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COMPUTER STUDIES OF BEAM DYNAMICS IN A PROTON
LINEAR ACCELERATOR WITH SPACE CHARGE
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Centre d'Etudes Nucleaires de Saclay, France

Two computer programs written for investigating space-charge effects in proton linear accelerators are presented.
Both use the dynamics equations derived by Drs. P. Lapostolle and B. Schnizer: the way these equations have been
practically treated is explained. Details are given on the two programs: the first one is based on a particle to
particle interaction, while the second one benefits from a continuous equivalent distribution. Results given by both
programs are compared and contrasted to Dr. R. Chasman's previous results. As an application, the problem of
the influence of injection energy on linac performance is partially treated.

1. INTRODUCTION

Present-day proton linacs can accelerate such
high-intensity currents that it is necessary to include
space charge effects in beam dynamics problems.
Following the way opened by Dr. Chasman,(1,2) it
was decided at CERN and at CEN Saclay to study
and to set up, in a joint effort, some· means of
computing p8:rticle dynamics taking into account
space-charge forces. Two main goals were aimed
at: (i) anticipating the beam behaviour in an
existing accelerator (tank 1 of the CERN PS
injector), and (ii) understanding the phenomena
observed in all high-intensity linacs, namely the
beam emittance blow-up in passing through the
accelerator. An article, completely dedicated to
this latter item, will soon be submitted to this
journal.

In this paper we shall present the ideas on which
are based two computer programs, MAPRO 1 and
MAPRO 2, written as a result of the above
mentioned collaboration. Some of the results and
of the preliminary conclusions which can be drawn
by running the programs also are given.

2. DYNAMICS WITHOUT SPACE CHARGE

2. I. Theoretical Equations

At the time when it was decided to include space
charge effects in: the computation of particle trajec-

t Formerly at CERN.

tories, a new set of dynamics equations was
available. In the first computer programs, the
longitudinal and the radial particle motion were
treated separately. Longitudinally the set of
equations used was:

dW r

- = eETcos4J
dz

where the notation is the usual one.
Radially, the action of the force continuously

deflecting the particle across the gap was replaced
by one or several impulses at some discrete points.
Then it was realized that, if the dependence of the
transit time factor on the particle velocity was to be
taken into acco'unt, a term had to be added in the 4J
equation in order to satisfy Liouville's theorem on
the axis. (3)

It was also understood that simple radial im
pulses were not sufficient and that a radial displace
ment had to be added.(4)

Finally it was strongly felt that the opportunity
should be exploited, in dynamics computations, of
the precise knowledge of the electromagnetic field
in linac cavities yielded by new powerful ~omputer
programs such as MESSYMESH(S) and CLAS.(6)

The new equations, due to Drs. P. Lapostolle
and B. Schnizer,(7) have the advantage of being
rigorous thanks to the use of a certain number of
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parameters (basically field integrals across the gap)
calculated directly by CLAS.

By using these equations, one substitutes for the
'true' trajectory an 'equivalent' one, discon
tinuous, which coincides with the true trajectory at
the entrance (index I), at the midpoint (no index)
and at the output of th~ gap (index 2). As shown
in Fig. I, the particle, in the fictitious motion,

of interest throughout this paper:

W2 - W1 = eVo To 10 cos 4J +evodd
k

(To kI1)r' sin 4J

4J2-4J1 = r:xk dd
k

(Tol o)Sin 4J

d2

- rxk dk2 (To kl1)r' cos e/>

w

z

FIG. 1. True and equivalent variations of Wand r
when crossing a gap. AB: accelerating gap; c:
center of the gap; ---: equivalent variation;
-.-.-.-.- : true variation.

A c Ie

Besides: To, transit time factor on the axis, is a
function of k given by

rx[dSr (d2
8Sr dSl) , ]+- --sine/>- --+- r cose/>

2 dk dk2 8r dk

where (J) is the high frequency pulsation,

pc .is the longitudinal velocity of the particle, .

L is the cell length,

Ez is the longitudinal electric field on the
axis.

