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Abstract

The current status of electroweak precision observables in the Minimal Supersymmetric
Standard Model (MSSM) is reviewed. We focus in particular on the W boson mass, MW ,
the effective leptonic weak mixing angle, sin2 θeff , the anomalous magnetic moment of the
muon, (g − 2)µ, and the lightest CP-even MSSM Higgs boson mass, mh. We summarize the
current experimental situation and the status of the theoretical evaluations. An estimate
of the current theoretical uncertainties from unknown higher-order corrections and from the
experimental errors of the input parameters is given. We discuss future prospects for both
the experimental accuracies and the precision of the theoretical predictions. Confronting
the precision data with the theory predictions within the unconstrained MSSM and within
specific SUSY-breaking scenarios, we analyse how well the data are described by the theory.
The mSUGRA scenario with cosmological constraints yields a very good fit to the data,
showing a clear preference for a relatively light mass scale of the SUSY particles. The
constraints on the parameter space from the precision data is discussed, and it is shown that
the prospective accuracy at the next generation of colliders will enhance the sensitivity of
the precision tests very significantly.
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Chapter 1

Introduction

1.1 Motivation

Theories based on Supersymmetry (SUSY) [1] are widely considered as the theoretically
most appealing extension of the Standard Model (SM) [2]. They are consistent with the ap-
proximate unification of the gauge coupling constants at the GUT scale and provide a way
to cancel the quadratic divergences in the Higgs sector hence stabilizing the huge hierarchy
between the GUT and the Fermi scales. Furthermore, in SUSY theories the breaking of the
electroweak symmetry is naturally induced at the Fermi scale, and the lightest supersym-
metric particle can be neutral, weakly interacting and absolutely stable, providing therefore
a natural solution for the dark matter problem.

SUSY predicts the existence of scalar partners f̃L, f̃R to each SM chiral fermion, and spin–
1/2 partners to the gauge bosons and to the scalar Higgs bosons. So far, the direct search
for SUSY particles has not been successful. One can only set lower bounds of O(100) GeV
on their masses [3]. The search reach will be extended in various ways in the ongoing
Run II at the upgraded Fermilab Tevatron [4]. The LHC [5,6] and the e+e− International
Linear Collider (ILC) [7–9] have very good prospects for exploring SUSY at the TeV scale,
which is favoured from naturalness arguments. From the interplay of both machines detailed
information on the SUSY spectrum can be expected in this case [10].

In the Minimal Supersymmetric extension of the Standard Model (MSSM) two Higgs
doublets are required resulting in five physical Higgs bosons [11]. The direct search resulted
in lower limits of about 90 GeV for the neutral Higgs bosons and about 80 GeV for the
charged ones [12,13]. The Higgs search at the Tevatron will be able to probe significant parts
of the MSSM parameter space at the 95% C.L. even with rather moderate luminosity [14].
The LHC will discover at least one MSSM Higgs boson over most of the MSSM parameter
space [5,6,15–17]. The ILC will be able to detect any Higgs boson that couples to the Z boson
in a decay-mode independent way. The properties of all Higgs-bosons which are within the
kinematic reach of the ILC will be determined with high precision [7–9].

Contrary to the SM case, where the mass of the Higgs boson is a free parameter, within the
MSSM the quartic couplings of the Higgs potential are fixed in terms of the gauge couplings
as a consequence of SUSY [11]. Thus, at the tree-level, the Higgs sector is determined
by just two independent parameters besides the SM electroweak gauge couplings g and g′,
conventionally chosen as tan β = v2/v1, the ratio of the vacuum expectation values of the

5



two Higgs doublets, and MA, the mass of the CP-odd A boson. As a consequence, the mass
of the lightest CP-even MSSM Higgs boson can be predicted in terms of the other model
parameters.

Besides the direct detection of SUSY particles and Higgs bosons, SUSY can also be probed
via the virtual effects of the additional particles to precision observables. This requires a
very high precision of the experimental results as well as of the theoretical predictions. The
wealth of high-precision measurements carried out at LEP, SLC and the Tevatron [18] as well
as the “Muon g − 2 Experiment” (E821) [19] and further low-energy experiments provide
a powerful tool for testing the electroweak theory and probing indirect effects of SUSY
particles. The most relevant electroweak precision observables (EWPO) in this context are
the W boson mass, MW , the effective leptonic weak mixing angle, sin2 θeff , the anomalous
magnetic moment of the muon, aµ ≡ (g−2)µ/2, and the mass of the lightest CP-even MSSM
Higgs boson, mh. While the current exclusion bounds on mh already allow to constrain the
MSSM parameter space, the prospective accuracy for the measurement of the mass of a light
Higgs boson at the LHC of about 200 MeV [5,6] or at the ILC of even 50 MeV [7–9] could
promote mh to a precision observable. Owing to the sensitive dependence of mh on especially
the scalar top sector, the measured value of mh will allow to set stringent constraints on the
parameters in this sector.

Since the experimental data — with few exceptions — are well described by the SM [18],
the electroweak precision tests at present mainly yield constraints on possible extensions of
the SM, e.g. lower limits on SUSY particle masses. Nevertheless, one can use the available
data to investigate whether small deviations from the SM predictions could be caused by
quantum effects of the SUSY particles: sleptons, squarks, gluinos, charginos/neutralinos and
additional Higgs bosons, and what regions of the SUSY parameter space might be favoured.

1.2 The structure of the MSSM

The MSSM constitutes the minimal supersymmetric extension of the SM. The number of
SUSY generators isN = 1, the smallest possible value. In order to keep anomaly cancellation,
contrary to the SM a second Higgs doublet is needed [20]. One Higgs doublet, H1, gives
mass to the d-type fermions (with weak isospin -1/2), the other doublet, H2, gives mass to
the u-type fermions (with weak isospin +1/2). All SM multiplets, including the two Higgs
doublets (2HDM), are extended to supersymmetric multiplets, resulting in scalar partners
for quarks and leptons (“squarks” and “sleptons”) and fermionic partners for the SM gauge
boson and the Higgs bosons (“gauginos” and “gluinos”). In Tab. 1.1 the spectrum of the
MSSM fields is summarized (family indices are suppressed). In this report we do not consider
effects of complex phases, i.e. we treat all MSSM parameters as real.

The mass eigenstates of the gauginos are linear combinations of these fields, denoted as
“neutralinos” and “charginos”. Also the left- and right-handed squarks (and sleptons) can
mix, yielding the mass eigenstates (denoted by the indices 1, 2 instead of L,R). All physical
particles of the MSSM are given in Tab. 1.2.
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superfield (SU(3), SU(2), U(1)) 2HDM particle spin SUSY partner spin

Q̂ (3, 2, 1
3
) (u, d)L

1
2

(ũ, d̃)L 0

Û (3∗, 1, −4
3
) ūR

1
2

ũ∗R 0

D̂ (3∗, 1, 2
3
) d̄R

1
2

d̃∗R 0

L̂ (1, 2, −1) (ν, e)L
1
2

L̃L = (ν̃, ẽ)L 0

Ê (1, 1, 2) ēR
1
2

ẽ∗R 0

Ĥ1 (1, 2, −1) (H0
1 , H

−
1 )L 0 (H̃0

1 , H̃
−
1 )L

1
2

Ĥ2 (1, 2, 1) (H+
2 , H

0
2 )L 0 (H̃+

2 , H̃
0
2 )L

1
2

Ŵ (1, 3, 0) W i 1 W̃ i 1
2

B̂ (1, 1, 0) B0 1 B̃0 1
2

Ĝa (8, 1, 0) ga 1 g̃a
1
2

Table 1.1: Superfields and particle content of the MSSM.

1.2.1 The Higgs sector of the MSSM

The two Higgs doublets form the Higgs potential [11]

V = (m2
1 + |µ|2)|H1|2 + (m2

2 + |µ|2)|H2|2 −m2
12(ǫabHa

1Hb
2 + h.c.)

+
1

8
(g1

2 + g2
2)
[
|H1|2 − |H2|2

]2
+

1

2
g2

2|H†
1H2|2 , (1.1)

which contains m1, m2, m12 as soft SUSY breaking parameters and µ as the Higgsino mass
parameter; g, g′ are the SU(2) and U(1) gauge couplings, and ǫ12 = −1.

The doublet fields H1 and H2 are decomposed in the following way:

H1 =

( H0
1

H−
1

)
=

(
v1 + 1√

2
(φ0

1 − iχ0
1)

−φ−
1

)

H2 =

( H+
2

H0
2

)
=

(
φ+

2

v2 + 1√
2
(φ0

2 + iχ0
2)

)
. (1.2)

The potential (1.1) can be described with the help of two independent parameters (besides
g and g′): tan β = v2/v1 and M2

A = −m2
12(tan β + cot β ), where MA is the mass of the

CP-odd A boson.
The diagonalization of the bilinear part of the Higgs potential, i.e. the Higgs mass ma-
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2HDM particle spin SUSY particle spin

quarks: q 1
2

squarks: q̃1, q̃2 0

leptons: l 1
2

sleptons: l̃1, l̃2 0

gluons: ga 1 Gluinos: g̃a
1
2

gauge bosons: W±, Z0, γ 1 Neutralinos: χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4

1
2

Higgs bosons: h0, H0, A0, H± 0 Charginos: χ̃±
1 , χ̃±

2
1
2

Table 1.2: The particle content of the MSSM.

trices, is performed via the orthogonal transformations

(
H0

h0

)
=

(
cosα sinα

− sinα cosα

)(
φ0

1

φ0
2

)
(1.3)

(
G0

A0

)
=

(
cosβ sin β

− sin β cosβ

)(
χ0

1

χ0
2

)
(1.4)

(
G±

H±

)
=

(
cosβ sin β

− sin β cosβ

)(
φ±

1

φ±
2

)
. (1.5)

The mixing angle α is determined through

tan 2α = tan 2β
M2

A +M2
Z

M2
A −M2

Z

; −π
2
< α < 0 . (1.6)

One gets the following Higgs spectrum:

2 neutral bosons, CP = +1 : h0, H0

1 neutral boson, CP = −1 : A0

2 charged bosons : H+, H−

3 unphysical Goldstone bosons : G0, G+, G−. (1.7)

The masses of the gauge bosons are given in analogy to the SM:

M2
W =

1

2
g2
2(v

2
1 + v2

2); M2
Z =

1

2
(g2

1 + g2
2)(v

2
1 + v2

2); Mγ = 0. (1.8)

At tree level the mass matrix of the neutral CP-even Higgs bosons is given in the φ1-φ2-
basis in terms of MZ , MA, and tan β by

M2,tree
Higgs =

(
m2

φ1
m2

φ1φ2

m2
φ1φ2

m2
φ2

)
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=

(
M2

A sin2 β +M2
Z cos2 β −(M2

A +M2
Z) sin β cosβ

−(M2
A +M2

Z) sin β cosβ M2
A cos2 β +M2

Z sin2 β

)
, (1.9)

which by diagonalization according to eq. (1.3) yields the tree-level Higgs boson masses

M2,tree
Higgs

α−→
(
m2

H,tree 0
0 m2

h,tree

)
. (1.10)

The mixing angle α satisfies

tan 2α = tan 2β
M2

A +M2
Z

M2
A −M2

Z

, −π
2
< α < 0. (1.11)

Since we treat all MSSM parameters as real there is no mixing between CP-even and CP-odd
Higgs bosons.

The tree-level results for the neutral CP-even Higgs-boson masses of the MSSM read

m2
H,h =

1

2

[
M2

A +M2
Z ±

√
(M2

A +M2
Z)2 − 4M2

ZM
2
A cos2 2β

]
. (1.12)

This implies an upper bound of mh,tree ≤MZ for the light CP-even Higgs-boson mass of the
MSSM. For a discussion of large higher-order corrections to this bound, see Sect. 2.7. The
direct prediction of an upper bound for the mass of the light CP-even Higgs-boson mass is
one of the most striking phenomenological predictions of the MSSM. The existence of such
a bound, which does not occur in the case of the SM Higgs boson, can be related to the fact
that the quartic term in the Higgs potential of the MSSM is given in terms of the gauge
couplings, while the quartic coupling is a free parameter in the SM.

1.2.2 The scalar quark sector of the MSSM

The squark mass term of the MSSM Lagrangian is given by

Lm
f̃

= −1

2

(
f̃ †

L, f̃
†
R

)
Z

(
f̃L

f̃R

)
, (1.13)

where

Z =



 M2
Q̃

+M2
Z cos 2β (If

3 −Qfs
2
W ) +m2

f mf(Af − µ{cotβ ; tanβ })
mf (Af − µ{cotβ; tanβ}) M2

Q̃′
+M2

Z cos 2β Qfs
2
W +m2

f



 , (1.14)

and {cotβ ; tanβ } corresponds to {u; d}-type squarks. The soft SUSY breaking term MQ̃′

is given by:

MQ̃′ =

{
MŨ for right handed u-type squarks
MD̃ for right handed d-type squarks

. (1.15)

In order to diagonalize the mass matrix and to determine the physical mass eigenstates the
following rotation has to be performed:

(
f̃1

f̃2

)
=

(
cos θf̃ sin θf̃
− sin θf̃ cos θf̃

)(
f̃L

f̃R

)
. (1.16)
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The mixing angle θf̃ is given for tanβ > 1 by:

cos θf̃ =

√√√√ (m2
f̃R

−m2
f̃1

)2

m2
f (Af − µ{cotβ ; tanβ })2 + (m2

f̃R
−m2

f̃1

)2
(1.17)

sin θf̃ = ∓ sgn
[
Af − µ{cot β ; tanβ }

]

×

√√√√ m2
f (Af − µ{cotβ ; tanβ })2

m2
f (Af − µ{cotβ ; tanβ })2 + (m2

f̃R
−m2

f̃1
)2
. (1.18)

The negative sign in (1.18) corresponds to u-type squarks, the positive sign to d-type ones.
m2

f̃R
≡ M2

Q̃′
+ M2

Z cos 2β Qfs
2
W + m2

f denotes the lower right entry in the squark mass

matrix (1.14). The masses are given by the eigenvalues of the mass matrix:

m2
f̃1,2

=
1

2

[
M2

Q̃
+M2

Q̃′

]
+

1

2
M2

Z cos 2β If
3 +m2

f (1.19)




± cf
2

√[
M2

Q̃
−M2

Q̃′
+M2

Z cos 2β (If
3 − 2Qfs

2
W )
]2

+ 4m2
f

(
Au − µ cotβ

)2

± cf
2

√[
M2

Q̃
−M2

Q̃′
+M2

Z cos 2β (If
3 − 2Qfs

2
W )
]2

+ 4m2
f

(
Ad − µ tanβ

)2

cf = sgn
[
M2

Q̃
−M2

Q̃′ +M2
Z cos 2β (If

3 − 2Qfs
2
W )
]

for u-type and d-type squarks, respectively. Since the non-diagonal entry of the mass matrix
eq. (1.14) is proportional to the fermion mass, mixing becomes particularly important for
f̃ = t̃, in the case of tan β ≫ 1 also for f̃ = b̃.

For later purposes it is convenient to express the squark mass matrix in terms of the
physical masses mf̃1

, mf̃2
and the mixing angle θf̃ :

Z =

(
cos2 θf̃m

2
f̃1

+ sin2 θf̃m
2
f̃2

sin θf̃ cos θf̃ (m
2
f̃1
−m2

f̃2
)

sin θf̃ cos θf̃ (m
2
f̃1
−m2

f̃2
) sin2 θf̃m

2
f̃1

+ cos2 θf̃m
2
f̃2

)
. (1.20)

Af can be written as follows:

Af =
sin θf̃ cos θf̃ (m

2
f̃1
−m2

f̃2
)

mf

+ µ{cotβ ; tanβ }. (1.21)

1.2.3 Charginos

The charginos χ̃+
i (i = 1, 2) are four component Dirac fermions. The mass eigenstates are

obtained from the winos W̃± and the charged higgsinos H̃−
1 , H̃+

2 :

W̃+ =

( −iλ+

iλ̄−

)
; W̃− =

( −iλ−
iλ̄+

)
; H̃+

2 =

(
ψ+

H2

ψ̄−
H1

)
; H̃−

1 =

(
ψ−

H1

ψ̄+
H2

)
.

(1.22)
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The chargino masses are defined as mass eigenvalues of the diagonalized mass matrix,

Lχ̃+,mass = −1

2

(
ψ+, ψ−

)(
0 XT

X 0

)(
ψ+

ψ−

)
+ h.c. , (1.23)

or given in terms of two-component fields

ψ+ = (−iλ+, ψ+
H2

)

ψ− = (−iλ−, ψ−
H1

)
, (1.24)

where X is given by

X =

(
M2

√
2MW sin β

√
2MW cosβ µ

)
. (1.25)

In the mass matrix M2 is the soft SUSY-breaking parameter for the Majorana mass term.
µ is the Higgsino mass parameter from the Higgs potential eq. (1.1).

The physical (two-component) mass eigenstates are obtained via unitary (2×2) matrices
U and V:

χ+
i = Vij ψ

+
j

χ−
i = Uij ψ

−
j

i, j = 1, 2 . (1.26)

This results in a four-component Dirac spinor

χ̃+
i =

(
χ+

i

χ̄−
i

)
i = 1, 2 , (1.27)

where U and V are given by

U = O− ; V =

{
O+ detX > 0

σ3 O+ detX < 0
(1.28)

with

O± =

(
cos φ± sin φ±

− sinφ± cosφ±

)
; (1.29)

cosφ± und sin φ± are given by (ǫ = sgn[detX])

tanφ+ =

√
2MW (sin β mχ̃+

1
+ ǫ cosβ mχ̃+

2
)

(M2 mχ̃+
1

+ ǫ µmχ̃+
2
)

tanφ− =
−µmχ̃+

1
− ǫM2mχ̃+

2√
2MW (sin β mχ̃+

1
+ ǫ cosβ mχ̃+

2
)
. (1.30)

(If φ+ < 0 it has to be replaced by φ+ + π.) mχ̃+
1

and mχ̃+
2

are the eigenvalues of the
diagonalized matrix

M2
diag,χ̃+ = VX† XV

−1
= U∗ XX† (U∗)

−1
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Mdiag,χ̃+ = U∗ XV−1 =

(
mχ̃+

1
0

0 mχ̃+
2

)
. (1.31)

They are given by

m2
χ̃+

1,2

=
1

2

{
M2

2 + µ2 + 2M2
W ∓

[
(M2

2 − µ2)2

+ 4M4
W cos2 2β + 4M2

W (M2
2 + µ2 + 2µM2 sin 2β )

] 1

2

}
. (1.32)

1.2.4 Neutralinos

Neutralinos χ̃0
i (i = 1, 2, 3, 4) are four-component Majorana fermions. They are the mass

eigenstates of the photino, γ̃, the zino, Z̃, and the neutral higgsinos, H̃0
1 and H̃0

2 , with

γ̃ =

( −iλγ

iλ̄γ

)
; Z̃ =

( −iλZ

iλ̄Z

)
; H̃0

1 =

(
ψ0

H1

ψ̄0
H1

)
; H̃0

2 =

(
ψ0

H2

ψ̄0
H2

)
. (1.33)

Analogously to the SM, the photino and zino are mixed states from the bino, B̃, and the
wino, W̃ ,

B̃ =

( −iλ′
iλ̄′

)
; W̃ 3 =

( −iλ3

iλ̄3

)
, (1.34)

with

γ̃ = W̃ 3 sW + B̃ cW

Z̃ = W̃ 3 cW − B̃ sW . (1.35)

The mass term in the Lagrange density is given by

Lχ̃0,mass = −1

2
(ψ0)T Y ψ0 + h.c. , (1.36)

with the two-component fermion fields

(ψ0)T = (−iλ′,−iλ3, ψ0
H1
, ψ0

H2
) . (1.37)

The mass matrix Y is given by

Y =




M1 0 −MZsW cos β MZsW sin β

0 M2 MZcW cosβ −MZcW sin β

−MZsW cosβ MZcW cosβ 0 −µ
MZsW sin β −MZcW sin β −µ 0


 . (1.38)

The physical neutralino mass eigenstates are obtained with the unitary transformation ma-
trix N:

χ0
i = Nij ψ

0
j i, j = 1, . . . , 4, (1.39)
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resulting in the four-component spinor (representing the mass eigenstate)

χ̃0
i =

(
χ0

i

χ̄0
i

)
i = 1, . . . , 4 . (1.40)

The diagonal mass matrix is then given by

Mdiag,χ̃0 = N∗ Y N−1 . (1.41)

1.2.5 Gluinos

The gluino, g̃, is the spin 1/2 superpartner (Majorana fermion) of the gluon. According to
the 8 generators of SU(3)C (colour octet), there are 8 gluinos, all having the same Majorana
mass

mg̃ = M3 . (1.42)

In SUSY GUTs M1, M2 and M3 are not independent but connected via

mg̃ = M3 =
g2
3

g2
2

M2 =
αs

αem
s2

W M2, M1 =
5

3

s2
W

c2W
M2 . (1.43)

1.2.6 Non-minimal flavour violation

The most general flavour structure of the soft SUSY-breaking sector with flavour non-
diagonal terms would induce large flavour-changing neutral-currents, contradicting the exper-
imental results [3]. Attempts to avoid this kind of problem include flavour-diagonal SUSY-
breaking scenarios, like minimal Supergravity (with universality assumptions) or gauge-
mediated SUSY-breaking, see the next subsection. In these scenarios, the sfermion-mass
matrices are flavour diagonal in the same basis as the quark matrices at the SUSY-breaking
scale. However, a certain amount of flavour mixing is generated due to the renormalization-
group evolution from the SUSY-breaking scale down to the electroweak scale. Estimates of
this radiatively induced off-diagonal squark-mass terms indicate that the largest entries are
those connected to the SUSY partners of the left-handed quarks [21,22], generically denoted
as ∆LL. Those off-diagonal soft SUSY-breaking terms scale with the square of diagonal soft
SUSY-breaking masses MSUSY, whereas the ∆LR and ∆RL terms scale linearly, and ∆RR with
zero power of MSUSY. Therefore, usually the hierarchy ∆LL ≫ ∆LR,RL ≫ ∆RR is realized. It
was also shown in Refs. [21,22] that mixing between the third and second generation squarks
can be numerically significant due to the involved third-generation Yukawa couplings. On
the other hand, there are strong experimental bounds on squark mixing involving the first
generation, coming from data on K0–K̄0 and D0–D̄0 mixing [23,24].

