,

δψM a = DM εa −
1

12
√
2

(
γ NR
M + 4δ N

M γR
)(

X−1V i
NRΓ

b
i a +

1√
2
X2δ b

a vNR

)
εb ,

δχa =
1

2
√
2
γM∂Mφ εa +

1

4
√
6
γMN

(
X−1V i

MNΓ b
i a −

√
2X2δ b

a vMN

)
εb . (B.3)

C. The N = 4, D = 4 reduced supergravity

We give here lagrangian and transformation laws for the fully broken D = 4 effective

theory, obtained via generalized reduction from the N = 4, D = 5 ungauged theory.

The unbroken theory corresponding to the standard reduction can be easily extracted by

setting the Scherk-Schwarz twist M = 0, while the partially broken theory can be obtained

by choosing |m1| 6= |m2| = 0 in M . In the broken cases one can move to the unitary

gauge, removing the goldstinos according to the standard procedure. Symplectic indices

are suppressed according to the NW–SE convention. Neglecting as before four-fermion

terms, the lagrangian reads:

LSS = LSSbos + LSSfer , (C.1)
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with

e−14 LSSbos = −R4 −
1

2

∂µt∂
µt+ ∂µτ∂

µτ

t2
− ∂µϕ0∂

µϕ0 + D̂µϕiD̂
µϕi

ϕ20
−

−1

4
gIJ F̂

I
µν F̂

J µν − 1

8
e−14 θIJ ε

µνρσF̂ I
µν F̂

J
ρσ −

2

3
i d

ı̂ ̂ k̂
M k̂

l̂
εµνρσB ı̂

µB
l̂
νB

̂
ρσ , (C.2)

e−14 LSSfer = −1

2
e−14 εµνρσηµγ̂γν

(
D̂σ+

1

2

√
2

t1/2ϕ0
γ̂γσM4

)
ηρ +

1

2
iχ

(
γµD̂µ +

√
2

t1/2ϕ0
γ̂M4

)
χ+

+
3

4
i ψy

(
γµD̂µ + 2

√
2

t1/2ϕ0
γ̂M4

)
ψy +

3

2

√
2

t1/2ϕ0
ψyγ

µM4 ηµ −

−1

8

t
1
2ϕ0√
2
ηµ

[(
B̂i
ρσ +Aρσϕ

i

ϕ0
Γi +

bρσ +Aρστ

2t

)
γ̂ − i

2
Aρσ

]
×

×
(
e−14 εµνρσ + 2igµρgνσ γ̂

)
ην −

−1

4

t
1
2ϕ0√
2
ψy

[(
B̂µν
i +Aµνϕi

ϕ0
Γi +

bµν +Aµντ

2t

)
− 3i

2
Aµν γ̂

]
Σµνψy +

+
i

12

t
1
2ϕ0√
2
χ

[(
B̂µν
i +Aµνϕi

ϕ0
Γi −

5

2

bµν +Aµντ

t

)
+

3i

2
Aµν γ̂

]
Σµνχ−

−1

8

t
1
2ϕ0√
2
ψy

[(
B̂i
ρσ +Aρσϕ

i

ϕ0
Γi +

bρσ +Aρστ

2t

)
γ̂ +

3i

2
Aρσ

]
γµγρσηµ −

− i

2
√
3

t
1
2ϕ0√
2
ηµ

(
B̂i
ρσ +Aρσϕ

i

ϕ0
Γi −

5

2

bρσ +Aρστ

t

)
Σρσγµχ−

− 1

2
√
3

t
1
2ϕ0√
2
ψy

(
B̂µν
i +Aµνϕi

ϕ0
Γi −

5

2

bµν +Aµντ

t

)
γ̂Σµνχ+

+
i

4
ηµ

(
D̂σϕ

i

ϕ0
Γi +

∂στ

2t

)
e−14 εµνρσγνηρ +

1

8
ψy

(
D̂µϕ

i

ϕ0
Γi +

∂µτ

2t

)
γ̂γµψy −

− 1

12
χ

(
D̂µϕ

i

ϕ0
Γi −

5

2

∂µτ

t

)
γ̂γµχ−

− i
2
ψy

(
D̂ν(ϕ

iΓi − iϕ0γ̂)
ϕ0

+
∂ν(τ − itγ̂)

2t

)
γµγνηµ +

+
i

2
√
3
ηµ

(
∂ν(t+ iτ γ̂)

t
− D̂ν(ϕ0 + iϕiΓiγ̂)