(J)

k=pc
2fLI

2
To(k) = - Ez(z, 0) cos kz dz,

L 0

drifts, at constant speed, from the end of a quad
rupole to the middle of the gap; undergoes a
discontinuity in its six phase-space coordinates and
drifts again to the input of the next quadrupole.

As a matter of fact, Lapostolle and Schnizer's
equations proceed in two steps: a first set of
equations gives the equivalent change in co
ordinates across the whole gap assuming 'that the
value of these same coordinates in the middle of the
gap known; another set of equations allows one to
calculate effectively the latter by giving the equiva
lent change of coordinates across the first half of
the gap_

The equations exist in a relativistic form, but we
shall give here the nonrelativistic sets, the only ones
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The argument of the Bessel functions 10 'and Ii
is kr. Sz is a function of k and r given by:

2fLI
2

Sz(k, r) = - Ez(z, r) sin kz dz
L 0 .

where Ez(z, r) is the longitudinal electric field at the'
radius r; the power expansion of Sz is limited to
two terms:

Sr also is a function of k and r

2fLI2
Sr(k, r) = - Er(z, r) cos kz dz

L 0

where Er(z, r) is the radial electric field at the radius
r; the power expansion of S r is limited to one term:

Sr(~, r) =' rS'(k)

eVo
r:t,=-

2W

where Vo is the rf peak voltage in the accelerating
interval.

2.2. Practical Equations

The dynamics equations, in the form given in the
preceding section, cannot be easily used in practice
for two main reasons: (i) they are not solved with
respect to the desired quantities; (ii) they make use
of differentials in To, Sr and Sz which can be
profitably replaced by introducing some field
integrals.

In what follows we shall set:

2fLI2 2nz
To =- Ez(z,O)cos-dz

L 0 L

d~ 2 2n fLI2 21tz
T1 = k_o = ---- Ez(z,O)zsin-dz

dk LL 0 L

d2~ 2(211:)2fLI2 21tz
T2 = k 2--l- = -- - Ez(Z,O)Z2cos-L dz

dk L L 0

S' = ~f.LI2 Er(z, r~ cos ~1tZ dz
Lor L

- dS' 221tfL12 Er(z, r) . 21tz
S = k-- = --:-- z-·--sln-dz

dk L Lor L

= 2d2S' 2(21t)2fLI2Er(z,r) 2 21tZS = k -- = -- - --z cos--dz
dk2 L Lor L

2fLI2 21tz
So =- Ez(z, 0) sin-·-dz

L o L

- . dSo 221tfL12 21tz
So = k- = -- E (z O)zcos --dz

dk L L 0 z' L

8 1 and Sl = k(dS1/dk) are calculated from values
of Sz and Sz off axis. All these coefficients are com
puted directly by CLAS. Also:

11(kr) is approximated by kr/2.

lo(kr) is approximated by:

(i) 1+ (k2r 2/4) in the equation in Wand cf>.
(ii) 1 in the equation in r' and r.

After several algebraic manipulations, by neglect
ing higher order terms (energy gain in crossing the
gap/kinetic energy), which is allowed since the .
theoretical starting equations apply in the same
approximation, one obtains the following set of
equations:

eEe L{(To+T1 s.)r = r1- 4W --2-COS¢1-kslncP1 rl

[ T2
• (8 So) J}+ 2k Slll cP1 + k2 +k cos cP1 r1'

, ,eEe L{[(To-T1 ) ~r = r 1 - 4W .. --2- cos0/ 1

+(i+So)sin cP1Jrl'

(
Tok . ) }+ 2S111 ¢1+S'COS¢1 r 1

r2 = r1- e:.;,L{[(T1+To) +~k(2T1+12))}COScP

T2 ( 11k) . }+k l+ k r'.sll1¢

, , eEeL{ k[ Ak( )J. ~r2 = r1 + 4W - TO+k T1 + To rSl11o/

+[ T1- To +~k T2Jr' cos cP} ,

where Ee is the mean longitudinal electric field in
the cell of length L

Ak JtY:.- w
k - moc2p2
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and Wr is the reference kinetic energy at which all
the coefficients yielded by CLAS were calculated.

