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Abstract

Polarized forward–backward asymmetries in the Bs → ℓ+ℓ−γ decay are calculated
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1 Introduction

Rare radiative leptonic Bs(d) → ℓ+ℓ−γ decays are induced by the flavor–changing neutral
current transitions b → s(d). In the standard model (SM) such processes are described by
the penguin and box diagrams and have branching ratios 10−8 − 10−15 (see for example
[1]). These rare decays can not be observed at the running machines such as Tevatron,
BaBar and Belle, but the Bs(d) → µ+µ− and Bs(d) → µ+µ−γ decays can be detected at
LHC with ATLAS, CMS and LHCb detectors [2]. Many experimental observables such as,
the branching ratio, photon energy, dilepton mass spectra and charge asymmetries, as well
as the transition form factors, are investigated for the Bs(d) → ℓ+ℓ−γ decays in [3–9]. At
the same time Bs(d) → ℓ+ℓ−γ decays might be sensitive to the new physics beyond the SM.
New physics effects in these decays can appear in two different ways: either through the
new operators in the effective Hamiltonian which are absent in the SM, or through new
contributions to the Wilson coefficients existing in the SM. One efficient way for precise
determination of the SM parameters and looking for new physics beyond the SM is studying
the lepton polarization effects. It has been pointed out in [10] that some of the single lepton
polarization asymmetries might be too small to be observed and might not provide sufficient
number of observables in checking the structure of the effective Hamiltonian. In need of
more observables, in [10], the maximum number of independent observables have been
constructed by considering the situation where both lepton polarizations are simultaneously
measured.

In the present work, we analyze the possibility of searching for new physics in the
Bs → ℓ+ℓ−γ decay by studying the forward–backward asymmetries when both leptons are
polarized, using the most general, model independent form of the effective Hamiltonian
including all possible interactions. Note that the sensitivity of double–lepton polarization
asymmetries on new Wilson coefficients for the Bs → ℓ+ℓ−γ decay has been investigated
recently in [11].

The work is organized as follows. In section 2, the matrix element for the Bs → ℓ+ℓ−γ is
obtained, using the general, model independent form of the effective Hamiltonian. In section
3, we calculate the polarized forward–backward asymmetries of the leptons in Bs → ℓ+ℓ−γ
decay. Section for is devoted to the numerical analysis, discussions and conclusions.

2 Theoretical framework

In the present section we derive the matrix element for the Bs → ℓ+ℓ−γ using the general,
model independent form of the effective Hamiltonian. The matrix element for the process
Bs → ℓ+ℓ−γ can be obtained from that of the purely leptonic Bs → ℓ+ℓ− decay. At inclusive
level the process Bs → ℓ+ℓ− is described by b → qℓ+ℓ− transition. The effective b→ qℓ+ℓ−

transition can be written in terms of twelve model independent four–Fermi interactions in
the following form [12]:

Heff =
Gα√
2π
VtqV

∗
tb

{

CSL q̄iσµν

qν

q2
L b ℓ̄γµℓ+ CBR q̄iσµν

qν

q2
R b ℓ̄γµℓ

+ Ctot
LL q̄γµLb ℓ̄γ

µLℓ + Ctot
LR q̄γµLb ℓ̄γ

µRℓ+ CRL q̄γµRb ℓ̄γ
µLℓ
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+ CRR q̄γµRb ℓ̄γ
µRℓ+ CLRLR q̄Rb ℓ̄Rℓ+ CRLLR q̄Lb ℓ̄Rℓ+ CLRRL q̄Rb ℓ̄Lℓ

+ CRLRL q̄Lb ℓ̄Lℓ + CT q̄σµνb ℓ̄σ
µνℓ+ iCTE ǫ

µναβ q̄σµνb ℓ̄σαβℓ

}

, (1)

where CX are the coefficients of the four–Fermi interactions and

L =
1 − γ5

2
, R =

1 + γ5

2
.

The terms with coefficients CSL and CBR which describe penguin contributions correspond
to −2msC

eff
7 and −2mbC

eff
7 in the SM, respectively. The next four terms in this expression

are the vector interactions. The interaction terms containing Ctot
LL and Ctot

LR in the SM have
the form Ceff

9 − C10 and Ceff
9 + C10, respectively. Inspired by this Ctot

LL and Ctot
LR will be

written as

Ctot
LL = Ceff

9 − C10 + CLL ,

Ctot
LR = Ceff

9 + C10 + CLR ,

where CLL and CLR describe contributions from new physics. The terms with coefficients
CLRLR, CRLLR, CLRRL and CRLRL describe the scalar type interactions. The last two terms
in Eq. (1) with the coefficients CT and CTE describe the tensor type interactions.