Considering the scalar quark sector with non-minimal flavour violation (NMFV) for the
second and third generation, the squark mass matrices in the basis of (c̃L, t̃L, c̃R, t̃R) and
(s̃L, b̃L, s̃R, b̃R) are given by

M2
ũ =




M2
L̃c

∆t
LL mcXc ∆t

LR

∆t
LL M2

L̃t
∆t

RL mtXt

mcXc ∆t
RL M2

R̃c
∆t

RR

∆t
LR mtXt ∆t

RR M2
R̃t




(1.44)
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M2
d̃

=




M2
L̃s

∆b
LL MSXs ∆b

LR

∆b
LL M2

L̃b
∆b

RL mbXb

MSXs ∆b
RL M2

R̃s
∆b

RR

∆b
LR mbXb ∆b

RR M2
R̃b




(1.45)

with

M2
L̃q

= M2
Q̃q

+m2
q + cos 2β M2

Z(T q
3 −Qqs

2
W )

M2
R̃q

= M2
Ũq

+m2
q + cos 2β M2

ZQqs
2
W (q = t, c)

M2
R̃q

= M2
D̃q

+m2
q + cos 2β M2

ZQqs
2
W (q = b, s)

Xq = Aq − µ(tan β)−2T q
3 (1.46)

wheremq, Qq and T q
3 are the mass, electric charge and weak isospin of the quark q. MQ̃q

, MŨq
,

MD̃q
are the soft SUSY-breaking parameters. The SU(2) structure of the model requires

MQ̃q
to be equal for t̃ and b̃ as well as for c̃ and s̃.

In order to diagonalize the two 4× 4 squark mass matrices, two 4× 4 rotation matrices,
Rũ and Rd̃, are needed,

ũα = Rα,j
ũ




c̃L
t̃L
c̃R
t̃R




j

, d̃α = Rα,j

d̃




s̃L

b̃L
s̃R

b̃R




j

, (1.47)

yielding the diagonal mass-squared matrices as follows,

diag{m2
ũ1
, m2

ũ2
, m2

ũ3
, m2

ũ4
}α,β = Rα,i

ũ

(
M2

ũ

)
i,j

(Rβ,j
ũ )† , (1.48)

diag{m2
d̃1
, m2

d̃2
, m2

d̃3
, m2

d̃4
}α,β = Rα,i

d̃

(
M2

d̃

)
i,j

(Rβ,j

d̃
)† . (1.49)

For the numerical analysis we use

∆t
LL = λML̃t

ML̃c
, ∆t

LR = ∆t
RL = ∆t

RR = 0 ,

∆b
LL = λML̃b

ML̃s
, ∆b

LR = ∆b
RL = ∆b

RR = 0 . (1.50)

Feynman rules that involve two scalar quarks can be obtained from the rules given in the
f̃L, f̃R basis by applying the corresponding rotation matrix (q̃ = ũ, d̃),

V (Xq̃αq̃
′
β) = Rα,i

q̃ Rβ,j
q̃′ V (Xq̃iq̃

′
j) . (1.51)

Thereby V (Xq̃iq̃
′
j) denotes a generic vertex in the f̃L, f̃R basis, and V (Xq̃αq̃

′
β) is the vertex

in the NMFV mass-eigenstate basis. The Feynman rules for the vertices needed for our
applications, i.e. the interaction of one and two Higgs or gauge bosons with two squarks, can
be found in Ref. [25].
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1.2.7 Unconstrained MSSM versus specific models for soft SUSY
breaking

In the unconstrained MSSM no specific assumptions are made about the underlying SUSY-
breaking mechanism, and a parametrization of all possible soft SUSY-breaking terms is used
that do not alter the relation between the dimensionless couplings (which ensures that the
absence of quadratic divergences is maintained). This parametrization has the advantage of
being very general, but the disadvantage of introducing more than 100 new parameters in
addition to the SM. While in principle these parameters (masses, mixing angles, complex
phases) could be chosen independently of each other, experimental constraints from flavour-
changing neutral currents, electric dipole moments, etc. seem to favour a certain degree of
universality among the soft SUSY-breaking parameters.

Within a specific SUSY-breaking scenario, the soft SUSY-breaking terms can be pre-
dicted from a small set of input parameters. The most prominent scenarios in the literature
are minimal Supergravity (mSUGRA) [26,27], minimal Gauge Mediated SUSY Breaking
(mGMSB) [28] and minimal Anomaly Mediated SUSY Breaking (mAMSB) [29–31]. The
mSUGRA and mGMSB scenarios have four parameters and a sign, while the mAMSB sce-
nario can be specified in terms of three parameters and a sign.

Detailed experimental analyses within the multi-dimensional parameter space of the un-
constrained MSSM would clearly be very involved. Therefore one often restricts to certain
benchmark scenarios, see e.g. Refs. [32–35], or relies on underlying assumptions of a specific
SUSY-breaking scenario.

The EWPO can be analyzed within the unconstrained MSSM (or extensions of it), which
allows to set constraints on the SUSY parameter space in a rather general way. In our numer-
ical anaysis in chapter 3 we discuss the impact of EWPO in the context of the unconstrained
MSSM, while in chapter 4 we focus on the mSUGRA, mGMSB and mAMSB scenarios as
special cases.

1.2.8 Experimental bounds on SUSY particles

The non-observation of SUSY particles at the collider experiments carried out so far place
lower bounds on the masses of SUSY particles which are typically of O(100 GeV) [3]. These
bounds, however, depend on certain assumptions on the SUSY parameter space, for instance
on the couplings and decay characteristics of the particles or the validity of a certain SUSY-
breaking scenario.

Relaxing some of these assumptions can result in bounds that are much weaker than
the ones that are usually quoted. As an example, collider experiments do not provide any
lower bound on the mass of the lightest neutralino if the GUT relation connecting M1 and
M2, see eq. (1.43), is lifted [36]. It is interesting to investigate in how far the results for
EWPO can narrow down the parameter space where the bounds from direct searches are
very weak. Such an analysis has been carried out, for instance, for a scenario with a light
scalar bottom quark of O(5 GeV). In Ref. [37] it has been shown that a light scalar bottom
quark is consistent with the constraints from the EWPO and the LEP Higgs search.
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1.3 Electroweak precision observables

In general there are two possibilities for virtual effects of SUSY particles to be large enough
to be detected at present and (near future) experiments. On the one hand, these are rare
processes, where SUSY loop contributions do not compete with a large SM tree-level contri-
bution. Examples are rare b decays like b → sγ, Bs → µ+µ−, and electric dipole moments
(EDMs). For processes of this kind the SUSY prediction for the rates can be much larger
(sometimes by orders of magnitude) than the SM one.

On the other hand, EWPO which are known with an accuracy at the per cent level or
better have the potential to allow a discrimination between quantum effects of the SM and
SUSY models. Examples are the W boson mass, MW , and the Z-boson observables, like the
effective leptonic weak mixing angle, sin2 θeff .

This distinction between rare processes and EWPO is of course not a completely rigid
one. The anomalous magnetic moment of the muon, for instance, corresponds both to a
rare process according to the above definition and to an EWPO which has been measured
with high accuracy. In view of the prospects for precision measurements of the mass of the
lightest CP-even Higgs boson, mh, at the next generation of colliders, we also treat mh as
an EWPO.

In the present report we concentrate our discussion on EWPO, in particular the observ-
ables in the W - and Z-boson sector, the anomalous magnetic moment of the muon, and
the mass of the lightest CP-even Higgs boson. We just briefly comment on rare processes
in the following section and occasionally in our numerical discussion. For a more thorough
investigation of the constraints on the SUSY parameter space we refer to the literature.
For reviews of rare decays see Ref. [38], results for EDMs in the MSSM can be found in
Refs. [39,40] and in references therein.

1.3.1 Constraints on the SUSY parameter space from rare pro-
cesses

The branching ratio BR(b → sγ) receives, besides the SM loop contribution involving
the W boson and the top quark, additional contributions from chargino/stop and charged
Higgs/stop loops [41]. The SUSY contributions are particularly large for light charged Higgs
bosons and large µ or tan β. The currently available SUSY contributions to BR(b → sγ)
include the one-loop result and leading higher-order corrections. The comparison of the the-
ory prediction with the data imposes important constraints on the parameter space both of
general two-Higgs-doublet models and of the MSSM. In the latter case it is possible that the
two kinds of additional contributions are individually large but interfere destructively with
each other, resulting in only a small deviation of the decay rate from the SM prediction.

Another interesting channel is the decay Bs → µ+µ−. The SM contribution to this decay
is tiny, resulting in a BR of about 10−9 [42]. Within SUSY, however, diagrams enhanced by
tanβ3 can contribute. Thus the decay width can grow with tan6 β and the BR can be much
larger than in the SM [43], see Ref. [44] for a recent review. The available corrections in the
MSSM consist of the full one-loop evalution and the leading two-loop QCD corrections. The
current bound from the Tevatron is BR(Bs → µ+µ−) < 2.7 × 10−7 at the 90% C.L. [45]. A
substantial improvement in this bound can be expected in the forthcoming years.
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A different way for probing SUSY is via its contribution to EDMs of heavy quarks [46], of
the electron and the neutron (see Refs. [40,47] and references therein), or of deuterium [48].
While SM contributions start only at the three-loop level, due to its complex phases the
MSSM can contribute already at one-loop order. Also the leading two-loop corrections for
the electron and neutron EDMs are available. Large phases in the first two generations of
(s)fermions can only be accomodated if these generations are assumed to be very heavy [49]
or large cancellations occur [50], see however the discussion in Ref. [39].

1.3.2 Pseudo-observables versus realistic observables

The quantities that can be directly measured in experiments are cross sections, line shape
observables, forward–backward asymmetries etc., deemed “realistic observables” in the lan-
guage of Ref. [51]. The obtained results depend on the specific set of experimental cuts
that have been applied and are influenced by detector effects and other details of the ex-
perimental setup. In order to determine quantities like masses, partial widths or couplings
from the primarily measured observables, a deconvolutiuon (unfolding) procedure is ap-
plied. This procedure involves manipulations like unfolding the QED corrections, subtracting
photon-exchange and interference terms, subtracting box-diagram contributions, unfolding
higher-order QCD corrections, etc. These secondary quantities are therefore called “pseudo-
observables” in Ref. [51].

The procedure of going from realistic observables to pseudo-observables results in a slight
model dependence of the pseudo-observables. As an example, the experimental value of the
Z-boson mass has a slight dependence on the value of the Higgs-boson mass in the SM, see
Refs. [18,52]. The EWPO on which we focus in this report are pseudo-observables in the
sense outlined above. At the level of electroweak precision physics, it is important to keep
in mind that in order to obtain the numerical values of the EWPO given in the literature
the Standard Model has been used in several steps for calculating the subtraction terms. An
obvious model dependence also occurs if, instead of performing an explicit subtraction of SM
terms, parameters like MZ , αs(MZ), etc. are determined directly from a SM fit, containing
the full set of SM corrections, to the realistic observables.

Using the same numerical values of the EWPO as input for analyses within the MSSM
(or other extensions of the SM) is obviously only justified if new physics contributions to
the subtraction terms and the implemented higher-order corrections are negligible. As an
example, the experimental value extracted for αs(MZ) in the MSSM (for a given SUSY mass
spectrum) would somewhat differ from the SM value of αs(MZ).

A consistent treatment of the model dependence of the EWPO is necessary in a precision
analysis of the MSSM. At the current level of experimental precision the shift induced in
the EWPO from taking into account the full MSSM particle content instead of the SM will
normally be of minor importance. In some regions of the parameter space, in particular where
some of the SUSY particles are very light, an explicit verification of the above assumption
would however be desirable.

Concerning the determination of the MSSM parameters, additional complications arise
compared to the SM case. In general the model dependence is relatively small for masses,
since the mass of a particle can closely be related to one particular realistic observable. For
couplings (with the exception of the electromagnetic coupling in the Thomson limit), mixing
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angles, etc., on the other hand, the model dependence is relatively large. In contrast to the
SM, many of the MSSM parameters are not closely related to one particular observable, e.g.
tanβ, µ, the stop and sbottom mixing angles, complex phases, etc., resulting in a relatively
large model dependence. Therefore, the approach of extracting pseudo-observables with only
a fairly small model dependence seems not to be transferable to the case of the MSSM. It
seems that eventually the MSSM parameters will have to be determined in a global fit of
the MSSM to a large set of observables, taking into account higher-order corrections within
the MSSM, see Refs. [53,54] or Ref. [55] for an attempt of a coordinated effort.

1.3.3 EWPO versus effective parameters

In this report we focus our discussion on the EWPO, i.e. (pseudo-)observables like the W -
boson mass, MW , the effective leptonic weak mixing angle, sin2 θeff , the the leptonic width of
the Z boson, Γl, the anomalous magnetic moment of the muon, aµ ≡ (g−2)µ/2, the mass of
the lightest CP-even MSSM Higgs boson, mh, etc. In the literature virtual effects of SUSY
particles are often discussed in terms of effective parameters instead of the EWPO (see e.g.
Ref. [56] and references therein). We do not follow this approach, and just briefly comment
about it in the following.

Since for the accuracies anticipated at future colliders, see Tab. 1.4 below, it is particu-
larly important to have a precise understanding of how effects of new physics can be probed
in a sensible way, the virtues and range of applicability of effective parameters need to be
assessed.

A widely uses set of parameters are the S, T , U parameters [57]. They are defined
such that they describe the effects of new physics contributions that enter only via vacuum-
polarization effects (i.e. self-energy corrections) to the vector boson propagators of the SM
(i.e. the new physics contributions are assumed to have negligible couplings to SM fermions).
The S, T , U parameters can be computed in different models of new physics as certain combi-
nations of one-loop self-energies. Experimentally, their values are determined by comparing
the measured values Aexp

i of a number of observables with their values predicted by the SM,
ASM

i , i.e. Aexp
i = ASM

i + fNP
i (S, T, U). Here ASM

i contains all known radiative corrections in
the SM, while fNP

i (S, T, U) is a (linear) function of the parameters S, T , U and describes the
contributions of new physics. The SM prediction ASM

i is evaluated for a reference value of mt

and MH . For most precision observables the corrections caused by a variation of mt and MH

at one-loop order can also be absorbed into the parameters S, T , and U . A non-zero result
for S, T , U determined in this way indicates non-vanishing contributions of new physics
(with respect to the SM reference value).

From their definition, it is obvious that the S, T , U parameters can only be applied for
parameterizing effects of physics beyond the SM. Taking into account the full contributions
within the SM cannot be avoided, as these contributions (containing also vertex and box
corrections) cannot consistently be absorbed into the S, T , U parameters (for a more detailed
discussion of this point, see Ref. [58]).

Examples of new physics contributions that can be described in the framework of the S,
T , U parameters are contributions from a fourth generation of heavy fermions or effects from
scalar quark loops to the W - and Z-boson observables. A counter example going beyond
the S, T , U framework are SUSY corrections to the anomalous magnetic moment of the
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muon. According to their definition, the S, T , U parameters are restricted to leading order
contributions of new physics. They should therefore be applied only for the description of
small deviations from the SM predictions, for which a restriction to the leading order is
permissible. It appears to be questionable, on the other hand, to apply them to cases of very
large deviations from the SM, like extensions of the SM with a very heavy Higgs boson in
the range of several TeV.

Other parameterizations have been suggested (see e.g. Refs. [59,60]) with no reference
to the SM contribution and which are not restricted in the possible kinds of new physics.
These parameterizations are defined as certain linear combinations of different observables.
It is however not in all cases obvious that studying the experimental values and the theory
predictions for these parameters is of advantage compared to studying the EWPO themselves.
For a recent discussion of effective parameters, see also Ref. [61].

1.3.4 Current experimental status of EWPO

LEP, SLC, the Tevatron, and low-energy experiments have collected an enormous amount
of data on EWPO. Examples for the current experimental status of EWPO are given in
Tab. 1.3, including their relative experimental precision. The quantities in the first three
lines, MZ , GF , and mt, are usually employed as input parameters for the theoretical pre-
dictions. The observables MW , sin2 θeff , ΓZ , on the other hand, are used for testing the
electroweak theory by comparing the experimental results with the theory predictions. Com-
paring the typical size of electroweak quantum effects, which is at the per cent level, with the
relative accuracies in Tab. 1.3, which are at the per mille level, clearly shows the sensitivity
of the electroweak precision data to loop effects.

central value absolute error relative error

MZ [GeV] 91.1875 ±0.0021 ±0.002%

Gµ [GeV−2] 1.16637 × 10−5 ±0.00001 × 10−5 ±0.0009%

mt [GeV] 178.0 ±4.3 ±2.4%

MW [GeV] 80.425 ±0.034 ±0.04%

sin2 θeff 0.23150 ±0.00016 ±0.07%

ΓZ [GeV] 2.4952 ±0.0023 ±0.09%

Table 1.3: Examples of EWPO with their current absolute and relative experimental er-
rors [3,18].

The experimental accuracy of the precision observables will further be improved at the
currently ongoing Run II of the Tevatron, the LHC and a future ILC, with the possible
option of a high luminosity low-energy run, GigaZ [7–9,62]. The most significant improve-
ments among the EWPO can be expected for MW and sin2 θeff . If the Higgs boson will be
detected, a precise measurement of its mass will be important for testing the electroweak
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theory. Concerning the input parameters, the experimental error of the top-quark mass is
the dominant source of theoretical uncertainty in electroweak precision tests. This will re-
main to be the case even with the accuracy on mt reachable at the LHC [63]. Thus, the
high-precision measurement of mt at the ILC will be crucial for an increased sensitivity to
virtual effects of new physics [63,64].

The prospective accuracy for MW , sin2 θeff , mt and mh (for a value of mh ≈ 120 GeV) at
the Tevatron, at the LHC (combined with the data collected at the Tevatron) and the ILC
(with and witout GigaZ option) are summarized in Tab. 1.4 (see Ref. [65] and references
therein).

now Tevatron LHC ILC ILC with GigaZ

δ sin2 θeff(×105) 16 — 14–20 — 1.3

δMW [MeV] 34 20 15 10 7

δmt [GeV] 4.3 2.5 1.5 0.2 0.1

δmh [MeV] — — 200 50 50

Table 1.4: Current and anticipated future experimental uncertainties for sin2 θeff , MW , mt,
and mh (the latter assuming mh ≈ 115 GeV). Each column represents the combined results
of all detectors and channels at a given collider, taking into account correlated systematic
uncertainties, see Ref. [65] for details. Updated Tevatron numbers can be found in Ref. [66].