with

[ k2r2( T1)JA 2 = T1+2 TO+2 cos4J

+[k(To+2T1 + ~z)rr'+So+r Z5\}inr/J

(
k2r2)

A3 = To 1+4 cos4J

+[k(ro+~l)rr'+So+rzSl}in¢

r/Jz = r/Jl +eEe L(B3 sinr/J-rr'B4 cosr/J)
2W·

where

ilk JY;.- W
k - moc2p2

Concerning thequadrupoles, the equations used
are the classical ones without taking into account
fringing fields. Their effect in fact is somewhat
important in beam transport systems where emit
tances can exhibit very eccentric shapes but can be
neglected in a linac where emittance patterns are
more nearly circular.(8). The particle coordinates
are transferred through a quadrupole in two steps
in order to have their midplane values available.

3. THE SPACE-CHARGE CALCULATION

3.1. Preliminary Remarks

In a real beam, each bunch is made of some 109

protons. The number of particles taken into
account in numerica~ computations varies from a
few hundreds to a few thousands; these computed
particles are intended to follow trajectories which
could have been effective trajectories of protons in
the real beam; therefore these particles must be
considered .as a sort of superparticle, carrying a
sort of supercharge,so that the repulsive force
between two such superparticles is expressed by:

where

I is the beam intensity,

f is the-rffrequency,

4N is the number of superparticles represent
ing the total beam,

e is the proton charge.

This formula can be justified by saying that super
particles carrying If4Nf Coulomb each produce a
field which is on average the same as the real field
produced by protons in the real beam.

According to the general philosophy of these
calculations, the space-charge action is taken into
account by giving twice per cell an impulsive change
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to the velocity of each particle of the beam. This
is done in the middle of the drift tubes and in the
center of tp.e gaps. As the equations used are not
relativistic, the magnetic field effect has been
ignored.

To compute the space-charge forces, one needs
to know the particle coordinates in the real space.
This is done by interpreting (f3A/2n)¢ as a longi
tudinal distance (implicit is a change of the in
dependent variable from distance to time). In
other words, from the knowledge of the instant of
time (phase) at which each particle crosses a given
section one derives the position in space of each
particle at a given instant of time.

Then the equations become:

I1r' = g(r, r', W, ¢)+G(r, ¢)

I1W = h(r,r', W, ¢)+H(r, ¢)

where g and h are the functions given in Sec. 2
when the calculation refers to the center of the gap
and are zero in the middle of quadrupoles.

G and H, for each particle, are a function of the
position of all others and represent Coulomb
interactions.

It can be easily shown that:t

G(r, cf» = . 12f32 [FrCr, cf»- r'FzCr, cf»J
moc

H(r,¢) = Fz(r,¢)l

The problem is to evaluate F r and Fr The
simplest method of summing up all terms in 1/r 2 is
catastrophic as everybody who has tried knows. In
fact space-charge forces are calculated from the
positions that the particles occupy in their motion
without space charge. ,In this condition it can
happen that two particles get extremely close to
each other; the repulsive force becomes then
enormous and one has a local blow-up of the beam.
In practice these collisions keep on taking place
during the whole calculation and condemn the
method. (See Fig. 2.)

Several tricks have been devised to bypass the
difficulty. In the frame of this type of particle-to..
particle interaction method, the program MAPRO 1,
which makes use of the so called 'cage method', was
written.

t As in Sec. 2.1, rand r' stand for either x and dxjdz or y
and dyjdz.

AS

FIG. 2. Accidental blow-up occurring in crude
particle-to-particle interaction methods. -e-e-e-e-:
true trajectory; --: equivalent trajectory,
calculated for zero current; space-charge effects are
taken into account in Sec. S.