Having presented the general form of the effective Hamiltonian the next problem is the
calculation of the matrix element of the Bq → ℓ+ℓ−γ decay. This matrix element can be
written as the sum of the two parts, structure–dependent and inner–Bremsstrahlung parts

M = MSD + MIB . (2)

The matrix element for the structure–dependent part MSD, which corresponds to the
radiation of photon from initial quarks, can be obtained by calculating the matrix element
〈γ |Heff |B〉. Using Eq. (1) we see that, for calculation of MSD, we need to know the
following matrix elements

〈γ |s̄γµ(1 ∓ γ5)b|B〉 ,
〈γ |s̄σµνq

νb|B〉 ,
〈γ |s̄σµνb|B〉 ,
〈γ |s̄(1 ∓ γ5)b|B〉 . (3)

The first two of the matrix elements in Eq. (3) are defined in the following way [3, 7, 13, 14]

〈γ(k) |q̄γµ(1 ∓ γ5)b|B(pB)〉 =
e

m2
B

{

ǫµνλσε
∗νqλkσg(q2) ± i

[

ε∗µ(kq) − (ε∗q)kµ
]

f(q2)
}

, (4)

〈γ(k) |q̄σµνb|B(pB)〉 =
e

m2
B

ǫµνλσ

[

Gε∗λkσ +Hε∗λqσ +N(ε∗q)qλkσ
]

. (5)

Here, ε∗ and k are the four vector polarization and momentum of the photon, respectively,
q = pB − k is the momentum transfer, pB is the momentum of the B meson and g(q2),
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f(q2), G(q2), H(q2) and N(q2) are the Bs → γ transition form factors. The matrix element
〈γ(k) |s̄σµνγ5b|B(pB)〉 can be obtained from Eq. (5) using the identity

σµν = − i

2
ǫµναβσ

αβγ5 .

The matrix elements 〈γ(k) |s̄(1 ∓ γ5)b|B(pB)〉 and 〈γ |s̄iσµνq
νb|B〉 can be obtained from

Eqs. (4) and (5) by multiplying them qµ and qν , respectively, as a result of which we get

〈γ(k) |s̄(1 ∓ γ5)b|B(pB)〉 = 0 , (6)

〈γ |s̄iσµνq
νb|B〉 =

e

m2
B

i ǫµναβq
νεα∗kβG . (7)

The matrix element 〈γ |s̄iσµνq
ν(1 + γ5)b|B〉 can be written in terms of the two form factors

f1(q
2) and g1(q

2) that are calculated in the framework of QCD sum rules [3, 13] in the
following way

〈γ |s̄iσµνq
ν(1 + γ5)b|B〉 =

e

m2
B

{

ǫµαβσ ε
α∗qβkσg1(q

2) + i
[

ε∗µ(qk) − (ε∗q)kµ

]

f1(q
2)
}

. (8)

It should be noted that these form factors were calculated in framework of the light–front
model in [14]. Eqs. (5), (7) and (8) allow us to express G, H and N in terms of f1 and g1.
Eqs. (4)–(8) help us rewrite MSD in the following form

MSD =
αGF

4
√

2 π
VtbV

∗
tq

e

m2
B

{

ℓ̄γµ(1 − γ5)ℓ
[

A1ǫµναβε
∗νqαkβ + i A2

(

ε∗µ(kq) − (ε∗q)kµ

)]

+ ℓ̄γµ(1 + γ5)ℓ
[

B1ǫµναβε
∗νqαkβ + i B2

(

ε∗µ(kq) − (ε∗q)kµ

)]

+ i ǫµναβ ℓ̄σ
µνℓ

[

Gε∗αkβ +Hε∗αqβ +N(ε∗q)qαkβ
]

(9)

+ i ℓ̄σµνℓ
[

G1(ε
∗µkν − ε∗νkµ) +H1(ε

∗µqν − ε∗νqµ) +N1(ε
∗q)(qµkν − qνkµ)

]

}

,

where

A1 =
1

q2

(

CBR + CSL

)

g1 +
(

Ctot
LL + CRL

)

g ,

A2 =
1

q2

(

CBR − CSL

)

f1 +
(

Ctot
LL − CRL

)

f ,

B1 =
1

q2

(

CBR + CSL

)

g1 +
(

Ctot
LR + CRR

)

g ,

B2 =
1

q2

(

CBR − CSL

)

f1 +
(

Ctot
LR − CRR

)

f ,

G = 4CTg1 ,

N = −4CT

1

q2
(f1 + g1) , (10)

H = N(qk) ,

G1 = −8CTEg1 ,

N1 = 8CTE

1

q2
(f1 + g1) ,

H1 = N1(qk) .
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In regard to the inner–Bremsstrahlung part, as a result of relevant calculations we get

MIB =
αGF

4
√

2π
VtbV

∗
tqefBi

{

F ℓ̄

(

6ε∗ 6pB

2p1k
− 6pB 6ε∗

2p2k

)

γ5ℓ

+ F1 ℓ̄

[

6ε∗ 6pB

2p1k
− 6pB 6ε∗

2p2k
+ 2mℓ

(

1

2p1k
+

1

2p2k

)

6ε∗
]

ℓ

}

. (11)

In deriving Eq. (11), we have used

〈0|s̄γµγ5b|B〉 = − ifBpBµ ,

〈0|s̄σµν(1 + γ5)b|B〉 = 0 ,

The functions F and F1 are defined as follows

F = 2mℓ

(

Ctot
LR − Ctot

LL + CRL − CRR

)

+
m2

B

mb

(

CLRLR − CRLLR − CLRRL + CRLRL

)

,

F1 =
m2

B

mb

(

CLRLR − CRLLR + CLRRL − CRLRL

)

. (12)

3 Polarized forward–backward asymmetries of the lep-

tons in Bs → ℓ+ℓ−γ decay

In the present section we calculate the polarized forward–backward asymmetries of leptons.
For this purpose we define the following orthogonal unit vectors s±i (here i = L, T or N
stands for longitudinal, transversal or normal polarizations, respectively) in the rest frame
of ℓ±

s−µ
L =

(

0, ~e−L
)