Another EWPO with a high sensitivity to virtual effects of SUSY particles is the anoma-
lous magnetic moment of the muon, aµ ≡ (g − 2)µ/2. The final result of the Brookhaven
“Muon g − 2 Experiment” (E821) for aµ reads [19]

aexp
µ = (11 659 208± 5.8) × 10−10 . (1.52)

The interpretation of this measurement within SUSY strongly depends on the corresponding
SM evaluation. The SM prediction depends on the evaluation of the hadronic vacuum po-
larization and light-by-light contributions. The former have been evaluated by Refs. [67–70],
the latter by Ref. [71], but there is a recent reevaluation [72], describing a possible shift of
the central value by 5.6 × 10−10. Depending on which hadronic evaluation is chosen, the
difference between experiment and the SM prediction lies between the two values (including
the updated QED result from Ref. [73])

aexp
µ − atheo

µ ( [68]+ [71]) = (31.7 ± 9.5) × 10−10 : 3.3 σ , (1.53)

aexp
µ − atheo

µ ( [67]+ [72]) = (20.2 ± 9.0) × 10−10 : 2.1 σ . (1.54)

These evaluations are all obtained with a ∆αhad determination from e+e− data. Recent
analyses concerning τ data indicate that uncertainties due to isospin breaking effects may
have been underestimated earlier [69]. Furthermore new data obtained at KLOE [74], where
the radiative return is used to obtain data on ∆αhad, agrees with the older e+e− data.
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This, together with a continuing discussion about the uncertainties inherent in the isospin
transformation from τ decay, has led to the proposal to leave out the τ data in the ∆αhad

determination, resulting in the estimate [75]

aexp
µ − atheo

µ = (25.2 ± 9.2) × 10−10 : 2.7 σ . (1.55)
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Chapter 2

Theoretical evaluation of precision
observables

2.1 Regularisation and renormalization of supersym-

metric theories

2.1.1 Basic strategy

In higher-order perturbation theory the relations between the formal parameters and measur-
able quantities are different from the tree-level relations in general. Moreover, the procedure
is obscured by the appearance of divergences in the loop integrations. For a mathematically
consistent treatment one has to regularize the theory, e.g. by dimensional regularization
(DREG), where the regularization is performed by analytically continuing the space-time
dimension from 4 to D [76,77]. But then the relations between the physical quantities and
the parameters become cut-off-dependent. Hence, the parameters of the basic Lagrangian,
the “bare” parameters, have no physical meaning. On the other hand, the relations between
measurable physical quantities, where the parameters drop out, are finite and independent
of the cut-off. It is therefore in principle possible to perform tests of the theory in terms of
such relations by eliminating the bare parameters.

Alternatively, one may replace the bare parameters by renormalized ones by multiplica-
tive renormalization for each bare parameter a0,

a0 = Za a = a+ δa (2.1)

with renormalization constants Za different from 1 by a higher-order term. The renormalized
parameters a are finite and fixed by a set of renormalization conditions. The decomposition
(2.1) is to a large extent arbitrary. Only the divergent parts are determined directly by the
structure of the divergences of the loop amplitudes. The finite parts depend on the choice
of the explicit renormalization conditions. These conditions determine the physical meaning
of the renormalized parameters.

Before predictions can be made from the theory, a set of independent parameters has to
be taken from experiment. In practical calculations the free SM parameters are usually fixed
by using α, Gµ, MZ , mf , αs (and possibly entries of the quark and lepton mass matrices,

22



if the off-diagonal entries are not neglected) as physical input quantities. They have to be
supplemented by the empirically unknown input parameters for the Higgs sector and the
SUSY breaking sector. Differences between various schemes are formally of higher order
than the one under consideration. The study of the scheme dependence of the perturbative
results, possibly after improvement by resummation of the leading terms, gives an indication
of the possible size of missing higher-order contributions.

On the theoretical side, a thorough control of the quantization and the renormalization
of the MSSM as a supersymmetric gauge theory, with spontaneously broken gauge symme-
try and softly broken supersymmetry, is required. This is not only a theoretical question
for establishing a solid and consistent theoretical framework but also a matter of practical
importance for concrete higher-order calculations, where the quantum contributions to the
Green functions have to fulfil the symmetry properties of the underlying theory. An increas-
ing number of phenomenological applications has been carried out in the Wess-Zumino gauge
where the number of unphysical degrees of freedom is minimal, but where supersymmetry
is no longer manifest.

Moreover, a manifestly supersymmetric and gauge-invariant regularization for divergent
loop integrals is missing. The prescription of DREG preserves the Lorentz and the gauge
invariance of the theory, apart from problems related to the treatment of γ5 in dimensions
other than 4. In supersymmetric theories, however, a D-dimensional treatment of vector
fields leads to a mismatch between the fermionic and bosonic degrees of freedom, which
gives rise to a breaking of the supersymmetric relations. This led to the development of
dimensional reduction (DRED) [78]. In this scheme only the momenta are treated as D-
dimensional, while the fields and the Dirac algebra are kept 4-dimensional. It leads to
ambiguities related to the treatment of γ5 [79], and therefore cannot be consistently applied
at all orders (for a review, see Ref. [80]). Hence, renormalization and the structure of coun-
terterms have to be adapted by exploiting the basic symmetries expressed in terms of the
supersymmetric BRS transformations [81]. An additional complication in the conventional
approach assuming an invariant regularization scheme, however, arises from the modification
of the symmetry transformations themselves by higher-order terms.

The method of algebraic renormalization, applied in Ref. [82] to the electroweak SM and
in Ref. [83] for the MSSM, avoids the difficulties of the conventional approach. The theory is
defined at the classical as well as the quantum level by the particle content and by the basic
symmetries. The essential feature of the algebraic method is the combination of all symme-
tries into the BRS transformations leading to the Slavnov-Taylor (ST) identity. In this way,
the theory is defined by symmetry requirements that have to be satisfied after renormaliza-
tion in all orders of perturbation theory. In the case of symmetry violation in the course of
explicitly calculating vertex functions in a given order, additional non-invariant counterterms
are uniquely determined to restore the symmetry, besides the invariant counterterms needed
for absorbing the divergences and for the normalization of fields and parameters. Examples
are given in Ref. [84,85] for supersymmetric QED and QCD and in Ref. [86] for the SM case.
Explicit evaluations at the one-loop level in supersymmetric models [84,85,87] have shown
that DRED yields the correct counter terms.

In the following we discuss the renormalization of several sectors of the MSSM. We focus
on the sectors that are needed for the one- and two-loop calculations reviewed below and
restrict ourselves to the order in perturbation theory required there. These sectors are the
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SM gauge bosons, the electric charge, the quark and scalar quark sector as well as the MSSM
Higgs boson sector.

As mentioned above, many MSSM parameters are not closely related to one particular
physical observable, so that no obvious ‘best choice’ exists for their renormalization. Ex-
amples treated below are tanβ and the mixing angles in the scalar quark sector. Various
definitions for these parameters already exist in the literature (the situation is similar to the
case of the weak mixing angle of the electroweak theory, where the use of several different def-
initions in the literature caused some confusion in the early days of electroweak higher-order
corrections). We will briefly comment on some of them below. In view of the large number
of MSSM parameters there is clearly a need to establish some common standards in the
literature in order to allow for a transparent comparison of different results. Requirements
that a renormalization scheme for the whole MSSM should fulfil are in particular a coherent
treatment of all sectors, applicability for both QCD and electroweak corrections, and numer-
ical stability. Furthermore aspects of gauge (in-)dependence need to be addressed. When
formulating renormalization prescriptions for the MSSM particular care has to be taken in
order to respect the underlying symmetry relations of the theory. While in the SM all masses
of the particles can be fixed by independent renormalization conditions, in a supersymmetric
theory various relations exist between different masses. Therefore only a subset of the mass
parameters of the theory can be renormalized independently. The counterterms for the other
masses are then determined in terms of the independent counterterms. For a discussion of
these issues, see e.g. Ref. [88].

2.1.2 Gauge boson mass renormalization

We discuss here the renormalization of the gauge-boson masses in the on-shell scheme [89]
at the one-loop level. Writing the W and Z self-energies as

ΣW,Z
µν (q) =

(
−gµν +

qµqν
q2

)
ΣW,Z(q2) + · · · , (2.2)

where the scalar functions ΣW,Z(q2) are the transverse parts of the self-energies, and defining
ΣW,Z

µν to correspond to (−i) times the loop diagrams by convention, we have for the one-loop
propagators (V = W,Z)

−igµσ

q2 −M2
V

(
iΣV

ρσ

) −igρν

q2 −M2
V

=
−igµν

q2 −M2
V

(−ΣV (q2)

q2 −M2
V

)
, (2.3)

where terms proportional to qµqν (see eq. (2.2)) have been omitted (they are suppressed if
the propagator is attached to a light external fermion).

Resumming all self-energy terms yields a geometric progression for the dressed propaga-
tors:

−igµν

q2 −M2
V

[
1 +

( −ΣV

q2 −M2
V

)
+

( −ΣV

q2 −M2
V

)2

+ · · ·
]

=
−igµν

q2 −M2
V + ΣV (q2)

. (2.4)
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The locations of the poles in the propagators are shifted by the self-energies. Consequently,
the masses in the Lagrangian can no longer be interpreted as the physical masses of the
W and Z bosons once loop corrections are taken into account. The mass renormalization
relates these “bare masses” to the physical masses MW , MZ by

M0 2
W = M2

W + δM2
W ,

M0 2
Z = W 2

Z + δM2
Z , (2.5)

with counterterms of one-loop order. The propagators corresponding to this prescription are
given by

−igµν

q2 −M0 2
V + ΣV (q2)

=
−igµν

q2 −M2
V − δM2

V + ΣV (q2)
(2.6)

instead of (2.4). The renormalization conditions which ensure that MW,Z are the physical
masses fix the mass counterterms to be

δM2
W = ReΣW (M2

W ) ,

δM2
Z = ReΣZ(M2

Z) . (2.7)

These are the on-shell renormalization conditions. In an MS (or DR) renormalization, on
the other hand, the counterterms δM2

W , δM2
Z are defined such that they essentially only

contain the divergent (in the limit D → 4) contribution. The renormalized mass parameters
in this case do not directly correspond to the physical masses. They explicitly depend on
the renormalization scale.

While the Z-boson mass is commonly used as an input parameter, MW is normally traded
as an input parameter for the Fermi constant Gµ, which is precisely measured in muon decay.
The prediction for MW in terms of Gµ, MZ , α and the parameters of the theory that enter via
loop corrections can therefore be compared to the experimental value of MW , constituting a
sensitive test of the theory (see below).

Extending the above on-shell definition to higher orders requires to take into account
that the pole of the propagator of an unstable particle is located in the complex plane
rather than on the real axis (which is the case for stable particles). A gauge-invariant
mass parameter is obtained if the mass is defined according to the real part of the complex
pole. The expansion around the complex pole leads to a Breit-Wigner shape with a fixed
width. The experimental determination of the gauge-boson masses, on the other hand, uses
a Breit-Wigner parametrization with running width for historical reasons. This needs to be
corrected for by a finite shift in MW and MZ . (For a more detailed discussion, see Ref. [90]
and references therein.)

2.1.3 Charge renormalization

The electroweak charge renormalization is very similar to that in pure QED. In the on-shell
scheme, the definition of e as the classical charge in the Thomson cross-section

σTh =
e4

6πm2
e

(2.8)
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is maintained. Accordingly, the Lagrangian carries the bare charge e0 = e+δe with the charge
counterterm δe of one-loop order. The charge counterterm δe has to absorb the electroweak
loop contributions to the eeγ vertex in the Thomson limit. This charge renormalization
condition is simplified by the validity of a generalization of the QED Ward identity which
implies that those corrections related to the external particles cancel each other. Hence, for
δe only two universal contributions are left,

δe

e
=

1

2
Πγ(0) − sW

cW

ΣγZ(0)

M2
Z

, Πγ(0) ≡ ∂

∂q2
Σγ(q2)

∣∣∣
q2=0

. (2.9)

The first contribution is given by the photon vacuum polarization, Πγ, for real photons,
q2 = 0. Besides the charged-fermion loops, it contains also bosonic loop diagrams from
W+W− virtual states and the corresponding ghosts, as well as from extra charged particles
in extensions of the SM. The second term contains the mixing between photon and Z boson,
in general described as a mixing propagator, ∆γZ , with ΣγZ normalized according to

∆γZ =
−igµν

q2

(−ΣγZ(q2)

q2 −M2
Z

)
. (2.10)

All loop contributions to ΣγZ vanish at q2 = 0, except the non-Abelian bosonic loops yield
ΣγZ(0) 6= 0. They are the same in the standard model and in supersymmetric exten-
sions. ΣγZ(0) completely vanishes in the background-field quantization of the electroweak
theory [91].

The fermion-loop contributions to the photon vacuum polarization in (2.9) are analogous
to the electron loop in standard QED and do not depend on the details of the electroweak
theory. They give rise to a logarithmic dependence on the fermion masses. While for the
leptonic contributions the known lepton masses can be inserted, perturbative QCD is not
applicable in this regime, and quark masses are no reasonable input parameters.

In order to evaluate the contribution of light fermions, i.e. the leptons and the quark
flavours except the top quark, it is convenient to add and subtract the photon vacuum
polarization at p2 = M2

Z and to consider the finite quantity (for the top quark and other
heavy fermions Πγ(0) can be evaluated directly)

Re Π̂γ(M2
Z) = ReΠγ(M2

Z) − Πγ(0) . (2.11)

Splitting it into the contribution of the leptons and the five light quarks yields the quantity

∆α = ∆αlept + ∆αhad = −Re Π̂γ
lept(M

2
Z) − Re Π̂γ

had(M
2
Z) , (2.12)

which represents a QED-induced shift in the electromagnetic fine structure constant

α → α(1 + ∆α) . (2.13)

The evaluation of the leptonic content of ∆α in terms of the known lepton masses yields at
three-loop order [92]

∆αlept = 314.97687 · 10−4 . (2.14)
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The 5-flavour contribution of the light quarks to the shift in the fine structure constant can
be derived from experimental data with the help of a dispersion relation

∆αhad = − α

3π
M2

Z Re

∫ ∞

4m2
π

ds′
Rγ(s′)

s′(s′ −M2
Z − iε)

(2.15)

where

Rγ(s) =
σ(e+e− → γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)

is an experimental input quantity for the low energy range. Recent compilations yield
the values ∆α = 0.02761 ± 0.00036 [93], ∆α = 0.02769 ± 0.00035 [94], ∆α = 0.02755 ±
0.00023 [68].

2.1.4 Renormalization of the quark and scalar quark sector

The renormalization of the quark sector can differ from the SM case, since the quark masses
also appear in the scalar quark sector. Therefore the renormalization of the quark and of
the scalar quark sector cannot be discussed separately. Since the scalar top and bottom
quarks are most relevant for the evaluation of EWPO, we will focus on their renormalization
here. Concerning the EWPO calculation reviewed below, only a renormalization in O(αs)
is necessary.

The top and scalar top sector

The t/t̃ sector contains four independent parameters: the top-quark massmt, the stop masses
mt̃1 and mt̃2 , and either the squark mixing angle θt̃ or, equivalently, the trilinear coupling At.
Accordingly, the renormalisation of this sector is performed by introducing four counterterms
that are determined by four independent renormalisation conditions.

In an on-shell scheme, the following renormalisation conditions are imposed (the proce-
dure is equivalent to that of Ref. [95], although there no reference is made to the mixing
angle).

(i) On-shell renormalization of the top-quark mass yields the top mass counterterm,

δmt =
1

2
mt

[
Re ΣtL(m2

t ) + Re ΣtR(m2
t ) + 2ReΣtS (m2

t )
]
, (2.16)

with the scalar coefficients of the unrenormalized top-quark self-energy, Σt(p), in the
Lorentz decomposition

Σt(p) = p/ω−ΣtL(p2) + p/ω+ΣtR(p2) +mtΣtS (p2) . (2.17)

(ii) On-shell renormalization of the stop masses determines the mass counterterms

δm2
t̃1

= Re Σt̃11(m
2
t̃1
) , δm2

t̃2
= Re Σt̃22(m

2
t̃2
) , (2.18)

in terms of the diagonal squark self-energies.
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(iii) The counterterm for the mixing angle, θt̃, (entering eq. (1.20)) can be fixed in the
following way,

δθt̃ =
ReΣt̃12(m

2
t̃1

) + Re Σt̃12(m
2
t̃2
)

2(m2
t̃1
−m2

t̃2
)

, (2.19)

involving the non-diagonal squark self-energy. (This is a convenient choice for the treat-
ment of O(αs) corrections. If electroweak contributions were included, a manifestly
gauge-independent definition would be more appropriate.)

In renormalized vertices with squark and Higgs fields, the counterterm of the trilinear cou-
pling At appears. Having already specified δθt̃, the At counterterm cannot be defined inde-
pendently but follows from the relation

sin 2θt̃ =
2mt(At − µ cotβ)

m2
t̃1
−m2

t̃2

, (2.20)

yielding

δAt =
1

mt

[1
2

sin 2θt̃

(
δm2

t̃1
− δm2

t̃2

)
+ cos 2θt̃(m

2
t̃1
−m2

t̃2
) δθt̃

− 1

2mt
sin 2θt̃(m

2
t̃1
−m2

t̃2
) δmt

]
. (2.21)

This relation is valid at O(αs) since both µ and tanβ do not receive one-loop contributions
from the strong interaction.

The bottom and scalar bottom sector

Because of SU(2)-invariance the soft-breaking parameters for the left-handed up- and down-
type squarks are identical, and thus the squark masses of a given generation are not inde-
pendent. The stop and sbottom masses are connected via the relation

cos2 θb̃ m
2
b̃1

+ sin2 θb̃ m
2
b̃2

= cos2 θt̃m
2
t̃1

+ sin2 θt̃ m
2
t̃2

+m2
b −m2

t −M2
W cos(2β) , (2.22)

with the entries of the rotation matrix in eq. (1.16). Since the stop masses have already
been renormalized on-shell, only one of the sbottom mass counterterms can be determined
independently. Following Ref. [96], the b̃2 mass is chosen as the pole mass yielding the
counterterm from an on-shell renormalization condition, i.e.

δm2
b̃2

= ReΣb̃22
(m2

b̃2
) , (2.23)

whereas the counterterm for mb̃1
is determined as a combination of other counterterms,

according to

δm2
b̃1

=
1

cos2 θb̃

(
cos2 θt̃δm

2
t̃1

+ sin2 θt̃δm
2
t̃2
− sin2 θb̃δm

2
b̃2
− sin 2θt̃(m

2
t̃1
−m2

t̃2
)δθt̃

+ sin 2θb̃(m
2
b̃1
−m2

b̃2
)δθb̃ − 2mt δmt + 2mb δmb

)
. (2.24)
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Accordingly, the numerical value of mb̃1
does not correspond to the pole mass. The pole

mass can be obtained from mb̃1
via a finite shift of O(αs) (see e.g. Ref. [97]).

There are three more parameters with counterterms to be determined: the b-quark mass
mb, the mixing angle θb̃, and the trilinear coupling Ab. They are connected via

sin 2θb̃ =
2mb(Ab − µ tanβ)

m2
b̃1
−m2

b̃2

, (2.25)

which reads in terms of counterterms

2 cos 2θb̃ δθb̃ = sin 2θb̃

δmb

mb
+

2mb δAb

m2
b̃1
−m2

b̃2

− sin 2θb̃

δm2
b̃1
− δm2

b̃2

m2
b̃1
−m2

b̃2

. (2.26)

Only two of the three counterterms, δmb, δθb̃, δAb can be treated as independent, which
offers a variety of choices.

As discussed in Ref. [96] a convenient choice is the “mb DR” scheme, whereas a scheme
analogous to the one in the t/t̃ sector, involving a bottom pole mass, can lead to artificially
enhanced higher-order corrections.

Concerning the renormalization of the top and the bottom mass, there are important
differences. The top-quark pole mass can be directly extracted from experiment and, due to
its large numerical value as compared to other quark masses and the fact that the present
experimental error is much larger than the QCD scale, it can be used as input for theory
predictions in a well-defined way. For the mass of the bottom quark, on the other hand,
problems related to non-perturbative effects are much more severe. Therefore the parameter
extracted from the comparison of theory and experiment [3] is not the bottom pole mass.
Usually the value of the bottom mass is given in the MS renormalisation scheme, with the
renormalisation scale µMS chosen as the bottom-quark mass, i.e. mMS

b (mMS
b ) [3].