3.2. MAPRO 1
The cage method has already been used at CERN

in the program BUNCH which computes the beam
dynamics, with space charge, from the buncher to
the linac. (9)

According to this method, the space volume
around the bunch is enclosed in a cage, divided into
a great number of small cubic (or, more generally,
parallelepiped) cells, up to 27 000 in MAPRO 1. To
calculate the electric field acting on one particle
(field point) due to the presence of all the others
(source points) one assumes that the field point
coincides with a node of the three-dimensional grid
and that the. source points fall in the center of the
elementary cubes. This corresponds to moving
slightly, only for the sake of the space-charge
calculation, all particles around their true position
to make them 'fit' into the cage. In this manner,
having put the source points at nodes of the grid,
the number of possible space-charge forces becomes
finite and they can be precalculated and stored in
the computer memory'. Thereafter, during the
motion of the beam, the interaction between any
two particles is obtained by selecting the convenient
approximate force from the entries in the space
.charge table. This can be done' in a very fast
manner, particularly if assembly language routines
are used.
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Also, as the mlDln1um distance between two
particles cannot be less than half a cell length (this
is set so in the program even in the case of particles
falling in the same cell), collisions are avoided.
Clearly this method tends to underestimate space
charge effects; in practice, one sees that by varying
the elementary cube side size around a value of
about 0.5 mm the results do not change noticeably.

Unfortunately the cage method, though faster
than other particle-to-particle interaction methods,
is intrinsically time consuming (about 7.5 sec of
CDC 6600 CPU time to calculate the complete
interaction of 500 particles) and the time needed
increases with the square of the number of repre
sentative particles used.

Therefore MAPRO 1 has essentially been. used to
compare results with those obtained with MAPRO 2
which is considerably faster and can treat up' to
5000 particles.

3.3. MAPR02
This program is based on completely different

principles. The basic idea is the following: one
represents a bunch made up of, say, 109 protons by
means of a few hundreds or thousands of repre
sentative particles. At the scale of these macro
particles the cloud of protons appears more like a
continuous distribution and this is what is used in
MAPRO 2. If one knows the analytical expression
of the electric field generated by such a distribution
a simple evaluation of this expression for each
particle solves the problem. Note that (i) in this
case the computer time needed will grow only
linearly with the number of particles traced, and
(ii) there is no risk of collisions inherent to the
method.

Obviously one must choose a distribution which
is sufficiently close to the real situation and such
that one is capable of finding an analytical expres
sion for its electrostatic field.

The distribution chosen for MAPRO 2 is of the
type:

[
1(x2

y2 Z2)J
x(x, y, z) = Xo exp - 2 a2 +b2 + c2

The isodensity surfaces are ellipsoids, and X is
the number of ·particles/meter3

• This distribution
has no discontinuities and the charge density tends
to zero far from origin: it cannot represent hollow

bunches but this is not a serious limitation in
practice.

The choice of a, b, c and Xo can be made such that
the equivalent distribution maintains some of the
properties ofthe original one. The criterion adopted
was to. equate the lower order momenta. As the N
particles traced are representative in fact of four
times as many (one takes advantage, in MAPRO 2
as well as in MAPRO 1, of the existing symmetry
with respect to x and y to fill in initially only the
x, y > aportion of the beam), the zero and second
order momenta of the real distribution are:

N N N

4N, 4Lxi2, 4 Ly2, 4LZi2
1 i i

where Zi is the longitudinal barycentric coordinate.
The same momenta for the equivalent distribution
are:

fffXdxdydz = (2rc)3/
2abcXO

fffx2Xdxdydz = (2rc)3/2a3bcxo

fffy2Xdxdydz = (2rc)3/2ab3cxo

fffz2Xdxdydz = (2rc)3/2abc3xo

with the triple integrals extended to the whole space.
Solving for the desired quantities, one finds:

4 lV
Xo = (2n)3/2 abc

The next step is now to calculate the electric field.
The following can be proved :(10)

(i) given a three-dimensional charge distribution
such that the density is constant over ellipsoids:

x 2 y2 Z2 2
2+b2 + 2 = ua c

then the distribution depends only on u, i.e.,
X= x(u),

(ii) if the distribution extends out to infinity and
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if P(u) is a primitive of ux(u), then the potential V
at a field point (x, Y, z) is:

v~(x, y, z)

(J X2 y2 Z2 ')
abcfooP a2+t+b2+t+~i+t·

= - 260 0 (a 2 + t)(b2 + t)(e2 + t) dt

The three components of the corresponding
electric field can be derived by differentiating under
the integration sign and one obtains:

and analogous expressions for Fy and Fz , where:

I
q= 4Nf

is the supercharge carried by superparticles (cf.
Sec. 3.1).