=

(

0,
~p−
|~p−|

)

,

s−µ
N =

(

0, ~e−N
)

=

(

0,
~pΛ × ~p−
|~pΛ × ~p−|

)

,

s−µ
T =

(

0, ~e−T
)

=
(

0, ~e−N × ~e−L
)

,

s+µ
L =

(

0, ~e+
L

)

=

(

0,
~p+

|~p+|

)

,

s+µ
N =

(

0, ~e+
N

)

=

(

0,
~pΛ × ~p+

|~pΛ × ~p+|

)

,

s+µ
T =

(

0, ~e+
T

)

=
(

0, ~e+
N × ~e+

L

)

, (13)

where ~p± and ~k are the three–momenta of the leptons ℓ± and photon in the center of mass
frame (CM) of ℓ− ℓ+ system, respectively. Transformation of unit vectors from the rest
frame of the leptons to CM frame of leptons can be accomplished by the Lorentz boost.
Boosting of the longitudinal unit vectors s±µ

L yields

(

s∓µ
L

)

CM
=

(

|~p∓|
mℓ

,
Eℓ~p∓
mℓ |~p∓|

)

, (14)
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where ~p+ = −~p−, Eℓ andmℓ are the energy mass of leptons in the CM frame. The remaining
unit vectors s±µ

N , s±µ
T are unchanged under Lorentz transformation.

The definition of the normalized, unpolarized differential forward–backward asymmetry
is

AFB =

∫ 1

0

d2Γ

dŝdz
−
∫ 0

−1

d2Γ

dŝdz
∫ 1

0

d2Γ

dŝdz
+
∫ 0

−1

d2Γ

dŝdz

, (15)

where z = cos θ is the angle between Λb meson and ℓ− in the center mass frame of leptons.
When the spins of both leptons are taken into account, the AFB will be a function of the
spins of the final leptons and it is defined as

Aij
FB(ŝ) =

(

dΓ(ŝ)

dŝ

)−1{
∫ 1

0
dz −

∫ 0

−1
dz

}{[

d2Γ(ŝ, ~s− =~i, ~s+ = ~j)

dŝdz
− d2Γ(ŝ, ~s− =~i, ~s+ = −~j)

dŝdz

]

−
[

d2Γ(ŝ, ~s− = −~i, ~s+ = ~j)

dŝdz
− d2Γ(ŝ, ~s− = −~i, ~s+ = −~j)

dŝdz

]}

,

= AFB(~s− =~i, ~s+ = ~j) −AFB(~s− =~i, ~s+ = −~j) −AFB(~s− = −~i, ~s+ = ~j)

+ AFB(~s− = −~i, ~s+ = −~j) . (16)

Using these definitions for the double polarized FB asymmetries, we get the following
results:

ALL
FB =

1

∆

{

− 4m2
B ŝ(1 − ŝ)2vRe[A∗

1A2 −B∗
1B2]

− 2

m̂ℓ

mB ŝ(1 − ŝ)2v(1 − v2)
(

Im[(A∗
1 − B∗

1)G1] − Re[(A2 − B2)
∗G]

)

− 4

m̂ℓ

mB ŝ
2(1 − ŝ)v(1 − v2)Im[(A∗

1 −B∗
1)H1]

+
4

m̂ℓv
fBmB ŝ(1 − ŝ)(1 − v2) ln[1 − v2]Re[(A∗

2 − B∗
2)F ]

− 4

m̂ℓv
fBmB ŝ(1 − ŝ)(1 − v2) ln[1 − v2]Re[(A∗

1 − B∗
1)F1]

}

, (17)

ALN
FB =

1

∆

{

− 4

3
mB

√
ŝ(1 − ŝ)2vRe[(A∗

1 − A∗
2 +B∗

1 +B∗
2)G1]

+
4

3
mB

√
ŝ(1 − ŝ)2vIm[(A∗

1 −A∗
2 −B∗

1 − B∗
2)G]

+
4

3
m3

B

√
ŝ3(1 − ŝ)2v

(

Re[(A∗
2 − B∗

2)N
∗
1 ] − Im[(A∗

2 +B∗
2)N ]

)

− 2

3m̂ℓ

m2
B

√
ŝ3(1 − ŝ)2v(1 − v2)

(

2Re[G∗N1 +G∗
1N +m2

B ŝN
∗
1N ] + Im[A∗

1B1 + A∗
2B2]

)

− fBm
2
B

√
ŝ(1 − ŝ)

{

2fBm
2
Bm̂ℓIm[F ∗

1F ]I4 + v
[

mB(1 − ŝ)Im[(A∗
1 +B∗

1)F1]

5



+ mBIm[(A∗
1 − A∗

2 −B∗
1 − B∗

2)F − ŝ(A∗
1 + A∗

2 −B∗
1 +B∗

2)F ] + 8m̂ℓRe[F ∗H1]
]

I7
}

+ fBm
3
B

√
ŝ(1 − ŝ)v[1 − ŝ(1 − 2v2)]Im[(A∗

2 − B∗
2)F1]J4

+ 8fBm
2
Bm̂ℓ

√
ŝ(1 − ŝ)vRe[F ∗(G1 +m2

BN1)]J4

+ 4fBm
4
Bm̂ℓ

√
ŝ(1 − ŝ)2vIm[F ∗

1N ]J4

}

, (18)