Another important difference to the top/stop sector is the replacement of cot β → tan β.
As a consequence, very large effects can occur in this scheme for large values of µ and
tanβ [98].

Potential problems with the bottom pole mass can be avoided by adopting a renormal-
isation scheme with a running bottom-quark mass. In the context of the MSSM it seems
appropriate to use the DR scheme [78] and to include the SUSY contributions at O(αs) into

the running. We denote this running bottom mass as mDR,MSSM
b (µDR).

The “mb DR” scheme mentioned above uses a DR renormalization for both mb and Ab.
In the DR scheme, the b-quark mass counterterm can be determined by the expression

δmb =
1

2
mb

[
Re Σdiv

bL
(m2

b) + Re Σdiv
bR

(m2
b) + 2Re Σdiv

bS
(m2

b)
]
, (2.27)

where Σdiv means replacing the one- and two-point integrals A and B0 in the quark self-
energies by their divergent parts. The counterterm for the trilinear coupling Ab in the DR
scheme reads [96]

δAb =
1

mb

[
− tan θb̃Re Σdiv

b̃22
(m2

b̃2
) +

1

2
(Re Σdiv

b̃12
(m2

b̃1
) + Re Σdiv

b̃12
(m2

b̃2
))

+ tan θb̃

(
cos2 θt̃Re Σdiv

t̃11
(m2

t̃1
) + sin2 θt̃Re Σdiv

t̃22
(m2

t̃2
)
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− 1

2
sin 2θt̃(Re Σdiv

t̃12
(m2

t̃1
) + Re Σdiv

t̃12
(m2

t̃2
))
)

−m2
t

(
ReΣdiv

tL
(m2

t ) + Re Σdiv
tR

(m2
t ) + 2Re Σdiv

tS
(m2

t )
)]

+
1

2

(
2 tan θb̃mb −

1

2mb
(m2

b̃1
−m2

b̃2
) sin 2θb̃

)
×

(
Re Σdiv

bL
(m2

b) + Re Σdiv
bR

(m2
b) + 2ReΣdiv

bS
(m2

b)
)
. (2.28)

The counterterms for the mixing angle, δθb̃, and the b̃1 mass, δm2
b̃1

, are dependent quantities

and can be determined as combinations of the independent counterterms, invoking (2.24)
and (2.26),

δθb̃ =
1

m2
b̃1
−m2

b̃2

[
mbδAb + tan θb̃δm

2
b̃2

+ δmb

( 1

2mb
(m2

b̃1
−m2

b̃2
) sin 2θb̃ − 2 tan θb̃mb

)

− tan θb̃

(
cos2 θt̃δm

2
t̃1

+ sin2 θt̃δm
2
t̃2
− sin 2θt̃(m

2
t̃1
−m2

t̃2
)δθt̃ − 2mtδmt

)]
, (2.29)

δm2
b̃1

= tan2 θb̃δm
2
b̃2

+ 2 tan θb̃mbδAb + 2
( 1

mb

sin2 θb̃(m
2
b̃1
−m2

b̃2
) + (1 − tan2 θb̃)mb

)
δmb

+ (1 − tan2 θb̃)
(
cos2 θt̃δm

2
t̃1

+ sin2 θt̃δm
2
t̃2
− sin 2θt̃(m

2
t̃1
−m2

t̃2
)δθt̃ − 2mtδmt

)
.

(2.30)

The renormalized quantities in this scheme depend on the DR renormalization scale µDR.

In order to determine the value of mDR,MSSM
b (µDR) from the value mMS

b (µMS) that is

extracted from the experimental data one has to note that by definition mDR,MSSM
b contains

all MSSM contributions at O(αs), while mMS
b contains only the O(αs) SM correction, i.e. the

gluon-exchange contribution. Furthermore, a finite shift arises from the transition between
the MS and the DR scheme.

The expression for mDR,MSSM
b (µDR) is most easily derived by formally relating mDR,MSSM

b

to the bottom pole mass first and then expressing the bottom pole mass in terms of the MS
mass (the large non-perturbative contributions affecting the bottom pole mass drop out in

the relation of mDR,MSSM
b to mMS

b ). Using the equality mOS
b +δmOS

b = mDR,MSSM
b +δmDR,MSSM

b

and the expressions for the on-shell counterterm and the DR counterterm one finds

mDR,MSSM
b (µDR) = mOS

b +
1

2
mb

(
Σfin

bL
(mb

2) + Σfin
bR

(mb
2)
)

+mb Σfin
bS

(m2
b) . (2.31)

Here the Σfin are the UV-finite parts of the bottom quark self-energy coefficients. They
depend on the DR scale µDR and are evaluated for on-shell momenta, p2 = m2

b . Inserting

mOS
b = mMS

b (MZ)bshift, where

bshift ≡
[
1 +

αs

π

(4

3
− ln

(mMS
b )2

M2
Z

)]
, (2.32)
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one finds the desired expression for mDR
b ,

mDR,MSSM
b (µDR) = mMS

b (MZ)bshift +
1

2
mb

(
Σfin

bL
(mb

2) + Σfin
bR

(mb
2)
)

+mb Σfin
bS

(m2
b) . (2.33)

2.1.5 MSSM Higgs boson sector renormalization

In order to perform higher-order calculations in the Higgs boson sector, the renormalized
Higgs boson self-energies are needed (see Sect. 2.7). The parameters appearing in the Higgs
potential, see eq. (1.1), are renormalized as follows:

M2
Z → M2

Z + δM2
Z , Th → Th + δTh, (2.34)

M2
W → M2

W + δM2
W , TH → TH + δTH ,

M2
Higgs → M2

Higgs + δM2
Higgs, tanβ → tanβ (1 + δtanβ ).

m2
H± → m2

H± + δm2
H±

The renormalization of MW and MZ has been described in Sect. 2.1.2. M2
Higgs denotes the

tree-level Higgs boson mass matrix given in eq. (1.9). Th and TH are the tree-level tadpoles,
i.e. the terms linear in h and H in the Higgs potential.

The field renormalization matrices of both Higgs multiplets can be written symmetrically,
(
h

H

)
→
(

1 + 1
2
δZhh

1
2
δZhH

1
2
δZhH 1 + 1

2
δZHH

)(
h

H

)
, (2.35)

and for the charged Higgs boson

H± → H±(1 + δZH−H+) . (2.36)

For the mass counterterm matrices we use the definitions

δM2
Higgs =

(
δm2

h δm2
hH

δm2
hH δm2

H

)
. (2.37)

The renormalized self-energies, Σ̂(p2), can now be expressed through the unrenormalized
self-energies, Σ(p2), the field renormalization constants and the mass counterterms. This
reads for the CP-even part,

Σ̂hh(p
2) = Σhh(p

2) + δZhh(p
2 −m2

h,tree) − δm2
h, (2.38a)

Σ̂hH(p2) = ΣhH(p2) + δZhH(p2 − 1
2
(m2

h,tree +m2
H,tree)) − δm2

hH , (2.38b)

Σ̂HH(p2) = ΣHH(p2) + δZHH(p2 −m2
H,tree) − δm2

H , (2.38c)

and for the charged Higgs boson

Σ̂H−H+(p2) = ΣH−H+(p2) + δZH−H+(p2 −m2
H±) − δm2

H± . (2.39)

Inserting the renormalization transformation into the Higgs mass terms leads to ex-
pressions for their counter terms which consequently depend on the other counter terms
introduced in (2.34).
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For the CP-even part of the Higgs sectors, these counter terms are:

δm2
h = δM2

A cos2(α− β) + δM2
Z sin2(α + β) (2.40a)

+ e
2MZsW cW

(δTH cos(α− β) sin2(α− β) + δTh sin(α− β)(1 + cos2(α− β)))

+ δtanβ sin β cosβ (M2
A sin 2(α− β) +M2

Z sin 2(α+ β)),

δm2
hH = 1

2
(δM2

A sin 2(α− β) − δM2
Z sin 2(α+ β)) (2.40b)

+ e
2MZsW cW

(δTH sin3(α− β) − δTh cos3(α− β))

− δtanβ sin β cosβ (M2
A cos 2(α− β) +M2

Z cos 2(α + β)),

δm2
H = δM2

A sin2(α− β) + δM2
Z cos2(α + β) (2.40c)

− e
2MZsW cW

(δTH cos(α− β)(1 + sin2(α− β)) + δTh sin(α− β) cos2(α− β))

− δtanβ sin β cosβ (M2
A sin 2(α− β) +M2

Z sin 2(α + β)) .

For the charged Higgs boson it reads

δm2
H± = δM2

A + δM2
W . (2.41)

For the field renormalization it is sufficient to give each Higgs doublet one renormalization
constant,

H1 → (1 + 1
2
δZH1

)H1, H2 → (1 + 1
2
δZH2

)H2 . (2.42)

This leads to the following expressions for the various field renormalization constants in
eq. (2.35):

δZhh = sin2α δZH1
+ cos2α δZH2

, (2.43a)

δZhH = sinα cosα (δZH2
− δZH1

), (2.43b)

δZHH = cos2α δZH1
+ sin2α δZH2

, (2.43c)

δZH−H+ = sin2β δZH1
+ cos2β δZH2

. (2.43d)

The counter term for tan β can be expressed in terms of the vaccuum expectation values as

δ tanβ =
1

2
(δZH2

− δZH1
) +

δv2

v2
− δv1

v1
, (2.44)

where the δvi are the renormalization constants of the vi:

v1 → (1 + δZH1
) (v1 + δv1) , v2 → (1 + δZH2

) (v2 + δv2) . (2.45)

The renormalization conditions are fixed by an appropriate renormalization scheme. For
the mass counterterms besides the on-shell conditions for MW and MZ (see eq. (2.7)) also
MA can be renormalized on-shell:

δM2
A = Re ΣAA(M2

A). (2.46)
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Since the tadpole coefficients are chosen to vanish in all orders, their counter terms follow
from T{h,H} + δT{h,H} = 0:

δTh = −Th, δTH = −TH . (2.47)

For the remaining renormalization constants for δ tan β, δZH1
and δZH2

several choices are
possible, see e.g. Ref. [99,100]. A convenient choice is a DR renormalization of δ tanβ, δZH1

and δZH2
,

δtanβ = δtanβ DR = − 1

2 cos 2α

[
Re Σ′

hh(m
2
h,tree) − Re Σ′

HH(m2
H,tree)

]div
, (2.48a)

δZH1
= δZDR

H1
= −

[
ReΣ′

HH |α=0

]div
, (2.48b)

δZH2
= δZDR

H2
= −

[
ReΣ′

hh |α=0

]div
. (2.48c)

2.2 Sources of large SUSY corrections

2.2.1 Possible sources

Besides the known sources of sizable higher-order corrections in the SM, e.g. contributions
enhanced by powers of mt or logarithms of light fermions, there are additional sources of
possibly large corrections within the MSSM:

• Large corrections can arise not only from loops containing the top quark, but also its
scalar superpartners. In the MSSM Higgs sector, Yukawa corrections from the top and
scalar top quark sector can be especially large. The one-loop corrections, for instance
to the upper bound on the mass of the lightest CP-even Higgs boson, can reach the
level of 100%. The leading one-loop term from the top and scalar top sector entering
the predictions in the Higgs sector is given by [101]

∼ Gµm
4
t log

(
mt̃1mt̃2

m2
t

)
. (2.49)

• While the Higgs sector of the MSSM is CP-conserving at tree level, large CP-violating
effects can be induced by the loop corrections.

• Effects from the b/b̃ sector of the MSSM can also be very important for large values of
tanβ and µ.

• The b Yukawa coupling can receive large SUSY corrections, yielding a shift in the
relation between the b quark mass and the corresponding Yukawa coupling [98],

yb =

√
2

v cosβ

mb

1 + ∆mb
. (2.50)

The quantity ∆mb contains in particular a contribution involving a gluino in the loop,
which gives rise to a correction proportional to (αs µmg̃ tanβ), which can be large.
For ∆mb → −1 the b Yukawa coupling even becomes non-perturbative. This issue is
discussed in Sect. 2.2.2.
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• Besides the scalar quark sector, SUSY theories have further possible sources of large
isospin splitting, which can give large contributions to the ρ parameter [102,103].

• Soft SUSY-breaking masses can induce splittings in the supersymmetric coupling rela-
tions [104,105] (i.e. the equality of a SM coupling gi with the corresponding supersym-
metric coupling hi). If scalar superpartners have masses at a high scale M , and all the
other masses are light with mass m ∼Mweak, the resulting corrections are given by

hi(m)

gi(m)
− 1 ≈ g2

i (m)

16 π2
∆bi log

M

m
, (2.51)

where ∆bi is the one-loop beta function coefficient contribution from all light particles
whose superpartners are heavy. If M ≫ m these corrections to the SUSY coupling
relation can be sizeable.

• Another type of possibly large corrections in supersymmetric theories are the so-called
Sudakov logs (see Ref. [106] and references therein). They appear in the form of
log(q2/M2

SUSY) (where q is the momentum transfer) in the production cross sections of
SUSY particles at e+e− colliders.

• In general, SUSY loop contributions can become large if some of the SUSY particles
are relatively light.

2.2.2 Resummation in the b/b̃ sector

The relation between the bottom-quark mass and the Yukawa coupling yb, which in lowest
order reads mb = ybv1/

√
2, receives radiative corrections proportional to ybv2 = yb tan β v1.

Thus, large tan β-enhanced contributions can occur, which need to be properly taken into
account. As shown in Refs. [98,107] the leading terms of O(αb(αs tanβ)n) can be resummed
by using an appropriate effective bottom Yukawa coupling.

Accordingly, an effective bottom-quark mass is obtained by extracting the UV-finite
tanβ-enhanced term ∆mb from eq. (2.33) (which enters through ΣbS

) and writing it as
1/(1+∆mb) into the denominator. In this way the leading powers of (αs tan β)n are correctly
resummed [98,107]. This yields

mDR,MSSM
b (µDR) =

mMS
b (MZ)bshift + 1

2
mb

(
Σfin

bL
(mb

2) + Σfin
bR

(mb
2)
)

+mb Σ̃fin
bS

(m2
b)

1 + ∆mb
, (2.52)

where Σ̃bS
≡ ΣbS

+ ∆mb denotes the non-enhanced remainder of the scalar b-quark self-
energy at O(αs), and bshift is given in (2.32). The tanβ-enhanced scalar part of the b-quark
self-energy, ∆mb, is given at O(αs) by1

∆mb =
2

3π
αs tanβ µmg̃ I(m

2
b̃1
, m2

b̃2
, m2

g̃), (2.53)

1There are also corrections of O(αt) to ∆mb that can be resummed [107]. These effects usually amount
up to 5–10% of the O(αs) corrections. Since in this report we only consider O(αbαs) contributions, these
corrections have been omitted. Further corrections from subleading resummation terms can be found in
Ref. [108].
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with

I(m2
b̃1
, m2

b̃2
, m2

g̃) = −
m2

b̃1
m2

b̃2
log(m2

b̃2
/m2

b̃1
) +m2

b̃1
m2

g̃ log(m2
b̃1
/m2

g̃) +m2
g̃m

2
b̃2

log(m2
g̃/m

2
b̃2

)

(m2
b̃1
−m2

g̃)(m
2
g̃ −m2

b̃2
)(m2

b̃2
−m2

b̃1
)

,

(2.54)

and ∆mb > 0 for µ > 0.
In the “mb DR” defined above, the effective bottom-quark mass as given in eq. (2.52)

should be used everywhere instead of the DR bottom quark mass. This also applies to the
bottom mass in the sbottom-mass matrix squared, eq. (1.14), from which the sbottom mass
eigenvalues are determined. The effects of ∆mb, i.e. the leading effects of O(αs), can be
incorporated into a lowest-order result (e.g. the one-loop results for the renormalized Higgs
boson self-energies, see Sect. 2.7) by using the effective bottom-quark mass of eq. (2.52) (or
the correspondingly shifted value in other renormalization schemes).

2.3 Electroweak precision observables in the MSSM

In this section we briefly introduce the electroweak precision observables that are discussed
in this report. A description of the current status of their theoretical evaluation within the
MSSM will be given in the following sections and the remaining theoretical uncertainties will
be discussed.

The current experimental status of the EWPO and prospective improvements of their
precision in the future have been summarized in Sect. 1.3.4. In order to fully exploit the
experimental precision of the EWPO the theoretical uncertainties should be reduced signif-
icantly below the level of the experimental errors.

Concerning the theoretical predictions, two kinds of uncertainties need to be taken into
account: the theoretical uncertainties from unknown higher-order corrections (“intrinsic”
theoretical uncertainties) and the uncertainties induced by the experimental errors of the
input parameters (“parametric” theoretical uncertainties). The parametric uncertainty in-
duced by the known input parameters (in the SM case in particular mt and ∆αhad) needs to
be reduced in order to increase the sensitivity to the unknown parameters of the model (in
the SM case MH).

The EWPO discussed in the following sections are:

• The W boson mass can be evaluated from

M2
W

(
1 − M2

W

M2
Z

)
=

π α√
2Gµ

(1 + ∆r) , (2.55)

where α is the fine structure constant and Gµ the Fermi constant. This relation arises
from comparing the prediction for muon decay with the experimentally precisely known
Fermi constant. The radiative corrections are summarized in the quantity ∆r, derived
first for the SM in Ref. [109]. The prediction for MW within the SM or the MSSM
is obtained from evaluating ∆r in these models and solving eq. (2.55) in an iterative
way. The theory status of the prediction for MW is reviewed in Sect. 2.5.
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• Another important group of EWPO are the Z boson observables, among which we
mostly concentrate on the effective leptonic weak mixing angle at the Z boson reso-
nance, sin2 θeff . It can be defined through the form factors at the Z boson pole of the
vertx coupling of the Z to leptons (l). If this vertex is written as il̄γµ(gV − gAγ5)lZµ

then

sin2 θeff =
1

4

(
1 − Re

gV

gA

)
. (2.56)

At the tree level this amounts to the sine of the weak mixing angle, sin2 θW = 1 −
M2

W/M
2
Z , in the on-shell scheme. Loop corrections enter through the form factors gV

and gA. The theoretical evaluation is reviewed in Sect. 2.6.

• The quantity ∆ρ,

∆ρ =
ΣZ(0)

M2
Z

− ΣW (0)

M2
W

, (2.57)

parameterizes the leading universal corrections to the electroweak precision observables
induced by the mass splitting between fields in an isospin doublet [102]. ΣZ,W (0)
denote the transverse parts of the unrenormalized Z and W boson self-energies at
zero momentum transfer, respectively. The induced shifts in the two above described
observables are given in leading order by

δMW ≈ MW

2

c2W
c2W − s2

W

∆ρ, δ sin2 θeff ≈ − c2Ws
2
W

c2W − s2
W

∆ρ. (2.58)

The theoretical evaluation of ∆ρ is discussed in Sect. 2.4.

• Another very powerful observable for constraining the parameter space of the MSSM
is the mass of the lightest CP-even Higgs boson, mh. If the Higgs boson will be found
at the next generation of colliders, its mass will be measured with high precision. We
therefore refer to mh also as an EWPO. While mh is bounded from above at tree-level
by mh ≤MZ , it receives large radiative corrections. The leading one-loop contribution,
arising from the t/t̃ sector, reads [101]

∆m2
h =

3Gµ√
2π2 sin2 β

m4
t log

(
mt̃1mt̃2

m2
t

)
. (2.59)

The loop corrections, entering via Higgs-boson propagator corrections, can shift mh by
50–100%. The theoretical status is reviewed in Sect. 2.7.

• As a further precision observable that we investigate in detail in this report we consider
the anomalous magnetic moment of the muon, aµ ≡ (g − 2)µ. It is related to the
photon–muon vertex function Γµµ̄Aρ as follows:

ū(p′)Γµµ̄Aρ(p,−p′, q)u(p) = ū(p′)
[
γρFV (q2) + (p+ p′)ρFM(q2) + . . .

]
u(p) ,

aµ = −2mµFM(0) , (2.60)

where FM(q2) = 0 at tree-level. Non-zero values are induced via loop corrections. The
theoretical evaluation is discussed in Sect. 2.8.
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2.4 The ρ parameter

We start our discussion with the quantity ∆ρ, see eq. (2.57), which parametrizes in particular
the leading contributions from loops of scalar quarks and leptons to the W -boson mass and
the Z-boson observables.