The three components of the force are evaluated,
at each step, for all the N particles using Gauss'
numerical integration method with ten points.
This has proved to be a fair approximation (better
than 1 per cent) in most practical cases.

According to this method the jntegral :

I == I: 4>(t') dt'

can be approached by:

1= b-a [Hl 4>(t/)+ ... +HI04>(t~0)]'
2

where

a+b b-a
t·' = --+--u·

I 2 2 I'

the u/s are the roots of the Legendre polynomial of
degree ten and:

The integration limits of the force integral can be

conveniently transformed into 0 and 1 by changing
the independent variable according to the equation:

1.
t=--1..

t'

Then

becomes
10

I = L ~j'(ti)'
i= 1

where ~ = HJ2t~2 and f; for the x-component of
the force, is

[
1(X2

y2 Z2) ]
1~xp -2 a2 + t + b2 + t + c2 + t .

f(t) = - ,.
2 (a 2+ t) V(a 2+ t)(b2+ t)(c2+ t)

The computer Central Memory storage required
by MAPRO 2 is approximately 170 000 (octal)
words, for a maximum of 5000 super-particles.

The CDC 6600 CPU time needed to compute one
complete interaction of 500 particles turns out to be
~ 1 sec which compares with the 7.5 secofMAPRO 1
for a similar computation. For example, MAPRO 2
traces 500 particles through the CERN linac tank 1,
42 cells, i.e. 84 'space-charge computations, in about
1.5 min. Taking 5000 particles instead of 500
increases the computing time up to 12 min.

4. RESULTS

4.1. Initial Results

The aim of the first computations made with
MAPRO 1 and MAPRO 2 was essentially to confirm,
qualitatively at least, the results already obtained by
Dr. Chasman.(1,2) These initial results have already
been reported in Ref. (11): they refer to the experi
mental 3-MeV CERN linac,(12) which is an 18-cell
AG-focusing machine (mode + + - -) reproduc
ing almost exactly the first part of the CERN PS
injector (injection energy 500 keY).

The comparison with Dr. Chasman's calculations
can therefore be only an approximate one since her
results refer to the AGS injector (input energy
750 keY).

In the computations the quadrupole gradients
have been kept to their theoretical zero current
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values. The initial filling was the same as used by
Dr. Chasman namely a uniform filling of a four
dimensional hyperellipsoid in x, x', y,. y', and of a
two-dimensional ellipse in W, cpo

Figure 3 which appeared in Ref. (11), summarizes
the results. One can see that:

(1) For constant nonzero current, the output
radial emittance Eo tends to coincide with E i when
E i becomes. very large: on the other side when E i

tends to zero Eo tends towards a finite value. This
confirms the results given in Ref. (1).

.(2) MAPRO 2 gives emittance growths about
20 per cent larger than MAPRO 1.which can be
explained by considering the different principles
on which the two programs are based. The fact
that MAPRO 1tends to underevaluate space charge
has already been pointed out (cf. Sec. 3.2).

(3) If one decreases the longitudinal emittance,

the radial emittance blow-up becomes less Im
portant. This also confirms results in Ref. 2.