ANL
FB =

1

∆

{

4

3
mB

√
ŝ(1 − ŝ)2vRe[(A∗

1 + A∗
2 +B∗

1 −B∗
2)G1]

+
4

3
mB

√
ŝ(1 − ŝ)2vIm[(A∗

1 + A∗
2 − B∗

1 +B∗
2)G]

+
4

3
m3

B

√
ŝ3(1 − ŝ)2v

(

Re[(A∗
2 − B∗

2)N1] + Im[(A∗
2 +B∗

2)N ]
)

+
2

3m̂ℓ

m2
B

√
ŝ3(1 − ŝ)2v(1 − v2)

(

2Re[G∗N1 +G∗
1N +m2

B ŝN
∗
1N ] − Im[A∗

1B1 + A∗
2B2]

)

+ fBm
2
B

√
ŝ(1 − ŝ)

{

2fBm
2
Bm̂ℓIm[F ∗

1F ]I4 + v
[

mB(1 − ŝ)Im[(A∗
1 +B∗

1)F1]

− mBIm[(A∗
1 + A∗

2 − B∗
1 +B∗

2)F − ŝ(A∗
1 − A∗

2 − B∗
1 −B∗

2)F ] + 8m̂ℓRe[F ∗H1]
]

I7
}

+ fBm
3
B

√
ŝ(1 − ŝ)v[1 − ŝ(1 − 2v2)]Im[(A∗

2 − B∗
2)F1]J4

− 8fBm
2
Bm̂ℓ

√
ŝ(1 − ŝ)vRe[F ∗(G1 +m2

BN1)]J4

− 4fBm
4
Bm̂ℓ

√
ŝ(1 − ŝ)2vIm[F ∗

1N ]J4

}

, (19)

ALT
FB =

1

∆

{

4

3
√
ŝ
m̂ℓ(1 − ŝ)2

[

4
(

|G1|2 + |G|2
)

+m2
B ŝ
(

|A1|2 + |A2|2 + |B1|2 + |B2|2
) ]

− 4

3
mB

√
ŝ(1 − ŝ)2v2

(

Im[(A∗
1 −B∗

1)G1] − Re[(A∗
2 −B∗

2)(G+m2
B ŝN)]

)

− 4

3
mB

√
ŝ(1 − ŝ)2(2 − v2)

(

Re[(A∗
1 +B∗

1)G] − Im[(A∗
2 +B∗

2)(G1 +m2
B ŝN1]

)

+
8

3
m2

Bm̂ℓ

√
ŝ(1 − ŝ)2

(

Re[A∗
1B1 + A∗

2B2 + 4G∗
1N1] + 2m2

B ŝ |N1|2
)

+
1√
ŝ
f 2

Bm
4
Bm̂ℓ(1 − ŝ)

[

(1 − ŝ)
(

|F1|2 + |F |2
)

(J1 + J2) + 2ŝv |F1|2 J3

]

+ fBm
3
B

√
ŝ(1 − ŝ)2v2Re[(A∗

1 −B∗
1)F1]J4

− fBm
3
B

√
ŝ(1 − ŝ2)v2Re[(A∗

2 −B∗
2)F

∗]J4

+ fBm
3
B

√
ŝ(1 − ŝ)2(2 − v2)Re[(A∗

1 +B∗
1)F ]J4

− 4fBm
4
Bm̂ℓ

√
ŝ(1 − ŝ)[2 + v2 − ŝ(2 − v2)]Im[F ∗

1N1]J4

+ 8fBm
2
Bm̂ℓ

√
ŝ(1 − ŝ)v2Im[F ∗

1H1]J4

− fBm
3
B

√
ŝ(1 − ŝ)[2 − v2 − ŝ(2 − 3v2)]Re[(A∗

2 +B∗
2)F1]J4

− 8√
ŝ
fBm

2
Bm̂ℓ(1 − ŝ)

[

(1 − ŝ+ ŝv2)Im[F ∗
1G1] + (1 − ŝ)Re[F ∗G]

]

J4

}

, (20)
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ATL
FB =

1

∆

{

− 4

3
√
ŝ
m̂ℓ(1 − ŝ)2

[

4
(

|G1|2 + |G|2
)

+m2
B ŝ
(

|A1|2 + |A2|2 + |B1|2 + |B2|2
) ]

− 4

3
mB

√
ŝ(1 − ŝ)2v2

(

Im[(A∗
1 −B∗

1)G1] − Re[(A∗
2 −B∗

2)(G+m2
B ŝN)]

)

+
4

3
mB

√
ŝ(1 − ŝ)2(2 − v2)

(

Re[(A∗
1 +B∗

1)G] − Im[(A∗
2 +B∗

2)(G1 +m2
B ŝN1]

)

− 8

3
m2

Bm̂ℓ

√
ŝ(1 − ŝ)2

(

Re[A∗
1B1 + A∗

2B2 + 4G∗
1N1] + 2m2

B ŝ |N1|2
)

− 1√
ŝ
f 2

Bm
4
Bm̂ℓ(1 − ŝ)

[

(1 − ŝ)
(

|F1|2 + |F |2
)