2.4.1 One-loop results

In the SM the dominant contribution to ∆ρ at the one-loop level arises from the t/b doublet
due to its large mass splitting. With both fermion masses non-zero it reads

∆ρSM
0 =

3Gµ

8
√

2 π2
F0(m

2
t , m

2
b), (2.61)

with

F0(x, y) = x+ y − 2 x y

x− y
log

x

y
. (2.62)

F0 has the properties F0(m
2
a, m

2
b) = F0(m

2
b , m

2
a), F0(m

2, m2) = 0, F0(m
2, 0) = m2. Therefore

for mt ≫ mb eq. (2.61) reduces to the well known quadratic correction

∆ρSM
0 =

3Gµ

8
√

2π2
m2

t . (2.63)

Within the MSSM the dominant SUSY correction at the one-loop level arises from the
scalar top and bottom contribution to eq. (2.57), see Fig. 2.1.

V V

qi

qj

V V

qi

11

Figure 2.1: Feynman diagrams for the contribution of scalar quark loops to the gauge boson
self-energies at one-loop order.

For mb 6= 0 it is given by

∆ρSUSY
0 =

3Gµ

8
√

2 π2

[
− sin2 θt̃ cos2 θt̃F0(m

2
t̃1
, m2

t̃2
) − sin2 θb̃ cos2 θb̃F0(m

2
b̃1
, m2

b̃2
)

+ cos2 θt̃ cos2 θb̃F0(m
2
t̃1
, m2

b̃1
) + cos2 θt̃ sin2 θb̃F0(m

2
t̃1
, m2

b̃2
)

+ sin2 θt̃ cos2 θb̃F0(m
2
t̃2
, m2

b̃1
) + sin2 θt̃ sin2 θb̃F0(m

2
t̃2
, m2

b̃2
)
]
. (2.64)

The size of the SUSY one-loop contributions are shown for an exemplary case in Fig. 2.2 as
a function of MSUSY. The parameter MSUSY is defined by setting the soft SUSY-breaking

37



parameters in the diagonal entries of the stop and sbottom mass matrices equal to each other
for simplicity,

MSUSY ≡MQ̃ = MŨ = MD̃ , (2.65)

see eq. (1.14). We furthermore use the shorthands

Xt ≡ At − µ/ tanβ, Xb ≡ Ab − µ tanβ . (2.66)

The other parameters in Fig. 2.2 are tanβ = 3 and Xt = 0, 2MSUSY. In this case ∆ρSUSY
0 can

reach values of up to 2× 10−3. The line for Xt = 2MSUSY starts only at MSUSY ≈ 300 GeV.
For lower values of MSUSY one of the scalar top mass squares is below zero.

100 200 300 400 500
MSUSY [GeV]

0.0000

0.0005

0.0010

0.0015

0.0020

∆ρ

Xt = 0

Xt = 2 MSUSY

Figure 2.2: One–loop contribution of the (t̃, b̃) doublet to ∆ρ as a function of the common
squark mass MSUSY for tan β = 3, and Xb = 0 and Xt = 0 or 2MSUSY.

2.4.2 Results beyond the one-loop level

SM results

Within the SM the one-loop O(α) result from the contribution of the t/b doublet has been
extended in several ways. The dominant two-loop corrections arise at O(ααs) and are given
by [110]

∆ρSM,ααs

1 = −∆ρSM
0

2

3

αs

π

(
1 + π2/3

)
. (2.67)

These corrections screen the one-loop result by approximately 10%. Also the three-loop
result at O(αα2

s) is known. Numerically it reads [111]

∆ρ
SM,αα2

s

2 = − 3Gµ

8
√

2π2
m2

t

(αs

π

)2

· 14.594... . (2.68)
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Furthermore the leading electroweak two-loop contributions of O(G2
µm

4
t ) have been calcu-

lated. First the result in the approximation MH = 0 had been evaluated [112],

∆ρ
SM,G2

µ

1|MH=0 = 3
G2

µ

128π4
m4

t × δSM
1|MH=0

δSM
1|MH=0 = 19 − 2π2. (2.69)

Later the full O(G2
µm

4
t ) result for arbitraryMH became available [113], where δSM

1|MH=0 extends
to

δSM
1|MH 6=0 = 19 − 2π2 + fct(mt,MH). (2.70)

The leading two-loop contribution to ∆ρ in an asymptotic expansion for large MH of
O(G2

µM
2
HM

2
W ) was obtained in Ref. [114]. It turned out to be numerically small.

Leading electroweak three-loop results of O(G3
µm

6
t ) and O(G2

µαsm
4
t ) became available

more recently [115,116]. Numerically they read in the case MH = 0:

∆ρ
SM,G3

µ

2|MH=0 =

(
Gµ

8
√

2π2
m2

t

)3

· 249.74 , (2.71)

∆ρ
SM,G2

µαs

2|MH=0 =

(
Gµ

8
√

2π2
m2

t

)2 (αs

π

)
· 2.9394 . (2.72)

For the case MH 6= 0 the result has been obtained in several limits, allowing a smooth inter-
polation, see Ref. [116] for details. Most recently also the leading O(G3

µM
4
HM

2
W ) contribution

was obtained [117]. Besides for very large values of MH it is numerically insignificant.

The SUSY corrections at O(ααs)

The leading two-loop corrections arising in the MSSM (beyond the SM part) have been
evaluated at O(ααs) [97] and O(α2

t , αtαb, α
2
b) [118,119] (the latter in the limit of largeMSUSY).

The leading O(ααs) corrections to the scalar quark loops consist of the diagrams shown in
Fig. 2.3 (supplemented with the corresponding diagrams for the subloop renormalization,
see Ref. [97]). The diagrams can be divided into three groups: the pure scalar contribution
(diagrams a-c), the gluonic correction (diagrams d-j, where the gluon-loop contribution,
diagrams i-j, is zero) and the gluino exchange correction (diagrams k-n).

The pure scalar quark diagrams give a vanishing contribution. The gluonic correction
can be cast into a compact formula [97]:

∆ρSUSY
1,gluon =

Gµ

4
√

2π2

αs

π

[
− sin2 θt̃ cos2 θt̃F1(m

2
t̃1
, m2

t̃2
) − sin2 θb̃ cos2 θb̃F1(m

2
b̃1
, m2

b̃2
)

+ cos2 θt̃ cos2 θb̃F1(m
2
t̃1
, m2

b̃1
) + cos2 θt̃ sin2 θb̃F1(m

2
t̃1
, m2

b̃2
)

+ sin2 θt̃ cos2 θb̃F1(m
2
t̃2
, m2

b̃1
) + sin2 θt̃ sin

2 θb̃F1(m
2
t̃2
, m2

b̃2
)
]
, (2.73)

with

F1(x, y) = x+ y − 2
xy

x− y
log

x

y

[
2 +

x

y
ln
x

y

]
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Figure 2.3: Feynman diagrams for the contribution of scalar quark loops to the gauge-boson
self-energies at two-loop order.

+
(x+ y)x2

(x− y)2
log2 x

y
− 2(x− y)Li2

(
1 − x

y

)
, (2.74)

where F1 has the properties F1(m
2
a, m

2
b) = F1(m

2
b , m

2
a), F1(m

2, m2) = 0, F1(m
2, 0) = m2(1 +

π2/3). The gluino exchange correction results in a lengthy formula, see Ref. [97], and is not
given here. It decouples for mg̃ → ∞.

The analytical formula for the O(ααs) corrections given in eq. (2.73) is expressed in terms
of the physical squark masses, i.e. an on-shell renormalization has been carried out for all
four squark masses. As discussed in Sect. 2.1.4, SU(2) invariance leads to a relation between
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the stop and sbottom masses, so that not all four masses can be renormalized independently.
This results in a finite mass shift of O(αs) that is given, if expressed in terms of mb̃1

, as
the difference between the counterterm of eq. (2.24) and the on-shell counterterm. If the
two-loop result is expressed in terms of the on-shell masses, this mass shift appears in the
relation between the physical squark masses and the (unphysical) soft SUSY-breaking mass
parameters in the squark mass matrices, see eq. (1.14). While this shift is formally of higher
order in the evaluation of the masses that are inserted in the two-loop result, it needs to be
taken into account in the one-loop result, This gives rise to an extra contribution compared
to the results discussed in Sect. 2.4.1, see Ref. [97] for a more detailed discussion.

The SUSY corrections at O(α2
t ), O(αtαb), O(α2

b)

Furthermore the leading O(α2
t ), O(αtαb), O(α2

b) corrections to ∆ρ have been evaluated
in the limit MSUSY → ∞ [118,119]. The mt dependence of ∆ρ differs between the pure
SM contribution and the additional SUSY corrections. Within the SM, the corrections are
∼ m2

t for the one-loop and ∼ m4
t for the two-loop correction, leading to sizable shifts in the

precision observables. The additional SUSY corrections at the one-loop level (from scalar
quark loops), on the other hand, do not contain a prefactor ∼ m2

t . In the electroweak two-
loop corrections it is no longer possible to separate out the pure SM contribution because
of the extended Higgs sector of the MSSM. The leading electroweak two-loop corrections in
the MSSM are therefore of O(G2

µm
4
t ) (as in the SM case) and potentially sizable.

The leading contributions of O(α2
t ), O(αtαb) and O(α2

b) have been derived by extracting
the contributions proportional to y2

t , ytyb and y2
b , where

yt =

√
2mt

v sin β
, yb =

√
2mb

v cosβ
. (2.75)

The coefficients of these terms could then be evaluated in the gauge-less limit, i.e. for
MW ,MZ → 0 (keeping cW = MW/MZ fixed).

For the Higgs masses appearing in the two-loop diagrams the following relations have
been used, arising from the gauge-less limit

m2
H± = M2

A , m2
G = 0 , m2

G± = 0 . (2.76)

Applying the corresponding limit also in the neutral CP-even Higgs sector would yield for the
lightest CP-even Higgs-boson mass m2

h = 0 (and furthermore m2
H = M2

A, sinα = − cosβ ,
cosα = sin β ). Since within the SM the limit MSM

H → 0 turned out to be only a poor
approximation of the result for arbitrary MSM

H , m2
h has been kept non-zero (which formally

is a higher-order effect). Keeping mh as a free parameter is also relevant in view of the
fact that the lightest MSSM Higgs boson receives large higher order corrections, which shift
its upper bound up to 135 GeV (for MSUSY ≤ 1 TeV and mt = 175 GeV), see Sect. 2.7.
These corrections can easily be taken into account in this way (in the Higgs contributions at
one-loop order, however, the tree-level value of mh should be used). Keeping α arbitrary is
necessary in order to incorporate non SM-like couplings of the lightest CP-even Higgs boson
to fermions and gauge bosons.

On the other hand, keeping all Higgs-sector parameters completely arbitrary is not pos-
sible, as the underlying symmetry of the MSSM Lagrangian has to be exploited in order
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to ensure the UV-finiteness of the two-loop corrections to ∆ρ. Thus only those symmetry
relations have been enforced in the neutral CP-even Higgs sector which are explicitly needed
in order to obtain a complete cancellation of the UV-divergences.

It is convenient to discuss the O(α2
t ∝ G2

µm
4
t ) SUSY contributions to ∆ρ separately, i.e.

the case where yb = 0. The O(α2
t ) corrections are by far the dominant subset within the

SM, i.e. the O(αtαb) and O(α2
b) corrections can safely be neglected within the SM. The same

is true within the MSSM for not too large values of tanβ. It is well known [120] that the
SUSY sector of the MSSM decouples if the general soft SUSY-breaking scale goes to infinity
(corresponding toMSUSY → ∞ in the one-loop result given above). The leading contributions
of O(G2

µm
4
t ) in the case where the scalar quarks are heavy is therefore obtained in the limit

where only the two Higgs doublet sector of the MSSM is active [118,119], corresponding to
the limit MSUSY → ∞.

In Ref. [118] the result has been obtained in the simplified case with tree-level Higgs
boson masses. In the limit MW ,MZ → 0 the neutral CP-even Higgs boson masses at the
tree-level reduce to

m2
h = 0, m2

H = M2
A. (2.77)

In this limit also the relation between the angles α and β, see eq. (1.6), becomes very
simple, α = β − π/2, i.e. sinα = − cosβ , cosα = sin β . The only remaining scales left
are the top quark mass, mt, the CP-odd Higgs boson mass, MA, and tanβ (or sin β =

tanβ/
√

1 + tan2 β ). In the limit of large tan β (i.e. (1 − sin2 β ) ≪ 1) the result takes a
particularly simple form. One obtains

∆ρSUSY
1,Higgs,mh=0 = 3

G2
µ

128 π4
m4

t

[
19

sin2 β
− 2 π2 + O

(
1 − sin2 β

)]
. (2.78)

Thus, for large tanβ the SM limit with MSM
H → 0 (see eq. (2.69)) is reached.

Keeping tanβ arbitrary but expanding for large values of MA yields

∆ρSUSY
1,Higgs,mh=0 = 3

G2
µ

128 π4
m4

t ×
{

19 − 2π2

−1 − sin2 β

sin2 β

[(
log2A+

π2

3

)(
8A+ 32A2 + 132A3 + 532A4

)

+ log(A)
1

30

(
560A+ 2825A2 + 11394A3 + 45072A4

)
(2.79)

− 1

1800

(
2800A+ 66025A2 + 300438A3 + 1265984A4

)
+ O

(
A5
)
]}

,

where A ≡ m2
t/M

2
A. In the limit A→ 0 one obtains

∆ρSUSY
1,Higgs,mh=0 = 3

G2
µ

128 π4
m4

t

[
19 − 2 π2

]
+ O(A), (2.80)
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i.e. exactly the SM limit for MSM
H → 0 is reached. This constitutes an important consistency

check: in the limit A→ 0 the heavy Higgs bosons are decoupled from the theory. Thus only
the lightest CP-even Higgs boson should remain, which has in the O(G2

µm
4
t ) approximation

(neglecting higher-order corrections) the mass mh = 0, see eq. (2.77). As already observed
in Ref. [97], the decoupling of the non-SM contributions in the limit where the new scale
(i.e. in the present case MA) is made large is explicitly seen here at the two-loop level.

Now we turn to the full O(α2
t ) corrections. As discussed in Ref. [119], an UV-finite result

could only be obtained if the relations in eq. (2.76) are taken into account. The masses of the
neutral Higgs bosons as well as the mixing angle could be kept as ‘independent’ parameters,
i.e. they can be obtained taking into account higher order corrections. The full result without
the tree-level relations is rather lengthy and can be found in Ref. [119].

Now also the O(αtαb), O(α2
b) SUSY corrections are considered. The structure of the

fermion doublet requires that further symmetry relations are taken into account. Within the
Higgs boson sector it is necessary, besides using eq. (2.76), also to use the relations for the
heavy CP-even Higgs boson mass and the Higgs mixing angle,

m2
H = M2

A , sinα = − cosβ , cosα = sin β . (2.81)

On the other hand, mh can be kept as a free parameter. The couplings of the lightest
CP-even Higgs boson to gauge bosons and SM fermions, however, become SM-like, once
the mixing angle relations, eq. (2.81), are used. Furthermore, the Yukawa couplings can no
longer be treated as free parameters, i.e. eq. (2.75) has to be employed, which ensures that
the Higgs mechanism governs the Yukawa couplings. Corrections enhanced by tan β thus
arise only from the heavy Higgs bosons, while the contribution from the lightest CP-even
Higgs boson resembles the SM one.

2.4.3 Results in the NMFV MSSM

The existing corrections to ∆ρ within the NMFV MSSM [25] consist of squark contributions
based on the general 4 × 4 mass matrix for both the t̃/c̃ and the b̃/s̃ sector, see Sect. 1.2.6.
These corrections are visualized by the Feynman diagrams in Fig. 2.4. They are denoted
as ∆ρq̃.

The squark contribution ∆ρq̃ can be decomposed according to

∆ρq̃ = ΞZ + ΘZ + ΞW + ΘW , (2.82)

where Ξ and Θ correspond to different diagram topologies, i.e. to diagrams with trilinear
and quartic couplings, respectively (see Fig. 2.4). The explicit expressions read as follows,

ΞW =
3g2

8π2M2
W

∑

a,b,c,d

∑

α,β

V ab
CKMV

cd
CKMR

αa
ũ Rαc

ũ R
βb

d̃
Rβd

d̃
B00(0, m

2
ũα
, m2

d̃β
) ,

ΘW = − 3g2

32π2M2
W

∑

a

∑

α

{
(Rαa

ũ )2A0(m
2
ũα

) + (Rαa
d̃

)2A0(m
2
d̃α

)
}
,

ΞZ = − 3g2

144c2Wπ
2M2

Z

∑

α,β,γ,δ

{
κd̃(γ)R

αγ

d̃
Rβγ

d̃
κd̃(δ)R

αδ
d̃
Rβδ

d̃
B00(0, m

2
d̃α
, m2

d̃β
)
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Figure 2.4: Feynman diagrams for the squark contributions to the gauge boson self-energies.

+κũ(γ)R
αγ
ũ Rβγ

ũ κũ(δ)R
αδ
ũ R

βδ
ũ B00(0, m

2
ũα
, m2

ũβ
)
}
,

ΘZ =
3g2

288c2Wπ
2M2

Z

∑

α,β,γ,δ

{
(κd̃(γ)

2(Rαγ

d̃
)2A0(m

2
d̃α

) + κũ(γ)
2(Rαγ

ũ )2A0(m
2
ũα

)
}
.(2.83)

Here the indices run from 1 to 2 for Latin letters, and from 1 to 4 for Greek letters. The
expressions contain the one-point integral A0 and the two-point integral B00 in Bµν(k) =
gµν B00 + kµkνB11 in the convention of Ref. [121]. The remaining constants κũ and κd̃ are
defined as follows,

κd̃ =




3 − 2 s2
W

3 − 2 s2
W

−2 s2
W

−2 s2
W


 , κũ =




−3 + 4 s2
W

−3 + 4 s2
W

4 s2
W

4 s2
W


 . (2.84)

The CKM matrix only affects ΞW . Corrections from the first-generation squarks are
negligible due to their very small mass splitting. Non-minimal flavor mixing of the first
generation with the other ones has been set to zero, but conventional CKM mixing is basically
present. Although it is required for a UV finite result, it yields only negligibly small effects.
Therefore, for simplification, we drop the first generation and restore the cancellation of UV
divergences by a unitary 2 × 2 matrix replacing the {23}-submatrix of the CKM matrix,

VCKM =

(
Vcs Vcb

Vts Vtb

)
=

(
cos ǫ sin ǫ
− sin ǫ cos ǫ

)
, (2.85)

with |ǫ| ≈ 0.04 close to the experimental entries [3] of the conventional CKM matrix.
Since ∆ρq̃ is a finite quantity, and the CKM matrix effects (and therefore, the ǫ depen-

dence) only appear in ΞW , it has been shown [25] that ΞW (and thus ∆ρ) is symmetric under
the simultaneous reversal of signs ǫ → −ǫ, λ → −λ (see eq. (1.50)), i.e. only the relative
sign has a physical consequence, affecting the results for ∆ρ significantly. In physical terms,
non-minimal squark mixing can either strengthen or partially compensate the CKM mixing.
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2.5 Evaluation of MW

One of the most important quantities for testing the SM or its extensions is the relation
between the massive gauge boson masses, MW and MZ , in terms of the Fermi constant, Gµ,
and the fine structure constant, α. This relation can be derived from muon decay, where the
Fermi constant enters the muon lifetime, τµ, via the expression

τ−1
µ =

G2
µm

5
µ

192π3
F

(
m2

e

m2
µ

)(
1 +

3

5

m2
µ

M2
W

)
(1 + ∆q) , (2.86)

with F (x) = 1 − 8x− 12x2 lnx+ 8x3 − x4. By convention, this defining equation is supple-
mented with the QED corrections within the Fermi Model, ∆q. Results for ∆q have been
available for a long time at the one-loop [122] and, more recently, at the two-loop level [123]
(the error in the two-loop term is from the hadronic uncertainty),

∆q = 1.810
α

4π
+ (6.701 ± 0.002)

( α
4π

)2

. (2.87)

Commonly, tree-level W propagator effects giving rise to the (numerically insignificant) term
3m2

µ/(5M
2
W ) in eq. (2.86) are also included in the definition of Gµ, although they are not

part of the Fermi Model prediction. With the second order term of eq. (2.87) the defining
equation for Gµ in terms of the experimental muon lifetime, eq. (2.86), yields the value of
Gµ given in Tab. 1.3.