4.2. Choice ofthe Injection Energy

The mechanism of the beam emittance blow-up
and of the coupling between longitudinal and
transverse phase spaces will not be further examined
here. As explained in the Introduction, another
paper, to be submitted to this journal, will be
entirely dedicated to the subject (see also Ref. 13).
The purpose of this paper is essentially to present
the computation methods and to indicate what sort
of information one can expect to extract from space
charge dynamics programs. As an exercise, the
authors tried to answer the following question: what
kind of output beam improvement can one obtain
by increasing the injection energy into an already
existing linac, with the hypothesis of simply chop-

7

5

• MAPR01 2.0 k€V

o MA PRo1 5 keY
x MAPRO 2. 20 key
+ MAPRo l 5 keY
o R. CHASMAN 20 kev (AccoRDING- TO (1))
¢ R.CHASMAN 5 keY (ACCORDING-TO (2)

Eo

4

~~'
,,<:>

- \.:.~' .52-3Me.V
~

"°0
'«\ c

2.

20 keY
5 keV1

'\ .75 - 10 Me.V
E. E.L L

2. 3 4 CJ 2. 3

FIG. 3. Output normalized emittance Eo versus input normalized emittance E i ; units: 7T 10-6 meter radian.
For the diagram on the left a large input energy spread was chosen: 20 keY which means an equivalent
normalized longitudinal emittance: '

ffd(AW)dZ _ -6
m

o
c2p - 2.5 nlO m.rad

for the 0.52 to 3 MeY case. For the diagram on the right a smaller input energy spread was chosen: 5 keY·
corresponding longitudinal emittance is 0.5 7T 10- 6 m.rad. '
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ping off the first few cells? The detailed answer is
given in Ref. 14: in what follows, only the main
conclusions will be reproduced.

The machine considered is the CERN PS in
jector. The calculation was stopped at 10 MeV
essentially because very little additional information
was to be expected by continuing the computation
beyond the first tank. Basically MAPRO 2 was
used tracing in most cases 500 particles in order to
save computer time. Three input current levels
(200, 400 and 600 rnA) have been studied for
each of four possible injection energies (0.520,
0.788, 1.00 and 1.51 MeV) corresponding to sup
pressing the first 0, 3, 5 or 9 cells. For each of these
12 cases four focusing laws have been tried (always
in the + + - - mode) by recomputing the gradients
according to the formula:

source delivers a beam with an emittance linearly
increasing with the current and that thepreinjector
deteriorates the beam quality keeping the un
normalized emittance constant between 0.52 and
1.51 MeV.

The beam x and y dimensions, for each value of
E t , were chosen such to have a nicely matched beam.

The output current as a function of input current
for various injection energy levels is displayed in
Fig. 4. All of these curves have been drawn using
only best cases, i.e. optimized with respect to
quadrupole field levels. Nor~ally, the highest
output current was obtained by increasing the first
quadrupole by some. 20 per cent and recomputing
the others as explained above.

Gi = aPi- n

Gi=Gi

i ~ 18

i > 18

FIG. 4. Output current I o at 10 MeV as a function
of input current Ii for various injection energies.

As can be seen, the influence of increasing the
injection energy on the output current depends
strongly on the input current level: up to '" 200 rnA
one has a -noticeable gain passing from 0.52 to
0.788 MeV but not much improvement is to be
expected by injecting at higher energy (essentially
because one is very close to the limiting value). At
the other extreme for 600 rnA injected, the output
current keeps on increasing roughly linearly with
the injection energy. To estimate what sort of
input current one can expect t'o accelerate, it must
be kept in mind that the input current used in the
initial filling, is made up of protons all falling
longitudinally within, say, ±30 degrees from
synchronous phase and ±20 keV from synchronous

600500

----- 1.51 MeV

1.00 MeV
..788 MeV
.S2.0MeV

400300200100

200

300

400

100

AW= ±20 keV

where Pi is vic at cell number i, and Gi indicates the
new gradient in the ith quadrupole and Gi the old
one; a and n were chosen such that:

G18 = G1S ' G1 = G1 x (1 or 1.1 or 1.2 or 1.3)

Therefore the four cases considered corresponded
to: nominal gradients (as originally calculated for
zero current), 10, 20, and 30 per cent increases
above nominal values.

The field level was the nominal field in the actual
linac.