(J1 + J2) + 2ŝv |F1|2 J3

]

+ fBm
3
B

√
ŝ(1 − ŝ)2v2Re[(A∗

1 −B∗
1)F1]J4

− fBm
3
B

√
ŝ(1 − ŝ2)v2Re[(A∗

2 −B∗
2)F ]J4

− fBm
3
B

√
ŝ(1 − ŝ)2(2 − v2)Re[(A∗

1 +B∗
1)F ]J4

+ 4fBm
4
Bm̂ℓ

√
ŝ(1 − ŝ)[2 + v2 − ŝ(2 − v2)]Im[F ∗

1N1]J4

− 8fBm
2
Bm̂ℓ

√
ŝ(1 − ŝ)v2Im[F ∗

1H1]J4

+ fBm
3
B

√
ŝ(1 − ŝ)[2 − v2 − ŝ(2 − 3v2)]Re[(A∗

2 +B∗
2)F1]J4

+
8√
ŝ
fBm

2
Bm̂ℓ(1 − ŝ)

[

(1 − ŝ+ ŝv2)Im[F ∗
1G1] + (1 − ŝ)Re[F ∗G]

]

J4

}

, (21)

where,

∆ = 16mBm̂ℓ(1 − ŝ)2
(

Im[(A∗
2 +B∗

2)G1] − Re[(A∗
1 +B∗

1)G−mBm̂ℓ(A
∗
1B1 + A∗

2B2)]
)

+ 48mBm̂ℓŝ(1 − ŝ)Im[(A∗
2 +B∗

2)H1]

− 8m3
Bm̂ℓŝ(1 − ŝ)2Im[(A∗

2 +B∗
2)N1]

+
2

3
(1 − ŝ)2

[

4(3 − v2)
(

|G1|2 + |G|2
)

+m2
B ŝ(3 + v2)

(

|A1|2 + |A2|2 + |B1|2 + |B2|2
)]

+ 16ŝv2
[

(1 − ŝ)Re[G∗H ] + ŝ |H|2
]

+ 16ŝ(3 − 2v2)
[

(1 − ŝ)Re[G∗
1H1] + ŝ |H1|2

]

− 4

3
m2

B ŝ(1 − ŝ)2(3 − 2v2)
(

2Re[G∗
1N1] +m2

B ŝ |N1|2
)

− 4

3
m2

B ŝ(1 − ŝ)2v2
(

2Re[G∗N ] +m2
B ŝ |N |2

)

− 1

2
f 2

Bm
4
B |F |2

{

(1 − ŝ)2v2(I1 + I3) − (1 + ŝ2 + 2ŝv2)I2 − [1 − ŝ(4 − ŝ− 2v2)]I5

}

+
1

2
f 2

Bm
4
B |F1|2

{

− (1 − ŝ)2v2(I1 + I3) + [1 − ŝ(2 − ŝ− 4v2 + 2ŝv2 − 2ŝv4)]I2

− 2ŝ(1 − ŝ)v(1 − v2)I4 + [1 − ŝ(2 − ŝ + 2ŝv2 − 2ŝv4)]I5

}

− 4fBm
2
B ŝvRe[F ∗H ][(1 − ŝ)vI6 + (1 + ŝ)I7]

− 4fBm
2
B ŝIm[F ∗

1H1][(1 − ŝ)v2I6 + (3 − 2v2 − 3ŝ+ 4ŝv2)I7]

+ 2fBmBm̂ℓRe[(A∗
1 +B∗

1)F ]
[

8(1 + ŝ) +m2
B(1 − ŝ2)v2I6 +m2

B(1 − ŝ)(1 − 3ŝ)I7

]
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− fBmBm̂ℓ(1 − ŝ)Re[(A∗
2 +B∗

2)F1]
[

8 +m2
B(1 − 5ŝ)v2I6 +m2

B(3 − 3ŝ+ 4ŝv2)I7

]

+ fBIm[F ∗
1G1]

[

− 24(1 − ŝ+ 2ŝv2) +m2
B(1 − ŝ)(1 + 3ŝ− 6ŝv2)v2I6

− m2
B(1 − ŝ)(1 − ŝ− 2ŝv2)I7

]

+ fBRe[F ∗G]
[

− 24(1 + ŝ) +m2
B(1 − ŝ)(1 − 3ŝ)v2I6 −m2

B(1 − ŝ)(1 − 7ŝ+ 4ŝv2)I7

]

+ fBm
2
B ŝIm[F ∗

1N1]
[

− 8(1 − ŝ+ 2ŝv2) +m2
B(1 − ŝ)(3 + ŝ− 2ŝv2)v2I6

+ m2
B(1 − ŝ)(3 − 2v2 − 3ŝ+ 4ŝv2)I7

]

+ fBm
2
B ŝRe[F ∗N ]

[

− 8(1 + ŝ) +m2
B(1 − ŝ)(3 − ŝ)v2I6 +m2

B(1 − ŝ2)I7

]

. (22)

In Eqs. (16)–(22), ŝ = q2/m2
B, v =

√

1 − 4m̂2
ℓ/ŝ is the lepton velocity with m̂ℓ = mℓ/mB,

and Ii represent the following integrals

Ii =
∫ +1

−1
Fi(z)dz ,

Ji =
∫ +1

0
Gi(z)dz −

∫ 0

−1
Gi(z)dz ,

where

G1 =
z
√

1 − z2

(p1 · k)(p2 · k)
, G2 =

z
√

1 − z2

(p1 · k)2
, G3 =

√
1 − z2

(p1 · k)2
,

G4 =
z
√

1 − z2

(p1 · k)
, F1 =

z2

(p1 · k)(p2 · k)
, F2 =

1

(p1 · k)(p2 · k)
,

F3 =
z2

(p1 · k)2
, F4 =

z

(p1 · k)2
, F5 =

1

(p1 · k)2
,

F6 =
z2

p1 · k
, F7 =

1

p1 · k
.