Within a given model, Gµ can be calculated in terms of the model parameters. The
Fermi constant is given by the expression

Gµ√
2

=
e20

8s0 2
WM0 2

W

[
1 +

ΣW (0)

M2
W

+ (V B)

]
. (2.88)

This equation contains the bare parameters with the bare mixing angle. The term (V B)
schematically summarizes the vertex corrections and box diagrams in the decay amplitude.
A set of infrared-divergent “QED correction” graphs has been removed from this class of
diagrams. These left-out diagrams, together with the real bremsstrahlung contributions,
reproduce the QED correction factor of the Fermi model result in eqs. (2.86), (2.87) and
therefore have no influence on the relation between Gµ and the model parameters.

Equation (2.88) contains the bare parameters e0,M
0
W , s

0
W . Expanding the bare parame-

ters and keeping only terms of one-loop order yields the expression,

Gµ√
2

=
e2

8s2
WM

2
W

×
[
1 + 2

δe

e
− c2W
s2

W

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
+

ΣW (0) − δM2
W

M2
W

+ (V B)

]

≡ e2

8s2
WM

2
W

(1 + ∆r) , (2.89)

which is equivalent to eq. (2.55). The quantity ∆r is the finite combination of loop diagrams
and counterterms in (2.89). The prediction for MW within the SM or the MSSM is obtained
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from evaluating ∆r in these models and solving eq. (2.89),

M2
W = M2

Z

{
1

2
+

√
1

4
− πα√

2GFM2
Z

[
1 + ∆r(MW ,MZ , mt, . . . )

]}
. (2.90)

In practice, this can be done by an iterative procedure since ∆r itself depends on MW .
The one-loop contributions to ∆r can be written as

∆r = ∆α− c2W
s2

W

∆ρ+ (∆r)rem, (2.91)

where ∆α is the shift in the fine structure constant due to the light fermions of the SM,
∆α ∝ logmf (see the discussion in Sect. 2.1.3), and ∆ρ is the leading contribution to the
ρ parameter from fermion and sfermion loops. The remainder part, (∆r)rem, contains in
particular the contributions from the Higgs sector.

In the following we will discuss the status of the theoretical evaluation of MW . After a
brief review of the SM contribution, the additional MSSM corrections are described in more
detail.

2.5.1 SM corrections

In the SM, the result for (V B) in eq. (2.89) is

(V B) =
α

πs2
W

(
∆ − log

M2
W

µ2

)
+

α

4πs2
W

(
6 +

7 − 4s2
W

2s2
W

log c2W

)
. (2.92)

The singular part of this equation involving the divergence ∆ ≡ 2/(4−D)− γ + log 4π (see
App. A) coincides, up to a factor, with the non-Abelian bosonic contribution to the charge
counterterm in eq. (2.9):

α

πs2
W

(
∆ − log

M2
W

µ2

)
=

2

cWsW

ΣγZ(0)

M2
Z

. (2.93)

Extra non-standard vertex and box diagrams do not change the singular part; they contribute
another finite term (V B)non−standard. Together with eq. (2.9) and eq. (2.92), we obtain from
eq. (2.89) the following expression,

∆r = Πγ(0) − c2W
s2

W

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
+

ΣW (0) − δM2
W

M2
W

+ 2
cW
sW

ΣγZ(0)

M2
Z

+
α

4πs2
W

(
6 +

7 − 4s2
W

2s2
W

log c2W

)
+ (V B)non−standard , (2.94)

where in the on-shell renormalization the renormalization constants are given by the on-shell
self-energies, as specified in eq. (2.7).

Beyond the complete one-loop result [109], resummations of the leading one-loop contri-
butions ∆α and ∆ρ are known [124]. They correctly take into account the terms of the form
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(∆α)2, (∆ρ)2, (∆α∆ρ), and (∆α∆rrem) at the two-loop level and the leading powers in ∆α
to all orders.

Higher-order QCD corrections to ∆r are known at O(ααs) [110,125,126] and O(αα2
s) [111,

127] since about 10 years. Recently the full electroweak two-loop result for ∆r has been
completed. It consists of the fermionic contribution [90,128,129], which involves diagrams
with one or two closed fermion loops, and the purely bosonic two-loop contribution [130].

Beyond two-loop order, besides higher-order contributions to ∆ρ (see Sect. 2.4.2) the
results for the pure fermion-loop corrections (i.e. contributions containing n fermion loops at
n-loop order) are known up to four-loop order [131]. They contain in particular the leading
contributions in ∆α and ∆ρ.

Since the full result for MW is rather lenghty and contains numerical integrations of
integrals appearing in the electroweak two-loop contributions, a simple parametrization is
given in Ref. [132]. It approximates the full result for MW to better than 0.5 MeV for
10 GeV ≤ MH ≤ 1 TeV if the other parameters are varied within their combined 2σ region
around their experimental central values.

The expected size of the unknown higher-order corrections, i.e. the estimated theory
uncertainties [132] (for MH

<∼ 300 GeV) are summarized in Tab. 2.1 (see Ref. [65,132,133]
for further details).

2-loop 3-loop

O(α2, ferm) O(α2, bos) O(αα2
s, ferm) O(G2

µαsm
2
tM

2
Z) O(α3)

compl. [90,128,129] compl. [130] compl. [111,127] 3.0 1.5

4-loop

O(Gµα
3
sm

2
t ) O(G2

µα
2
sm

4
t )

1.3 1.4

Table 2.1: Estimated uncertainties from unknown higher-order corrections to MW in
MeV [132].

Currently these intrinsic uncertainties result in [132]

δMSM,intr
W (current) = 4 MeV . (2.95)

It seems reasonable that the evaluation of further higher-order corrections will lead to a
reduction of this uncertainty by a factor of two or more on the timescale of 5–10 years. We
therefore estimate as future intrinsic uncertainty

δMSM,intr
W (future) = 2 MeV . (2.96)

The dominant theoretical uncertainty at present is the uncertainty induced by the ex-
perimental errors of the input parameters. The most important uncertainties arise from the
experimental error of the top-quark mass and the hadronic contribution to the shift in the
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fine structure constant. The current errors for mt [134] and ∆αhad [93] induce the following
parametric uncertainties

δmcurrent
t = 4.3 GeV ⇒ ∆Mpara,mt

W (current) ≈ 26 MeV, (2.97)

δ(∆αcurrent
had ) = 36 × 10−5 ⇒ ∆Mpara,∆αhad

W (current) ≈ 6.5 MeV. (2.98)

At the ILC, the top-quark mass will be measured with an accuracy of about 100 MeV [7–9].
The parametric uncertainties induced by the future experimental errors ofmt and ∆αhad [135]
will then be [63]

δmfuture
t = 0.1 GeV ⇒ ∆Mpara,mt

W (future) ≈ 1 MeV, (2.99)

δ(∆αfuture
had ) = 5 × 10−5 ⇒ ∆Mpara,∆αhad

W (future) ≈ 1 MeV. (2.100)

Thus, the precision measurement of the top-quark mass at the ILC and prospective improve-
ments in the determination of ∆αhad (see the discussion in Ref. [135]) will reduce the para-
metric uncertainties to the same level as the prospective intrinsic uncertainties, eq. (2.96),
allowing a very sensitive test of the electroweak theory.

2.5.2 SUSY corrections

In this subsection we review the current status of the SUSY corrections to MW . The intrinsic
uncertainties from missing higher-order SUSY corrections will be discussed in Sect. 3.1.2.

One-loop corrections

The complete one-loop corrections to ∆rSUSY
2 were evaluated independently by two groups [136,

137]. The main part of the contributions stems from the t̃/b̃ doublet that enters at the one-
loop level only via gauge-boson self-energies. Therefore, only Feynman diagrams as depicted
in Fig. 2.1 have to be evaluated, but contrary to Sect. 2.4.2 also with non-vanishing external
momentum. In general, all scalar-quark contributions (yielding ΣγZ(0) = 0, according to
the comment after eq. (2.10)) are contained in

∆rq̃ = Πγ(0) − c2W
s2

W

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
+

ΣW (0) − δM2
W

M2
W

. (2.101)

In the approximation of neglecting the external momenta in the self-energies the second term
in eq. (2.101) reduces to ∆ρ, leading to a decomposition as in eq. (2.91). For loops of scalar
quarks the corrections mainly arise from the contribution to ∆ρ (see eq. (2.64)), so that ∆rq̃

can be approximated as

∆rq̃ ≈ −c
2
W

s2
W

∆ρ ≈ −3.5∆ρ. (2.102)

The full one-loop result from the t̃/b̃ sector is compared with this approximation in Figs. 2.5
and 2.6. The case of no-mixing in the b̃ sector is shown in Fig. 2.5 for tan β = 1.6 and
Xt = 0, 200 GeV. The full result is reproduced by the ∆ρ approximation within a few per

2From here on we drop the subscript SUSY .
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Figure 2.5: The t̃/b̃ corrections to ∆r at the one-loop level, eq. (2.101), are compared with
the approximation, eq. (2.102). The results are shown as a function of mq̃(≡ MSUSY) for
tanβ = 1.6, Xb = 0 and Xt = 0, 200 GeV.
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Figure 2.6: The t̃/b̃ corrections to ∆r at the one-loop level, eq. (2.101), are compared with
the approximation, eq. (2.102). The results are shown as a function of mq̃(≡ MSUSY) for
tanβ = 40, Xb = 2500 GeV and Xt = 0, 200 GeV.
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cent. The same applies for large mixing in the b̃ sector, see Fig. 2.6, with Xb = 2500 GeV,
tanβ = 40 and Xt = 0, 200 GeV.

As investigated in detail in Refs. [136,137], the full SUSY one-loop contribution to ∆r
does not exceed O(0.0015) (explicit formulas for the self-energy contributions are given
in Ref. [138], see also Refs. [103,139].) The main contribution is given by the universal
corrections, see eq. (2.94). The corrections beyond the t̃/b̃ sector arise from the other scalar
quarks, entering only in the universal corrections, and the sleptons and gauginos, entering
in the universal as well as in the non-universal contributions [136].

The full one-loop corrections from third and second generation squarks in the NMFV
MSSM, using eq. (2.101), have been derived in Ref. [25].

Corrections beyond one-loop

Since the dominant one-loop corrections are given by the t̃/b̃ contributions, the existing
two-loop calculations have focused on this sector. The only existing two-loop calculation for
∆r, going beyond the ∆ρ approximation as presented in Sect. 2.4.2, are the gluon-exchange
corrections of O(ααs) [140]. This is the only result in the t̃/b̃ sector beyond one-loop order
that can be obtained as an analytical formula due to the presence of the massless gluon in
the two-loop two-point function. The gluino-exchange corrections, on the other hand, have
been shown to decouple for large mg̃ [97], see Sect. 2.4.2.

The O(ααs) gluonic corrections are evaluated from the Feynman diagrams as shown in
Fig. 2.3, but taking into account the momentum dependence. Furthermore the derivative of
the photon self-energy is needed. It is given by (D = 4 − 2δ)

Πγ(0) = −CF
α

π

αs

π

3

4s2
W

∑

f=1,2

∑

a=1,2

vf (1 − δ)δ

[
(1 − 2δ)(1 − δ)2

(2 − δ)(1 − 4δ2)

(
A0(mf̃i

)
)2

m4
f̃i

+
A0(mf̃i

)B0(m
2
f̃i
, 0, mf̃i

)

m2
f̃i

]
(2.103)

with

v1 = (−4

3
sW cW )2, v2 = (

2

3
sW cW )2

mf̃i
=

{
mt̃i : f = 1
mb̃i

: f = 2

The most complicated parts are the gauge boson self-energies with non-zero external mo-
mentum. The general case is given by

ΣV1V2(p2) = CF
α

π

αs

π

3

4s2
W

g̃V1V2

∑

f=1,2

∑

a,b=1,2

gV1V2

ab

1

3 − 2δ

[

−m
2
a

2
FabT11234′(m

2
a, m

2
a, m̄b

2, m2
a, 0) − 1

2
FabT1234′(m

2
a, m̄

2
b , m

2
a, 0)
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a, m̄

2
b)B0(m

2
a, 0, m

2
a) −

m2
a + m̄2

b − p2

4

(
B0(p

2, m2
a, m̄

2
b)
)2

+
m2

a − m̄2
b − p2

p2
m2

aB0(m
2
a, 0, m

2
a)B0(p

2;m2
a, m̄

2
b)

−1

2

(
m2

a

p2
(A0(ma) −A0(m̄b)) − 2(1 − δ)2A0(ma) + (1 − δ)

m2
a − m̄2

b

p2
A0(ma)

)

B0(m
2
a, 0, m

2
a)

−1

2

(
2(1 − δ) − m2

a − m̄2
b

p2

)
(1 − δ)2

(1 − 2δ)m2
a

A2
0(ma)

]
, (2.104)

with

Fab =
((ma − m̄b)

2 − p2)((ma + m̄b)
2 − p2)

p2

and

• V1, V2 ∈ {γ, Z0}

gV1V2

ab =
[
(2tatb − δab)a

f
V1

− δabv
f
V1

] [
(2tatb − δab)a

f
V2

− δabv
f
V2

]

with

ti =

{
cos θf̃ : i = 1

sin θf̃ : i = 2
,

af
Z = If

3 , vf
Z = If

3 − 2s2
WQf ,

af
γ = 0, vf

γ = 2sW cWQf ,

g̃V1V2
= 1,

mi = m̄i =

{
mt̃i : f = 1
mb̃i

: f = 2

• V1 = V2 = W

gWW
ab = s2

at
2
b ,

with

sa =

{
cos θt̃ : a = 1
sin θt̃ : a = 2

, tb =

{
cos θb̃ : b = 1
sin θb̃ : b = 2

,

g̃WW =
1

c2W
,

mi =

{
mt̃i : f = 1
mb̃i

: f = 2
, m̄j =

{
mb̃j

: f = 1

mt̃j : f = 2
.

The functions A0, B0 [141], T234′ , T123′4, T1123′4 and T123′45 [126,142] can be found in the
Appendix.
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2.6 Evaluation of Z boson observables

The measurement of the Z-boson mass from the Z lineshape at LEP has provided us with
an additional precise input parameter besides α and Gµ. Other observable quantities from
the Z peak allow us to perform precision tests of the electroweak theory by comparison
with the theoretical predictions given by specific models. At the Z boson resonance in e+e−

annihilation, two classes of precision observables are available:

a) inclusive quantities:

• the partial leptonic and hadronic decay width Γf ,

• the total decay width ΓZ ,

• the hadronic peak cross section σh,

• the ratio of the hadronic to the electronic decay width of the Z boson, Rh,

• the ratio of the partial decay width for Z → cc̄ (bb̄) to the hadronic width, Rc(b).

b) asymmetries and weak mixing angles:

• the forward-backward asymmetries Af
FB,

• the left-right asymmetries Af
LR,

• the τ polarization Pτ ,

• the effective weak mixing angle sin2 θeff .

All these quantities can be written in a transparent way with the help of effective vector
and axial vector couplings, which comprise the genuine electroweak loop contributions, be-
sides those from the QED virtual-photon corrections, which are the same in the SM and in
supersymmetric extensions.

2.6.1 The effective Zff̄ couplings

The structure of the resonating Z amplitude allows us to define neutral-current (NC) vertices
at the Z peak with effective coupling constants gf

V,A, equivalently to the use of ρf , κf :

ΓNC
µ =

(√
2GµM

2
Zρf

)1/2 [
(If

3 − 2Qfs
2
Wκf)γµ − If

3 γµγ5

]

=
(√

2GµM
2
Z

)1/2 (
gf
V γµ − gf

A γµγ5

)
. (2.105)

The complete expressions for the effective couplings read as follows:

gf
V =

(
vf + 2sW cW Qf

Π̂γZ(M2
Z)

1 + Π̂γ(M2
Z)

+ FZf
V

)(
1 − ∆r

1 + Π̂Z(M2
Z)

)1/2

,

gf
A =

(
af + FZf

A

)( 1 − ∆r

1 + Π̂Z(M2
Z)

)1/2

. (2.106)
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Besides ∆r, the building blocks are the following finite combinations of two-point functions
evaluated at s = M2

Z :

Π̂Z(s) =
Re ΣZ(s) − δM2

Z

s−M2
Z

− Πγ(0)

+
c2W − s2

W

s2
W

(
δM2

Z

M2
Z

− δM2
W

M2
W

− 2
sW

cW

ΣγZ(0)

M2
Z

)
,

Π̂γZ(s) =
ΣγZ(s) − ΣγZ(0)

s
− cW
sW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
+ 2

ΣγZ(0)

M2
Z

(2.107)

and the finite form factors FV,A at s = M2
Z from the vertex corrections Λ

(1-loop)
µ (including

the external-fermion wave function renormalizations),

Λ(1-loop)
µ =

e

2sW cW

(
γµF

Zf
V (s) − γµγ5F

Zf
A (s) + If

3 γµ(1 − γ5)
cW
sW

ΣγZ(0)

M2
Z

)
. (2.108)

For the explicit expressions for the self-energies and the vertex corrections including the
MSSM contributions see Refs. [138,143–145]. Owing to the imaginary parts of the self-
energies and vertices, the form factors and the effective couplings, respectively, are complex
quantities.

Effective Mixing Angles. We can define effective mixing angles for a given fermion species f
according to

sin2 θf =
1

4 | Qf |

(
1 − Re

gf
V

gf
A

)
, (2.109)

from the effective coupling constants in (2.106). They are of particular interest since they
determine the on-resonance asymmetries. A special case is the effective mixing angle for the
light leptons (f = ℓ), which is commonly denoted as the effective mixing angle (assuming
lepton universality),

sin2 θeff = sin2 θℓ , (2.110)

as, e.g., in the analysis of experimental data from LEP and SLC [146].

2.6.2 Z boson observables

From lineshape measurements one obtains the parameters MZ , ΓZ , σ0, or the partial widths.
Here MZ will be used as a precise input parameter, together with α and Gµ; the width and
partial widths are specific model predictions.

The total Z width ΓZ can be calculated as the sum over the partial decay widths

ΓZ =
∑

f

Γf , Γf = Γ(Z → f f̄) (2.111)
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(other decay channels are not significant). The fermionic partial widths, when expressed in
terms of the effective coupling constants defined in (2.106), read

Γf = Γ0

√

1 −
4m2

f

M2
Z

[
| gf

V |2
(

1 +
2m2

f

M2
Z

)
+ | gf

A |2
(

1 −
4m2

f

M2
Z

)]

× (1 + δQED) + ∆Γf
QCD (2.112)

≃ Γ0

[
| gf

V |2 + | gf
A |2

(
1 −

6m2
f

M2
Z

)]
(1 + δQED) + ∆Γf

QCD

with

Γ0 = Nf
C

√
2GµM

3
Z

12π
. (2.113)

The photonic QED correction, given at one-loop order by

δQED = Q2
f

3α

4π
, (2.114)

is small, at most 0.17% for charged leptons.
The factorizable SM (i.e. gluonic) QCD corrections for hadronic final states can be written

as follows:
∆Γf

QCD = Γ0

(
| gf

V |2 + | gf
A |2
)
KQCD , (2.115)

where [147]

KQCD =
αs

π
+ 1.41

(αs

π

)2

− 12.8
(αs

π

)3

−
Q2

f

4

ααs

π2
(2.116)

for the light quarks with mq ≃ 0, with αs = αs(M
2
Z).

For b quarks the QCD corrections are different owing to finite b mass terms and to
top-quark-dependent two-loop diagrams for the axial part:

∆Γb
QCD = Γ0

(
|gb

V|2 + |gb
A|2
)
KQCD

+ Γ0

[
|gb

V|2RV + |gb
A|2RA

]
. (2.117)

The coefficients in the perturbative expansions

RV = cV1
αs

π
+ cV2

(αs

π

)2

+ cV3

(αs

π

)3

+ · · · ,

RA = cA1
αs

π
+ cA2

(αs

π

)2

+ · · · ,

depending on mb and mt, have been calculated up to third order in αs, except for the mb-
dependent singlet terms, which are known to O(α2

s) [148,149]. For a review of the QCD
corrections to the Z0 width, with the explicit expressions for RV,A, see Ref. [150].