ϕ0

)
γνγµχ+

+
i√
3
ψy

(
D̂µϕ

i

ϕ0
Γi −

∂µτ

t

)
γµχ . (C.3)

The explicit expressions for the covariant derivatives and the four-dimensional fields are

given in the text. The corresponding supersymmetry transformations are, up to three-

fermion terms:

δeαµ =
i

4
ηµγ

αε ,
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δt

t
=

1

4

(
ψyγ̂ +

2i√
3
χ

)
ε ,

δτ

t
=
i

4

(
ψy +

2i√
3
χγ̂

)
ε ,

δϕ0
ϕ0

=
1

4

(
ψyγ̂ −

i√
3
χ

)
ε ,

δϕi

ϕ0
=
i

4

(
ψy −

i√
3
χγ̂

)
Γ i ε ,

ϕ0t
1/2

√
2
δAµ =

1

4
ηµγ̂ε ,

ϕ0t
1/2

√
2
δbµ =

i

4
ηµ (t+ iτ γ̂) ε+

t

8

(
ψyγ̂ −

4i√
3
χ

)
γµε ,

ϕ0t
1/2

√
2
δBi

µ =
i

4
ηµ
(
ϕ0Γ

i + iϕiγ̂
)
ε+

ϕ0
8

(
ψyγ̂ +

2i√
3
χ

)
γµΓ

i ε ,

δηµ = D̂µε+
1

2

√
2

t1/2ϕ0
γ̂γµM4 ε+

i

2
γ̂

(
D̂µϕ

i

ϕ0
Γi +

1

2

∂µτ

t

)
ε−

−1

8

ϕ0t
1/2

√
2

(
γ νρ
µ + 2δνµγ

ρ
)
(
B̂i
νρ + ϕiAνρ

ϕ0
Γi +

bνρ + τAνρ

2t
− i

2
γ̂Aνρ

)
ε

δψy = i

√
2

t1/2ϕ0
M4 ε+

i

3

(
∂µ(t− iγ̂τ)

2t
+
D̂µ(ϕ0 − iγ̂ϕiΓi)

ϕ0

)
γ̂γµε+

+
i

12

ϕ0t
1/2

√
2
γ̂γµν

(
bµν + τAµν

2t
+
B̂i
µν + ϕiAµν

ϕ0
Γi − 3

2
iγ̂Aµν

)
ε ,

δχ =
1

2
√
3

(
∂µ(t− iγ̂τ)

t
− D̂µ(ϕ0 − iγ̂ϕiΓi)

ϕ0

)
γµε+

+
1

4
√
3

ϕ0t
1/2

√
2

(
B̂i
µν + ϕiAµν

ϕ0
Γi − bµν + τAµν

t

)
γµνε , (C.4)

where the infinitesimal parameter ε has been rescaled as

εD=5 = ρ−1/4 εD=4 , (C.5)

and its covariant derivative is defined as

D̂µεa = ∂µεa − iAµ (M4)
b
a εb . (C.6)
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Scherk-Schwarz reduction of D = 6 theories, J. High Energy Phys. 06 (2004) 018

[hep-th/0406018].

[35] F. Giani, M. Pernici and P. van Nieuwenhuizen, Gauged N = 4 D = 6 supergravity, Phys.

Rev. D 30 (1984) 1680.

[36] P.K. Townsend, A new anomaly free chiral supergravity theory from compactification on K3,

Phys. Lett. B 139 (1984) 283;

– 28 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB255%2C515
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB156%2C331
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB155%2C71
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB262%2C644
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB262%2C644
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB177%2C352
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB177%2C352
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB206%2C241
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB206%2C241
http://jhep.sissa.it/stdsearch?paper=11%282003%29022
http://xxx.lanl.gov/abs/hep-th/0310187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB470%2C113
http://xxx.lanl.gov/abs/hep-th/9601150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB486%2C49
http://xxx.lanl.gov/abs/hep-th/9608173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB413%2C70
http://xxx.lanl.gov/abs/hep-th/9707130
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB612%2C123
http://xxx.lanl.gov/abs/hep-th/0103106
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB193%2C221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB193%2C221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD15%2C2805
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB127%2C259
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB127%2C259
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB74%2C61
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB74%2C61
http://jhep.sissa.it/stdsearch?paper=04%282004%29005
http://xxx.lanl.gov/abs/hep-th/0402142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB640%2C46
http://xxx.lanl.gov/abs/hep-th/0202116
http://jhep.sissa.it/stdsearch?paper=06%282004%29018
http://xxx.lanl.gov/abs/hep-th/0406018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD30%2C1680
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD30%2C1680
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB139%2C283