We note that, the forward–backward asymmetries ANN , ANT , ATN and ATT are all
equal to zero.

4 Numerical analysis and discussion

In this section we present our numerical analysis for all possible polarized forward–backward
asymmetries of leptons. The values of the input parameters which we have used in the
numerical analysis are: |VtbV

∗
ts| = 0.0385, mµ = 0.106 GeV , mτ = 1.78 GeV , mb = 4.8 GeV .

For the SM values of the Wilson coefficients we have used CSM
7 (mb) = −0.313, CSM

9 (mb) =
4.344 and CSM

10 (mb) = −4.669. The magnitude of CSM
7 is quite well determined from the

b → sγ transition, and hence it is well established. Therefore the values of CBR and CSL

are fixed by the relations CBR = −2mbC
eff
7 and CSL = −2msC

eff
7 . It is well known that

the Wilson coefficient CSM
9 receives also long distance contributions which have their origin
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in the real c̄c intermediate states, i.e., J/ψ, ψ′, · · · [15]. In the present work we consider
only short distance contributions.

The values of the new Wilson coefficients are needed in order to carry out the numerical
calculations for Aij given in Eqs. (17)– (22). All new Wilson coefficients are varied in the

range −
∣

∣

∣CSM
10

∣

∣

∣ ≤ CX ≤
∣

∣

∣CSM
10

∣

∣

∣ and it is assumed that they are real. The experimental

results on the branching ratio of the Bs → K∗(K)ℓ+ℓ− decays [16, 17] and the bound on
the branching ratio of Bs → µ+µ− [18] suggest that this is the right order of magnitude
for the Wilson coefficients describing the vector and scalar interaction coefficients. But
present experimental results on the branching ratio of the Bs → K∗ℓ+ℓ− and Bs → Kℓ+ℓ−

decays impose stronger restrictions on some of the new Wilson coefficients. For example,
−2 ≤ CLL ≤ 0, 0 ≤ CRL ≤ 2.3, −1.5 ≤ CT ≤ 1.5 and −3.3 ≤ CTE ≤ 2.6, and all of the
remaining Wilson coefficients vary in the region −

∣

∣

∣CSM
10

∣

∣

∣ ≤ CX ≤
∣

∣

∣CSM
10

∣

∣

∣.
It follows from the expressions of all forward–backward asymmetries of the leptons

that, explicit forms of the form factors are needed, which are the main and most important
parameters in the calculation of Aij. These form factors are calculated in the framework
of the QCD sum rules in [3, 13, 14] whose q2 dependences are given as

g(q
2) =

1 GeV
(

1 − q2

(5.6 GeV )2

)2 , f(q
2) =

0.8 GeV
(

1 − q2

(6.5 GeV )2

)2 ,

g1(q
2) =

3.74 GeV 2

(

1 − q2

40.5 GeV 2

)2 , f1(q
2) =

0.67 GeV 2

(

1 − q2

30 GeV 2

)2 ,

which we will use in the numerical analysis.
Numerical results are presented only for the Bs → ℓ+ℓ−γ decay, because in the SU(3)

limit the difference between the decay rates of Bs → ℓ+ℓ−γ and Bd → ℓ+ℓ−γ is attributed
only to the CKM matrix elements. In other words, the decay rate of the Bs → ℓ+ℓ−γ is
approximately 20 times larger compared to that of decay rate of Bd → ℓ+ℓ−γ, that is

Γ(Bd → ℓ+ℓ−γ)

Γ(Bs → ℓ+ℓ−γ)
≃ |VtbV

∗
td|2

|VtbV ∗
ts|2

≃ 1

20
.

We now proceed by commenting on the result of our numerical analysis. Firstly, we
study the dependence of the polarized forward–backward asymmetries on q2 at five different
values of the new Wilson coefficients. Our detailed numerical analysis shows that for the
Bs → µ+µ−γ decay only the ALT

FB and ATL
FB asymmetries have zero positions (the numerical

values of the asymmetries ALN
FB and ANL

FB are very small and hence we do not present
them). In Fig. (1) we present the dependence of ALT

FB on q2 at five fixed values of the scalar
interaction coefficient CLRLR = −4;−2; 0; +2; +4. From this figure we see that the zero
position which occurs for positive values of CLRLR is shifted to right for increasing values
of CLRLR. The same figure also depicts that the zero position of ALT

FB is absent for the SM
case. Therefore, determination of the zero position of ALT

FB is an unambiguous indication
of the new physics beyond the SM, as well as allowing us determine the sign of the scalar

9



interaction coefficients CLRLR. In Fig. (2) we present the dependence of ALT
FB on q2 at fixed

values of CRLLR. Similar to the previous case, zero position of the ALT
FB appears again,

but the difference from it being it occurs for the negative values of CRLLR. It should be
noted here that the zero position of ALT

FB is present for the remaining scalar interaction
coefficients CLRRL and CRLRL as well, which can be seen in Figs. (3) and (4). More
interesting observation for these cases is that, the zero position appears for q2 < 2 GeV 2

and hence it is free of the long distance J/ψ contributions. As far as Bs → µ+µ−γ decay
is concerned, our numerical analysis shows that the zero position of ALT

FB is absent for all
Wilson coefficients other than the scalar interaction coefficients. Hence, determination of
the zero position of ALT

FB can serve as a good test for establishing new physics beyond the
SM due to the presence of the scalar interaction coefficients.