The partial decay rate into b quarks, in particular the ratio Rb = Γb/Γhad, is an observable
with special sensitivity to the top quark mass. Therefore, beyond the pure QCD corrections,
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the two-loop contributions of the mixed QCD–electroweak type are also important. The QCD
corrections were first derived for the leading term of O(αsGµm

2
t ) [151] and were subsequently

completed by the O(αs) correction to the logmt/MW term [152] and the residual terms of
O(ααs) [153].

At the same time, the complete two-loop O(ααs) corrections to the partial widths for
decay into the light quarks have also been obtained, beyond those that are already contained
in the factorized expression (2.115) with the electroweak one-loop couplings [154]. These
“non-factorizable” corrections yield an extra negative contribution of −0.55(3) MeV to the
total hadronic Z0 width.

Besides the standard gluonic QCD corrections, there are supersymmetric QCD correc-
tions involving virtual gluinos and squarks, which turned out to be very small [155,156],
for masses of the SUSY partners in accordance with the bounds from direct experimental
searches.

From the partial widths and the total width (2.111) the following set of combinations can
be formed,

the hadronic peak cross section, with the hadronic width Γhad =
∑

q Γq,

σh =
12π

M2
Z

ΓeΓhad

Γ2
Z

, (2.118)

the ratio of the hadronic to the electronic decay width,

Re =
Γhad

Γe
, (2.119)

the ratio of the partial decay width for Z → bb̄ (cc̄) to the total hadronic decay width,

Rb(c) =
Γb(c)

Γhad

. (2.120)

The various asymmetries depend on the ratios of the vector to the axial vector coupling and
thus on the effective mixing angles defined in eq. (2.109), in terms of the combinations

Af =
2 (1 − 4|Qf | sin2 θf )

1 + (1 − 4|Qf | sin2 θf )2
, (2.121)

yielding

the left-right asymmetry and the τ polarization,

ALR = Ae , Pτ = Aτ , (2.122)

the forward-backward asymmetries,

Af
FB =

3

4
Ae Af . (2.123)
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Final-state QCD corrections, in the case of quark pair production, are important for the
forward-backward asymmetries, at the one-loop level given by

Aq
FB → Aq

FB

(
1 − αs(M

2
Z)

π

)
, (2.124)

in the absence of cuts. Finite-mass effects have to be considered for b quarks only; they are
discussed in Ref. [157]. Two-loop QCD corrections in the massless approximation are also
available [158]. The SUSY-QCD corrections again turn out to be small for realistic values
for squark and gluino masses [156].

2.6.3 The effective leptonic mixing angle

Since sin2 θeff is a precision observable with high sensitivity for testing the electroweak theory,
we discuss in this section the status of the theoretical predictions for sin2 θeff in the SM and
the MSSM.

SM corrections

Recently the complete result for the fermionic two-loop corrections has been obtained [159],
improving the prediction compared to the previously known O(G2

µm
2
tM

2
Z) term [160]. Con-

trary to the case of theW -boson mass, see Sect. 2.5.1, the purely bosonic two-loop corrections
are not yet completely known.

Beyond two-loop order, the same kind of corrections are known as for MW , i.e. QCD
corrections of O(ααs) [110,125,126] and O(αα2

s) [111,127], pure fermion-loop corrections up
to four-loop order [131], and three-loop corrections entering via ∆ρ (see Sect. 2.4.2).

A simple parametrization of the SM result for sin2 θeff containing all relevant higher-order
corrections can be found in Ref. [159]. It reproduces the exact calculation with a maximal
deviation of 4.5× 10−6 for 10 GeV ≤ MH ≤ 1 TeV if the other parameters are varied within
their combined 2σ region around their experimental central values.

The estimated theory uncertainties for different parts of the unknown higher-order cor-
rections are summarized in Tab. 2.2 (see Refs. [159,65] for further details).

2-loop 3-loop

O(α2, ferm) O(α2, bos) O(αα2
s, ferm) O(G2

µαsm
2
tM

2
Z) O(α3)

compl. [159] 1.2 compl. [111,127] 2.3 2.5

4-loop

O(Gµα
3
sm

2
t ) O(G2

µα
2
sm

4
t )

1.1 2.4

Table 2.2: Estimated uncertainties from unknown higher-order corrections to sin2 θeff
in [10−5] [159,65]
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Currently these intrinsic uncertainties result in [159]

δ sin2 θSM,intr
eff (current) = 5 × 10−5 . (2.125)

In the future, an improvement down to about

δ sin2 θSM,intr
eff (future) = 2 × 10−5 (2.126)

seems achievable.
Concerning the parametric uncertainties, the current errors for mt [134] and ∆αhad [93]

give rise to

δmcurrent
t = 4.3 GeV ⇒ ∆ sin2 θpara,mt

eff (current) ≈ 14 × 10−5, (2.127)

δ(∆αcurrent
had ) = 36 × 10−5 ⇒ ∆ sin2 θpara,∆αhad

eff (current) ≈ 13 × 10−5. (2.128)

The parametric uncertainties induced by the future experimental errors of mt and ∆αhad

are [63]

δmfuture
t = 0.1 GeV ⇒ ∆ sin2 θpara,mt

eff (future) ≈ 0.4 × 10−5, (2.129)

δ(∆αfuture
had ) = 5 × 10−5 ⇒ ∆ sin2 θpara,∆αhad

eff (future) ≈ 1.8 × 10−5. (2.130)

Compared to the GigaZ accuracy (see Tab. 1.4) on sin2 θeff also the parametric uncertainty
induced by the experimental error of MZ is non-negligible [63]

δMZ = 2.1 MeV ⇒ ∆ sin2 θpara,MZ

eff ≈ 1.4 × 10−5. (2.131)

As in the case of MW , the precision measurement of the top-quark mass at the ILC and
prospective improvements in the determination of ∆αhad will reduce the parametric uncer-
tainties to the same level as the prospective intrinsic uncertainties, eq. (2.126).

MSSM corrections

As for MW , the largest correction to sin2 θeff in the MSSM can be expected from scalar quark
contributions. The shift in sin2 θeff is then given by

∆ sin2 θq̃
eff =

c2Ws
2
W

c2W − s2
W

∆rq̃ − sW cW Π̂γZ(M2
Z), (2.132)

with

Π̂γZ(M2
Z) =

ΣγZ(M2
Z)

M2
Z

− cW
sW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
, (2.133)

and ∆rq̃ from eq. (2.101).
In the MSSM the complete one-loop corrections to sin2 θeff have been evaluated as de-

scribed in Sect. 2.6.2. Beyond one-loop order the leading term can be included via the ρ pa-
rameter approximation, eq. (2.58), where ∆ρ at the two-loop level is given in Sect. 2.4.2.
The intrinsic uncertainties from missing higher-order SUSY corrections will be discussed in
Sect. 3.1.2.

The full one-loop corrections from third and second generation squarks in the NMFV
MSSM, using eq. (2.132), have been derived in Ref. [25].
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2.7 The lightest Higgs boson mass as a precision ob-

servable

A striking prediction of the MSSM is the existence of at least one light Higgs boson. The
search for this particle is one of the main goals at the present and the next generation
of colliders. Direct searches at LEP have already ruled out a considerable fraction of the
MSSM parameter space [12,13]. With the forthcoming data from the Tevatron, the LHC
and the ILC either a light Higgs boson will be discovered or the MSSM will be ruled out as
a viable theory for physics at the weak scale. Furthermore, if one or more Higgs bosons are
discovered, their masses and couplings will be determined with high accuracy at the ILC.
Thus, a precise knowledge of the dependence of the masses and mixing angles of the MSSM
Higgs sector on the relevant supersymmetric parameters is of utmost importance to reliably
compare the predictions of the MSSM with the (present and future) experimental results.

The Higgs sector of the MSSM has been described in Sect. 1.2.1 at tree-level, leading to
the prediction for the lightest MSSM Higgs boson, mh,tree ≤ MZ , see eq. (1.12). However,
this mass bound, which arises from the gauge sector of the theory, is subject to large radiative
corrections in particular from the Yukawa sector of the theory [101]. Because of the impor-
tance of the higher-order corrections, a lot of effort has been devoted to obtain higher-order
results in the MSSM Higgs sector. Results for the complete one-loop contributions are avail-
able [161,144]. Corrections beyond one-loop order have been obtained with different methods.
Leading and subleading two-loop corrections have been obtained in the Effective Potential
(EP) approach [162,163], the Renormalization Group (RG) improved EP approach [164], and
with the Feynman-diagrammatic method [165–167]. Detailed comparisons of the different
methods have been performed [168,169]. The higher-order corrections shift the upper bound
on mh to mh

<∼ 136 GeV [166,170] (for mt = 178 GeV and MSUSY ≤ 1 TeV, neglecting
uncertainties from unknown higher-order corrections).

In the case that the MSSM parameters possess non-vanishing complex phases (cMSSM),
the upper bound on mh remains the same as for the MSSM with real parameters, but the
Higgs-boson couplings can vary significantly compared to the case with real parameters.
Complex phases are possible for the trilinear couplings, Af , f = t, b, τ, . . ., for the Higgsino
mass parameter, µ, and for the gaugino mass terms, M1, M2, M3 = mg̃ (where one of the
latter ones can be rotated away by a redefinition of the corresponding fields). Recently
the different methods for the evaluation of higher-order corrections in the MSSM Higgs
sector have even been extended to the cMSSM, reaching nearly the precision as in the real
MSSM [171–175]. In the following, however, we will focus on the real case.

2.7.1 Higher-order corrections to mh

The tree-level bound on mh, being obtained from the gauge couplings, receives large correc-
tions from SUSY-breaking effects in the Yukawa sector of the theory. The leading one-loop
correction is proportional to m4

t . The leading logarithmic one-loop term (for vanishing mix-
ing between the scalar top quarks) reads [101]

∆m2
h =

3Gµm
4
t√

2π2 sin2 β
ln

(
mt̃1mt̃2

m2
t

)
. (2.134)
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Corrections of this kind have drastic effects on the predicted value of mh and many other
observables in the MSSM Higgs sector. The one-loop corrections can shift mh by 50–100%.

In the Feynman diagrammatic (FD) approach the higher-order corrected Higgs boson
masses are derived by finding the poles of the h,H-propagator matrix. Its inverse is given
by

(∆Higgs)
−1 = −i

(
p2 −m2

H,tree + Σ̂HH(p2) Σ̂hH(p2)

Σ̂hH(p2) p2 −m2
h,tree + Σ̂hh(p

2)

)
, (2.135)

where the Σ̂(p2) denote the renormalized Higgs-boson self-energies (see eq. (2.38)), and p
is the external momentum. Determining the poles of the matrix ∆Higgs in eq. (2.135) is
equivalent to solving the equation

[
p2 −m2

h,tree + Σ̂hh(p
2)
] [
p2 −m2

H,tree + Σ̂HH(p2)
]
−
[
Σ̂hH(p2)

]2
= 0 . (2.136)

The status of the available results for the self-energy contributions to eq. (2.135) can
be summarized as follows. For the one-loop part, the complete result within the MSSM is
known [101,161]. The by far dominant one-loop contribution is the O(αt) term due to top
and stop loops (αt ≡ y2

t /(4π), where yt has been defined in eq. (2.75)).
The evaluation of two-loop corrections is quite advanced and it has now reached a stage

where all the presumably dominant contributions are known. They include the strong cor-
rections, usually indicated as O(αtαs), and Yukawa corrections, O(α2

t ), to the dominant one-
loop O(αt) term, as well as the strong corrections to the bottom/sbottom one-loop O(αb)
term (αb ≡ y2

b/(4π)), i.e. the O(αbαs) contribution. The latter can be relevant for large values
of tan β. Presently, the O(αtαs) [162,164–166], O(α2

t ) [162,164,176,177], O(αbαs) [178,96],
O(αtαb), O(α2

b) [179] contributions to the self-energies are known for vanishing external mo-
menta. In the (s)bottom corrections the all-order resummation of the tan β-enhanced terms,
O(αb(αs tanβ)n), is also performed [98,107] (see Sect. 2.2.2). The above results have been
implemented into the program FeynHiggs [180,99,181], which evaluates observables in the
MSSM Higgs sector (including also results with complex phases).

Recently, also the full electroweak two-loop corrections in the approximation of vanishing
external momentum [163] and the leading two-loop momentum dependent effects [182] have
been published. For these corrections no public code is available yet. In order to apply this
result for expressing mh in terms of physical masses, a transition of the parameters MZ and
MA in Refs. [163,182] to their on-shell values will be required at the two-loop level.

Besides the masses of the Higgs bosons, also their couplings are affected by large higher-
order corrections. For the MSSM with real parameters, leading corrections can conveniently
be absorbed into the couplings by introducing an effective mixing angle αeff . It is obtained
from the higher-order corrected Higgs-boson mass matrix in the approximation where the
momentum dependence of the Higgs-boson self-energies is neglected.

The Higgs-boson mass matrix in the φ1-φ2 basis reads in this case

M2
Higgs =

(
m2

φ1
− Σ̂φ1

(0) m2
φ1φ2

− Σ̂φ1φ2
(0)

m2
φ1φ2

− Σ̂φ1φ2
(0) m2

φ2
− Σ̂φ2

(0)

)
, (2.137)
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where the Σ̂s(0) (s = φ1, φ1φ2, φ2) denote the renormalized Higgs-boson self-energies (in
the φ1, φ2 basis), including one- and two-loop (and possibly higher-order) corrections. These
self-energies (at zero external momentum) have to be inserted into eq. (2.137). Diagonalizing
this higher-order corrected Higgs-boson mass matrix

M2
Higgs

αeff−→
(
m2

H 0
0 m2

h

)
(2.138)

yields the effective mixing angle αeff :

αeff = arctan

[
−(M2

A +M2
Z) sin β cosβ − Σ̂φ1φ2

M2
Z cos2 β +M2

A sin2 β − Σ̂φ1
−m2

h

]
, − π

2
< αeff <

π

2
. (2.139)

Replacing in the Higgs-boson couplings the tree-level mixing angle α by the higher-
order corrected effective mixing angle αeff leads to the inclusion of the leading higher-order
corrections that enter via Higgs-boson propagator corrections [183,184].

2.7.2 Remaining intrinsic and parametric uncertainties

If the MSSM is realised in nature, the light CP-even Higgs-boson mass will be measured
with high precision at the next generation of colliders. The prospective accuracies for a light
SM-like Higgs boson that can be obtained in the experimental determination of mh at the
LHC [185] and at the ILC [7–9] are:

δmexp
h ≈ 200 MeV (LHC) , (2.140)

δmexp
h ≈ 50 MeV (ILC) . (2.141)

Since mh depends sensitively on the other sectors of the MSSM, in particular on the t̃ sector
(see eq. (2.134)), the light CP-even Higgs-boson mass will be very important for precision
tests of the MSSM.

The remaining theoretical uncertainties in the prediction for mh have been discussed in
Refs. [170,63,227,186]. For recent reviews on the current status of the theoretical prediction
see also Refs. [175,187].

We begin with the discussion of the parametric uncertainties. Since the leading one-
loop corrections to mh are proportional to the fourth power of the top quark mass, the
predictions for mh and many other observables in the MSSM Higgs sector sensitively depend
on the numerical value of mt. As a rule of thumb [188], a shift of δmt = 1 GeV induces a
parametric theoretical uncertainty of mh of also about 1 GeV, i.e.

∆mpara,mt

h ≈ δmt . (2.142)

The uncertainties induced by the experimental error of mt at the LHC [189] and the
ILC [7–9],

δmexp
t ≈ 1–2 GeV (LHC) , (2.143)

δmexp
t ≈ 0.1 GeV (ILC) , (2.144)
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can be compared with the parametric uncertainties induced by the other SM input parame-
ters. Besides mt, the other SM input parameters whose experimental errors can be relevant
for the prediction of mh are MW , αs, and mb. The W boson mass enters only in higher orders
through the quantum corrections to muon decay (since GF is used for the parametrization,
see eq. (2.89)).

The present experimental error of δM exp
W = 34 MeV leads to a parametric theoretical

uncertainty of mh below 0.1 GeV. In view of the prospective improvements in the exper-
imental accuracy of MW , the parametric uncertainty induced by MW will be smaller than
the one induced by mt, even for δmt = 0.1 GeV.

The current experimental error of the strong coupling constant, δαs(MZ) = 0.002 [3],
induces a parametric theoretical uncertainty of mh of about 0.3 GeV. Since a future im-
provement of the error of αs(MZ) by about a factor of 2 can be envisaged [3,62,190], the
parametric uncertainty induced by mt will dominate over the one induced by αs(MZ) down
to the level of δmt = 0.1–0.2 GeV.

The mass of the bottom quark currently has an experimental error of about δmb =
0.1 GeV [3,191]. A future improvement of this error by about a factor of 2 seems to be feasi-
ble [191]. The influence of the bottom and sbottom loops on mh depends on the parameter
region, in particular on the values of tanβ and µ (the Higgsino mass parameter). For small
tanβ and/or µ the contribution from bottom and sbottom loops to mh is typically below
1 GeV, in which case the uncertainty induced by the current experimental error on mb is
completely negligible. For large values of tanβ and µ, the effect of bottom/sbottom loops
can exceed 10 GeV in mh [178,170,96]. Even in these cases we find that the uncertainty
in mh induced by δmb = 0.1 GeV rarely exceeds the level of 0.1 GeV, since higher-order
QCD corrections effectively reduce the bottom quark contributions. Thus, the parametric
uncertainty induced by mt will in general dominate over the one induced by mb, even for
δmt ≈ 0.1 GeV.

The comparison of the parametric uncertainties of mh induced by the experimental errors
of MW , αs(MZ) and mb with the one induced by the experimental error of the top quark mass
shows that an uncertainty of δmt ≈ 1 GeV, corresponding to the accuracy achievable at the
LHC, will be the dominant parametric uncertainty of mh. The accuracy of δmt ≈ 0.1 GeV
achievable at the ILC, on the other hand, will allow a reduction of the parametric theoretical
uncertainty induced by δmt to about the same level as the uncertainty induced by the other
SM input parameters.

We now turn to the intrinsic theoretical uncertainties in the prediction for mh from
unknown higher-order corrections. Even if all the available higher-order corrections described
above are taken into account, the intrinsic uncertainty in mh from unknown higher-order
corrections is still estimated to be quite substantial [99,170]3. The numerical relevance of
the unknown higher-order corrections depends on the region of MSSM parameter space that
one considers. An overall estimate of the intrinsic uncertainty can therefore be only a rough
guidance for “typical” MSSM parameter regions. In regions where higher-order corrections
are particularly enhanced (for instance very large mixing in the stop sector or regions where

3For codes that do not include all the existing higher-order corrections the intrinsic theoretical uncertain-
ties can be much larger.
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the bottom Yukawa coupling is close to being non-perturbative) the theoretical uncertainties
can be significantly larger.

At the two-loop level, various genuine electroweak two-loop corrections from different
sectors of the MSSM are not yet included in the publicly available codes. A rough estimate
of their numerical impact can be obtained from the relative importance of the correspond-
ing contributions at the one-loop level. This has been performed in Ref. [170] and yielded
an estimate of the remaining uncertainty of unknown two-loop corrections of about 2 GeV.
Another way of estimating the effect of unknown two-loop corrections is to apply differ-
ent renormalization schemes at the one-loop level and to vary the renormalization scale of
quantities that are renormalized according to the DR scheme [99]. As an example for the
latter approach, Fig. 2.7 shows the effect of varying the renormalization scale that enters via
the renormalization of tanβ and the Higgs field renormalization constants at the one-loop
level for “typical” MSSM parameters (see caption). The corresponding shift in the one-loop
result for mh, which is of the order of genuine two-loop corrections that are not included in
the current prediction for mh, is indicated by the grey areas. The uncertainty in mh from
varying µDR from mt/2 to 2mt is in accordance with the above estimate of the uncertainty
from missing two-loop corrections of about ±2 GeV.
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Figure 2.7: The renormalization scale dependence of mh introduced via a DR definition
of tanβ and the Higgs field renormalization constants is shown as a function of MA (left
plot) and tanβ (right). The lower curves correspond to tanβ = 2 (left) and MA = 100 GeV
(right). For the upper curves we have set tanβ = 20 (left) and MA = 500 GeV (right).
µDR has been varied from mt/2 to 2mt. The other parameters are MSUSY = 500(1000) GeV,
Xt = 2MSUSY, M2 = µ = 500 GeV. The dotted line corresponds to a full on-shell scheme,
for more details see Ref. [99].