The initial population of the six-dimensional
phase space was made according to the method
described in Ref. 1. That is an uniform pseudo
random filling of a four-dimensional hyperellipso~d

in x, x', y, y' and an independent random filling
(also uniform) of an ellipse in longitudinal phase
space.

Numerically the values used were:

and A¢ was chosen such as to be matched; the
transverse two-dimensional emittance:

Et = 22.5In em mrad unnormalized

with I in amperes, which corresponds at 0.520 keV
to 3.34n mm mrad normalized for a 450 rnA beam.
One of the hypotheses of the calculation is that the
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energy. A rough way of evaluating what percentage
this represents of the total unbunched current·gives
a value of 50 per cent (the buncher factor with high
current is <0.6 and another factor 0.9 is needed to
obtain the current within the required phase and
energy intervals).(15) Also, when using Fig. 4, it
must not be forgotten that the output currents are
optimistic by some 20 per cent.t Let us try to
clarify the importance of these two points with an
example.

Suppose one expects to be able to accelerate
600 rnA through the column and wants to know
what energy one should aim at to obtain 200 rnA
of IO-MeV current. Looking at Fig. 3 correspond
ing to 10 == 240 rnA (200 +20 per cent) and of Ii ==

300 rnA (50 per cent of 600) one finds an injection
energy conlprised between 1 and 1.5 MeV.

Table I summarizes the results concerning beam
emittance growth.

In this table all emittances are normalized and
expressed in arbitrary units: their values have been
calculated using the statistical method described in
Ref.I.

All of the calculations (described herein) seem
to show that there is a great interest in raising the
injection energy for obtaining both more output
current and a better quality beam.

In particular, for relatively low levels of input
current, up to say 200 rnA, the gain, with increase in
injection energy, in brilliance, is due more to a
decrease in output emittance than to an increase in
output current. The opposite is true for very
intense input beams.

Two important considerations should not be
forgotten when drawing conclusions from this
numerical exercise:

(i) all of the calculations were based on a set of
starting hypotheses to some extent arbitrary,

(ii) different solutions can be tried together with
raising the injection energy to obtain better results,
the most obvious being, for example, to try a
+ - + - focusing structure.

t A rough estimate of how optimistic the answer is can be
deduced from a practical case. The curves given in Fig. 4
show, for example, that for 200 rnA of injected current one
obtains an output current of 150 rnA. Experimentally, under
comparable conditions, one finds, say, 120 rnA, i.e. 20 per
cent less.

TABLE I

Influence of Injection Energy on Output
Current and Output Ernittances

MeV rnA rnA Transverse Longitudinal
Inj. energy Ii 10 Ei Eo E i Eo

200 152 2.5 9.8 3.5 4.1
0.520 400 177 5.1 15.4 4.3 6.1

600 164 7.6 19.0 4.8 8.4

200 182 3.1 9.4 2.9 4.4
0.788 400 222 6.6 13.7 3.2 5.5

600 198 8.4 18.9 4.0 6.6

200 193 3.5 9.4 2.6 3.9
1.00 400 252 6.8 13.7 3.2 5.3

600 231 9.6 16.8 3.6 6.3

200 198 4.4 5.5 2.1 3.3
1.52 400 291 8.7 14.5 2.6 4.7

600 292 12.6 19.9 3.0 5.8

Ii = input current.
Ei= input emittance at injection energy indicated.
Eo = output en1ittance at 10 MeV.

5. CONCLUSIONS

Two methods of computing space-charge effects
in beam dynamics have been worked out and,
correspondingly, two computer programs have been
prepared.

The results obtained seem to be in reasonable
agreement among themselves and with those pro
duced independently by Dr. Chasman: this
suggests that numerical techniques are trustworthy.

One of the programs used proved to be fast
enough to allow one to carry out relatively long and
complicated numerical experiments such as the one
described in Sec. 4.

It is fair to conclude that these programs, though
yielding approximate results which need some
interpretation, seem to be among the few valid tools
to tackle complicated problems such as the dynamics
of intense current beams.
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