The situation for the ATL
FB asymmetry for the Bs → µ+µ−γ decay is richer in content

compared to that of the ALT
FB case. For this forward–backward asymmetry, the zero position

occurs for all new Wilson coefficients. In Figs. (5)–(11) we present the dependence of ATL
FB

on q2 at five fixed values of the new Wilson coefficients. These figures depict that:

• For vector interactions with the Wilson coefficients CLL and CRR, the zero position
of ATL

FB is shifted. When these coefficients get positive (negative) values, the zero
position of ATL

FB is shifted to the left (right) compared to that of the SM case. In
the presence of the Wilson coefficients CLR and CRL the zero position of the ATL

FB

is shifted to the right (left) compared to that of the SM result, when these Wilson
coefficients are positive (negative).

• In the presence of the scalar interactions with the coefficients CLRRL and CRLRL, the
zero position of ATL

FB is shifted the left compared to that of the SM result. The zero
position for CLRRL occurs only for its positive values, while it occurs only for the
negative values of CRLRL.

In the presence of scalar interactions CRLLR and CLRLR, no new zero position of ATL
FB

occurs with respect to the one for the SM case.

• New zero positions of ATL
FB are observed in the presence of the tensor interaction for

the positive values of CT , and the zero position is shifted to the left,

In the case of Bs → τ+τ−γ decay, similar to the Bs → µ+µ−γ decay, we observe that
several of the polarized forward–backward asymmetries are very sensitive to the existence
of new physics. Let us briefly summarize our results:

i) Among all polarization asymmetries (which can be measurable in the experiments)
only ATL

FB is very sensitive to the existence of all types of new physics interactions, except
to the presence of the vector interactions with coefficients CLL and CRR.

ii) ALL
FB is sensitive to the presence of the tensor interaction and its zero position occurs

for CT = +4 at q2 ≈ 17 GeV 2, while zero position of ALL
FB is absent for the SM case.

Therefore, determination of the zero position of ALL
FB can confirm the existence of the

tensor interaction in the Bs → τ+τ−γ decay (see Fig. (12)).

• ATL
FB exhibits similar dependence on CLR and CRL. The zero position of ATL

FB is shifted
to to the left (right) when CLR and CRL are negative (positive) compared to that of

10



the SM prediction. Note that the zero position of ATL
FB lies on the left side for the

vector interaction CLR compared to the zero position of the CRL (see Figs. (13), (14)).

• ATL
FB shows stronger dependence on the scalar interactions CLRRL and CRLRL. The

magnitude of ATL
FB increases (decreases) as the new Wilson coefficient CLRRL gets

positive (negative) values. This behavior is to the contrary for the coefficient CRLRL

(see Figs. (15), (16)).

• In the presence of the tensor interaction with the coefficient CT , zero position of the
asymmetry ATL

FB is located on the left side of the SM prediction for negative values
of CT (Fig. (17)).

We see from the explicit expressions of the polarized forward–backward asymmetries
that they all depend both on q2 and the new Wilson coefficients. For this reason there may
appear difficulties in the experiments in studying the dependence of the physical observables
on both parameters simultaneously. In order to get ”pure information” about about new
physics, we eliminate the dependence of physical quantities on q@, by performing integration
over q2 in the kinematically allowed region, i.e., we average the polarized forward backward
asymmetry

〈Aij〉 =

∫m2

B

4m2

ℓ

Aij

dB
dq2

dq2

∫m2

B

4m2

ℓ

dB
dq2

dq2
.

In Fig. (18) we depict the dependence of
〈

ALL
FB

〉

on the new Wilson for the Bs → µ+µ−γ

decay. From this figure we see that
〈

ALL
FB

〉

shows symmetric behavior in its dependence on
all scalar interactions; and except for regions −4 < CRR, CRL < 0, −0.4 < CLRRL, CLRRL <
0 and 0 ≤ CRLRL, CLRLR < 0.4 it is larger compared to the SM result (SM result corresponds

to the intersection point of all curves). It is also interesting to observe that
〈

ALL
FB

〉

>
〈

ASM
FB

〉

for only negative values of CRR.
Our numerical analysis furthers shows that, for the Bs → µ+µ−γ decay,

〈

ALT
FB

〉

is

sensitive only to CT and at negative (positive) values of CT

〈

ALT
FB

〉

is positive (negative)

and larger (smaller) compared to the SM result. Therefore, determination of the sign

and magnitude of
〈

ALT
FB

〉

can serve as a good test for establishing existence of the tensor
interaction.

The dependence of
〈

ATL
FB

〉

on the new Wilson coefficients for the Bs → µ+µ−γ decay is

presented in Fig. (19). We observe from this figure that
〈

ATL
FB

〉

shows stronger dependence
on the tensor interaction coefficient CT and scalar interactions CRLRLR and CLRRL.

In Figs. (20), (21), and (22) we present the dependence of
〈

ALL
FB

〉

,
〈

ALT
FB

〉

and
〈

ATL
FB

〉

on

the new Wilson coefficients for the Bs → τ+τ−γ decay, respectively. Fig. (20) depicts that
〈

ALL
FB

〉

exhibits considerable departure from the SM result for the scalar interactions and

the vector interaction with coefficient CRR. We see from Fig. (21) that when new Wilson

coefficients are negative
〈

ALT
FB

〉

shows stronger dependence on on the tensor interaction
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(CT ) and scalar type interactions, and when CX > 0,
〈

ALT
FB

〉

exhibits strong dependence
on vector interactions and the tensor interaction with the coefficient CTE.

At the end of this section, we discuss the problem of the detectability of forward–
backward asymmetry in the experiments. Experimentally, to measure an asymmetry 〈Aij〉
of the decay with the branching ratio B at nσ level, the required number of events (i.e., the
number of BB̄ pair) are given by

N =
n2

Bs1s2〈Aij〉2
,

where s1 and s2 are the efficiencies of the leptons. Efficiency of the µ lepton is practically
equal to one, and typical values of the efficiency of the τ lepton ranges from 50% to 90%
for the various decay modes [19].

From the expression for N we see that, in order to obtain the forward–backward asym-
metries in Bs → ℓ+ℓ−γ decays at 3σ level, the minimum number of required events are (for
the efficiency of τ–lepton we take 0.5, and for 〈Aij〉, their maximal values beyond the SM):

• for the Bs → µ+µ−γ decay

N =

{

∼ 2 × 109 〈ALL〉 ,
∼ 3 × 1010 〈ALT 〉 ≃ 〈ATL〉 ,

which yields that, for detecting 〈ALT 〉 and 〈ATL〉, more than 1013 B̄B pairs are
required.

• for Bs → τ+τ−γ decay

N =∼ 6 × 1011 〈ALL〉 , 〈ALT 〉 , 〈ATL〉 .

The number of B̄B pairs that will be produced at LHC is around ∼ 1012. As a result
of a comparison of this number of B̄B pairs with that of N , we conclude that 〈ALL〉,
〈ATL〉 and 〈ATL〉 in both decays can be detectable in ”beyond the SM scenarios” in future
experiments at LHC. Note that in the SM, only 〈ALL〉 for the Bs → µ+µ−γ decay can be
detectable at LHC. Therefore, observation of these asymmetries can be explained only by
new physics beyond the SM.

In conclusion, we calculate polarized forward–backward asymmetries using the most
general, model independent form of the effective Hamiltonian including all possible form of
interactions. The sensitivity of the averaged polarized forward–backward asymmetries to
the new Wilson coefficients are studied. Finally we discuss the possibility of experimental
measurement of these double–lepton polarization asymmetries at LHC.
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Figure captions

Fig. (1) The dependence of the polarized forward–backward asymmetry ALT
FB on q2 at four

fixed values of CLRLR for the Bs → µ+µ−γ decay.

Fig. (2) The same as in Fig. (1), but for at four fixed values of CRLLR.

Fig. (3) The same as in Fig. (1), but for at four fixed values of CLRRL.

Fig. (4) The same as in Fig. (1), but for at four fixed values of CRLRL.

Fig. (5) The dependence of the polarized forward–backward asymmetry ATL
FB on q2 at

four fixed values of CLL for the Bs → µ+µ−γ decay.

Fig. (6) The same as in Fig. (5), but for at four fixed values of CLR.

Fig. (7) The same as in Fig. (5), but for at four fixed values of CRL.

Fig. (8) The same as in Fig. (5), but for at four fixed values of CRR.

Fig. (9) The same as in Fig. (5), but for at four fixed values of CLRRL.

Fig. (10) The same as in Fig. (5), but for at four fixed values of CRLRL.

Fig. (11) The same as in Fig. (5), but for at four fixed values of CT .

Fig. (12) The dependence of the polarized forward–backward asymmetry ALL
FB on q2

at four fixed values of CT for the Bs → τ+τ−γ decay.

Fig. (13) The dependence of the polarized forward–backward asymmetry ATL
FB on q2

at four fixed values of CLR for the Bs → τ+τ−γ decay.

Fig. (14) The same as in Fig. (13), but for at four fixed values of CRL.

Fig. (15) The same as in Fig. (13), but for at four fixed values of CLRRL.

Fig. (16) The same as in Fig. (13), but for at four fixed values of CRLRL.

Fig. (17) The same as in Fig. (13), but for at four fixed values of CT .

Fig. (18) The dependence of the polarized forward–backward asymmetry ALL
FB on the

new Wilson coefficients for the Bs → µ+µ−γ decay.

Fig. (19) The same as in Fig. (18), but for the polarized forward–backward asymme-
try ATL

FB.
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Fig. (20) The same as in Fig. (18), but for the Bs → τ+τ−γ decay.

Fig. (21) The same as in Fig. (20), but for the polarized forward–backward asymme-
try ALT

FB.

Fig. (22) The same as in Fig. (21), but for the polarized forward–backward asymme-
try ATL

FB.
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