Beyond two-loop order, corrections that effectively shift the value of the top-quark mass
entering the calculation are particularly important because of the sensitive dependence of mh

on mt. Corrections of this kind of O(αtα
2
s) can be estimated by varying the renormalization

scheme of the top-quark mass at the two-loop level. Another possibility for estimating the size
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of three-loop corrections is to analyze the numerical impact of the leading logarithmic three-
loop term that can easily be obtained with renormalization group methods [170,192]. Both
possibilities have been investigated in detail in Ref. [170], yielding an estimate of the intrinsic
theoretical uncertainty beyond the two-loop level of about 1.5 GeV. Similar strategies in
the case of the O(αbα

2
s) correction [96] lead to an intrinsic uncertainty of up to 2 GeV in

the case of µ < 0 (in regions where the effects of the bottom/sbottom sector are strongly
enhanced), and of about ∼ 100 MeV for µ > 0.

As an overall estimate for the current intrinsic uncertainties in the prediction of mh we
obtain

∆mintr
h (current) = 3 GeV. (2.145)

On the timescale of 5–10 years it seems reasonable to expect that the complete two-loop
calculation (which is already technically feasible with the currently existing tools) can be
incorporated into efficient codes and that the higher-order uncertainties can be reduced by
at least a factor of two, leading to the estimate

∆mintr
h (future) = 0.5 GeV. (2.146)

2.7.3 Higgs sector corrections in the NMFV MSSM

Within the MSSM with MFV, the dominant one-loop contributions to the self-energies
in (2.137) result from the Yukawa part of the theory (i.e. neglecting the gauge couplings);
they are described by loop diagrams involving third-generation quarks and squarks. Within
the MSSM with NMFV, the squark loops have to be modified by introducing the generation-
mixed squarks, as given in Sect. 1.2.6. The leading terms are obtained by evaluating the
contributions to the renormalized Higgs-boson self-energies at zero external momentum,
Σ̂s(0), s = hh, hH,HH . The evaluation has been restricted to the dominant Yukawa con-
tributions resulting from the top and t/t̃ (and c/c̃) sector. Corrections from b and b/b̃ (and
s/s̃) could only be important for very large values of tanβ, tan β >∼ mt/mb and have not
been considered so far. The analytical result of the renormalized Higgs boson self-energies,
based on the general 4 × 4 structure of the t̃/c̃ mass matrix, has been derived in Ref. [25].
However, as has also been shown in Ref. [25], the corrections for Mh are not significant for
moderate generation mixing.

2.8 The anomalous magnetic moment of the muon

Another observable which is important in the context of precision tests of the electroweak
theory is the anomalous magnetic moment of the muon, aµ ≡ (g − 2)µ/2. For the interpre-
tation of the aµ results in the context of Supersymmetry (or other models of new physics)
the current status of the comparison of the SM prediction with the experimental result is
crucial, see Refs. [193,194] for reviews and the discussion in Sect. 1.3.4. It currently results
in a deviation of [75]

aexp
µ − atheo

µ = (25.2 ± 9.2) × 10−10 : 2.7 σ . (2.147)
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2.8.1 MSSM one-loop calculation

The anomalous magnetic moment aµ of the muon is related to the photon–muon vertex
function Γµµ̄Aρ as follows:

ū(p′)Γµµ̄Aρ(p,−p′, q)u(p) = ū(p′)
[
γρFV (q2) + (p+ p′)ρFM(q2) + . . .

]
u(p), (2.148)

aµ = −2mµFM(0). (2.149)

It can be extracted from the regularized vertex function using the projector [195,196]

aµ =
1

2(D − 1)(D − 2)m2
µ

Tr

{
D − 2

2

[
m2

µγρ −Dpρp/− (D − 1)mµpρ

]
V ρ

+
mµ

4
(p/+mµ) (γνγρ − γργν) (p/+mµ)T

ρν

}
, (2.150)

Vρ = Γµµ̄Aρ(p,−p, 0), (2.151)

Tρν =
∂

∂qρ
Γµµ̄Aν (p− (q/2),−p− (q/2), q)

∣∣∣∣
q=0

. (2.152)

Here the muon momentum is on-shell, p2 = m2
µ, and D is the dimension of space-time. For

more details see Refs. [195–197].

The complete one-loop contribution to aµ can be devided into contributions from dia-
grams with a smuon-neutralino loop and with a sneutrino-chargino loop, see Fig. 2.8, leading
to

∆aSUSY,1L
µ = ∆aχ̃±ν̃µ

µ + ∆aχ̃0µ̃
µ (2.153)
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µ̃a

χ̃0
j

µ̃b

Figure 2.8: The generic one-loop diagrams for the MSSM contribution to aµ: diagram with
a sneutrino-chargino loop (left) and the diagram with a smuon-neutralino loop (right).

The full one-loop expression can be found in [198], see Ref. [199] for earlier evaluations.
If all SUSY mass scales are set to a common value,

MSUSY = mχ̃± = mχ̃0 = mµ̃ = mν̃µ
(2.154)
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the result is given by

aSUSY,1L
µ = 13 × 10−10

(
100 GeV

MSUSY

)2

tanβ sign(µ) . (2.155)

Obviously, supersymmetric effects can easily account for a (20 . . . 30) × 10−10 deviation, if
µ is positive and MSUSY lies roughly between 100 GeV (for small tanβ) and 600 GeV (for
large tan β). Eq. (2.155) also shows that for certain parameter choices the supersymmetric
contributions could have values of either aSUSY

µ
>∼ 55 × 10−10 or aSUSY

µ
<∼ − 5 × 10−10, both

outside the 3σ band of the allowed range according to eq. (2.147). This means that the
(g − 2)µ measurement places strong bounds on the supersymmetric parameter space.

2.8.2 MSSM two-loop calculation

In order to fully exploit the precision of the (g − 2)µ experiment within SUSY, see e.g.
Refs. [200–203] for discussions of the resulting constraints on the parameter space, the the-
oretical uncertainty of the SUSY loop contributions from unknown higher-order corrections
needs to be under control. It should be significantly lower than the experimental error given
in eq. (1.52) and the hadronic uncertainties in the SM prediction, leading to the combined
uncertainty given in eq. (2.147).

For the electroweak part of the SM prediction the desired level of accuracy has been
reached with the computation of the complete two-loop result [195,196], which reduced the
intrinsic uncertainty from QED and electroweak effects below the level of about 1×10−10 [75].
For the SUSY contributions, a similar level of accuracy has not been reached yet, since
the corresponding two-loop corrections are partially unknown. Four parts of the two-loop
contribution have been evaluated up to now that will be reviewed in the next subsections.

Two-loop QED corrections

The first part are the leading log (mµ/MSUSY)-terms of supersymmetric one-loop diagrams
with a photon in the second loop. They are given by [204]

∆aSUSY,2L,QED
µ = ∆aSUSY,1L

µ ×
(

4α

π
log

(
MSUSY

mµ

))
. (2.156)

They amount to about −8% of the supersymmetric one-loop contribution (for a SUSY mass
scale of MSUSY = 500 GeV).

Two-loop Two-Higgs-doublet contributions

In the MSSM, the bosonic electroweak two-loop contributions differ from the SM because
of the extended MSSM Higgs sector. This class is defined by selecting all MSSM two-loop
diagrams without a closed loop of fermions or sfermions and without pure QED-diagrams,
see the first line in Fig. 2.9. The results presented in this section have been obtained in
Ref. [197].
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The result abos,2L,MSSM
µ reads

abos,2L,MSSM
µ =

5

3

Gµm
2
µ

8π2
√

2

α

π

(
cbos,2L,MSSM
L log

m2
µ

M2
W

+ cbos,2L,MSSM
0

)
, (2.157)

where the coefficient of the logarithm is given by

cbos,2L,MSSM
L =

1

30

[
98 + 9chL + 23(1 − 4s2

W )2
]
, (2.158)

chL =
c2βM

2
Z

cβ

[
cαcα+β

m2
H

+
sαsα+β

m2
h

]
. (2.159)

Here cα ≡ cosα, etc. Using the tree-level relations in the Higgs sector, it can be shown that
chL = 1, and thus the logarithms in the SM and the MSSM are identical. The coefficient
cbos,2L,MSSM
0 is more complicated and not given here, see Ref. [197].

Two-loop corrections with a closed SM fermion/sfermion loop

The third known part are the diagrams with a closed loop of SM fermions or scalar fermions
calculated in Ref. [205], extending previous results of Refs. [206,207].

The two-loop diagrams discussed in this subsection can be subdivided into three classes
(all diagrams are understood to include the corresponding subloop renormalization):
(f̃V φ) diagrams with a sfermion (t̃, b̃, τ̃ , ν̃τ ) loop, where at least one gauge and one Higgs
boson is exchanged, see the second line of Fig. 2.9;
(f̃V V ) diagrams with a sfermion loop, where only gauge bosons appear in the second loop,
see the third line of Fig. 2.9;
(fV φ) diagrams with a fermion (t, b, τ , ντ ) loop, where at least one gauge and one Higgs
boson are present in the other loop, see the fourth line of Fig. 2.9. The corresponding
diagrams with only gauge bosons are identical to the SM diagrams and give no genuine SUSY
contribution. The difference between the SM and the MSSM originates from the extended
Higgs sector of the MSSM. Diagrams where two Higgs bosons couple to the external muon
are suppressed by an extra factor of m2

µ/M
2
W and hence negligible.

The counterterm diagrams contain the renormalization constants δM2
W,Z , δZe, δth,H

corresponding to mass, charge and tadpole renormalization and can be easily evaluated.
For the evaluation the on-shell renormalization scheme has been chosen. This leads to
δM2

W,Z = ReΣW,Z(M2
W,Z), where ΣW,Z denote the transverse parts of the gauge-boson self-

energies, see Sect. 2.1.2. The charge renormalization is given by δZe = −1/2 Πγ(0), see
eq. (2.9). The tadpoles are renormalized such that the sum of the tadpole contribution T
and the counterterm vanishes, i.e. δth,H = −Th,H , see Sect. 2.1.5.

Numerically the most important contribution comes from the diagrams with a Higgs
boson and photon exchange. This type of contributions can be particularly enhanced by
the ratio of the mass scale of the dimensionful Higgs–Sfermion coupling divided by the mass

scale of the particles running in the loop, i.e. by ratios of the form {µ,A, m2
t

MW
}/{mf̃ , mh,H},

which can be much larger than one. For large tanβ and large sfermion mixing, the leading
terms are typically given by the parts of the couplings with the highest power of tanβ and
by the loop with the lightest sfermion. These contributions involve only H-exchange, since
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the h-couplings approach the SM-Higgs coupling for not too small MA. They can be well
approximated by the formulas [205]

∆at̃,2L
µ = −0.013 × 10−10 mt µ tanβ

mt̃mH

sign(At), (2.160)

∆ab̃,2L
µ = −0.0032 × 10−10 mbAb tan2 β

mb̃mH
sign(µ), (2.161)

where mt̃ and mb̃ are the masses of the lighter t̃ and b̃, respectively, and mH is the mass
of the heavy CP-even Higgs boson. The formulas holds up to few percent if the respective
sfermion mass fulfils mt̃,b̃

<∼ mH . Since the heavier sfermions also contribute and tend to
cancel the contributions of the lighter sfermions, these formulas do not approximate the full
result very precisely, but they do provide the right sign and order of magnitude.

Two-loop contributions with a closed chargino/neutralino loop

The 2-loop contributions to aµ containing a closed chargino/neutralino loop constitute a
separately UV-finite and gauge-independent class and have been evaluated in Ref. [197].
Corresponding diagrams are shown in the last line of Fig. 2.9.

The chargino/neutralino two-loop contributions, aχ,2L
µ , depend on the mass parameters

for the charginos and neutralinos µ, M1,2, the CP-odd Higgs mass MA, and tanβ. It is
interesting to note that, contrary to Ref. [119], no tree-level relations in the Higgs sector
were needed in order to find a UV-finite result. This is due to the fact that each two-loop
diagram contributing to (g− 2)µ together with its corresponding subloop renormalization is
finite.

The parameter dependence of aχ,2L
µ is quite straightforward [197]. If all supersymmetric

mass scales are set equal, µ = M2 = MA ≡ MSUSY (with the only exception that M1 =
5/3 s2

W/c
2
W M2), the approximate leading behaviour of aχ,2L

µ is simply given by tanβ/M2
SUSY,

and the following relation holds,

aχ,2L
µ ≈ 11 × 10−10

(
tanβ

50

)(
100 GeV

MSUSY

)2

sign(µ) . (2.162)

As shown in Ref. [197], the approximation is very good except for very small MSUSY and
small tanβ, where the leading term is suppressed by the small µ, and subleading terms begin
to dominate.

Remaining intrinsic uncertainties

So far, at the two-loop level, the MSSM corrections to the Two-Higgs-Doublet model (THDM)
one-loop diagrams have been evaluated. The only exception here are the diagrams that con-
tain as a second loop an additional closed smuon-neutrino or muon-sneutrino loop. However,
these corrections are expected to be small.

The remaining two-loop corrections that are not yet available are
− the contributions with a mixed SM fermion/sfermion loop attached to a SUSY one-loop
diagram.
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− the full THDM corrections to the SUSY one-loop diagrams. This will include as a subset
also the QED corrections evaluated in Ref. [204], where, however, all SUSY masses had been
set equal to MSUSY.

The first missing class of mixed SM fermion/sfermion contributions might in principle be
as large as the SM fermion or scalar fermion corrections obtained in Ref. [205], see above.
This leaves an intrinsic uncertainty of about ∼ 3× 10−10. The second class gives corrections
smaller than 10% to the MSSM one-loop result. Assuming that the corresponding intrinsic
uncertainties are less than half of the evaluated corrections, the combined effect of the
unknown two-loop corrections can be estimated to be about

∆aintr
µ (current) = 6 × 10−10 . (2.163)

After a full two-loop calculation will be available, the intrinsic theoretical uncertainty from
unknown QED and electroweak higher-order corrections should be at the level of

∆aintr
µ (future) = 1 × 10−10 . (2.164)

2.9 Tools and codes for the evaluation of electroweak

precision observables

The large number of different fields in the MSSM gives rise to a plethora of possible interac-
tion vertices. Calculations at the one-loop level and beyond therefore usually involve a lot
of Feynman diagrams. The diagrams in general contain several mass scales, making their
evaluation (in particular beyond one-loop order) increasingly difficult. Since the necessary
steps can be structured in a strictly algorithmic way, they can be facilitated with the help
of computer algebra tools and numerical programs.

Computer algebra tools have heavily been used in deriving the results discussed above.
Because of the multitude of scales involved in SUSY higher-order corrections, in most cases
the result cannot be expressed in a compact form. Instead, the results presented above have
been transformed into public computer codes (also being used for the numerical evaluation
in Sects. 3 and 4).

2.9.1 Tools for the calculation of EWPO

The calculation of higher-order SUSY Feynman-diagrams consists of several steps. First the
topologically different diagrams for the given loop order and the number of external legs need
to be generated. Inserting the fields of the model under consideration into the topologies
in all possible ways leads to the Feynman diagrams. The Feynman rules translate these
graphical representations into mathematical expressions. Since the loop integrals in general
lead to divergences, the expressions need to be regularized and renormalized. The evaluation
of the Feynman amplitudes involves a treatment of the Lorentz structure of the amplitude,
calculation of Dirac traces etc. At the one-loop level it is possible to reduce all tensor inte-
grals to a set of standard scalar integrals, which can be expressed in terms of known analytic
functions. In contrast to the one-loop case, no general algorithm exists so far for the eval-
uation of two-loop corrections in the electroweak theory. The main obstacle in two-loop
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calculations in massive gauge theories is the complicated structure of the two-loop integrals,
which makes both the tensor integral reduction and the evaluation of scalar integrals very
difficult. In general the occurring integrals are not expressible in terms of polylogarithmic
functions [208]. For the evaluation of some types of integrals that do not permit an analytic
solution numerical methods and expansions in their kinematical variables have been devel-
oped. Computer-algebraic methods can facilitate most of the above-mentioned steps. There
are computer algebra packages available based on FORM [209], Mathematica [210] or both.

A package for the generation of SUSY amplitudes and drawing the corresponding dia-
grams is FeynArts [121,211]. As a feature of particular importance for higher-order calcula-
tions in the electroweak theory, FeynArts generates not only the unrenormalized diagrams
at a given loop order but also the counterterm contributions at this order and the countert-
erm diagrams needed for the subloop renormalization. For one-loop calculations with up
to four external legs (the inclusion of five external legs is currently under way) the package
FormCalc [212] can be used, where for numerics the LoopTools [213] package can easily be
linked. For the evaluation of two-loop diagrams with up to two external legs the program
TwoCalc [214] can be used. It is based on an algorithm for the tensor reduction of gen-
eral two-loop 2-point functions and can be used for an automatic reduction of Feynman
amplitudes for two-loop self-energies with arbitrary masses, external momenta, and gauge
parameters to a set of standard scalar integrals. The above computer algebra codes evaluate
the multi-loop diagrams analytically without performing expansions for small parameters
etc.

The program QGRAPH [215] is an efficient generator for Feynman diagrams (so far
restricted to the SM, see however Ref. [216]). As output the diagrams are encoded in a
symbolic notation. Being optimized for high speed, QGRAPH is particularly useful for
applications involving a very large number (i.e. O(104)) of diagrams. Its output, depending
on the number of scales and external legs can then be passed to MATAD [217], MINCER [218]
or EXP [219], where expansions for small parameters are performed.

An alternative package for SM and SUSY one-loop calculations is the GRACE sys-
tem [220].

Overviews about codes for higher-loop and -leg calculations can be found in Refs. [221–223].

2.9.2 Public codes for the numerical evaluation of EWPO

The results presented in Sects. 2.4, 2.5 and 2.6 have been implemented in the code POMSSM4,
which has been used for the numerical evaluation in Sects. 3 and 4. The Higgs boson sector
evaluations have been done with the code FeynHiggs [180,99,175,181], including the correc-
tions described in Sect. 2.7. This code also performs an evaluation of all Higgs boson decay
widths as well as production cross sections for photon colliders. Also the results for ∆ρ as
described in Sect. 2.4 are included as a subroutine. Other codes for evaluations of Higgs
sector observables are Hdecay [224] and CPsuperH [225]. The results for the anomalous
magnetic moment of the muon, described in Sect. 2.8, are available as a subroutine for the
code FeynHiggs.

4A new version of POMSSM is currently prepared and will be available from the authors.
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Chapter 3

MSSM predictions versus
experimental data

Now we study the impact of the higher-order corrections to the electroweak precision observ-
ables discussed above. The MSSM predictions are compared with the current experimental
results and constraints on the parameter space of the unconstrained MSSM are discussed.
We furthermore investigate how the improved electroweak precision measurements at the
next generation of colliders enhance the sensitivity of testing the electroweak theory.

3.1 MSSM predictions for MW and sin2 θeff

3.1.1 Numerical analysis in the MSSM

Results for ∆ρ

We start our discussion of the numerical results with the quantity ∆ρ, which parametrizes
leading SUSY contributions to the W -boson mass and the Z-boson observables, see Sect. 2.4.
The effect of the gluonic SUSY two-loop contributions as given in eq. (2.73) (the four squark
masses are renormalized on-shell; the mass shift arising from the SU(2) relation is understood
to be absorbed into the one-loop result, see Sect. 2.4.2) is shown for an exemplary case in
Fig. 3.1 as a function of MSUSY. The other parameters are tan β = 3 and Xt = 0, 2MSUSY.
The line for Xt = 2MSUSY starts only atMSUSY ≈ 300 GeV. For lower values ofMSUSY one of
the scalar top mass squares is below zero. ∆ρSUSY

1,gluon can reach values of up to 0.2×10−3. The
results for the gluino-exchange contribution are shown in Fig. 3.2 (Xt = 0) and Fig. 3.3 (Xt =
2MSUSY) for mg̃ = 0, 10, 200, 500 GeV (and mg̃ = 800 GeV in the latter) as a function of
MSUSY. The results for mg̃ = 0 and 10 GeV are indistinguishable for Xt = 0. The decoupling
for large mg̃ is visible already for mg̃ = 500 GeV. In the case of Xt = 2MSUSY, see Fig. 3.3,
∆ρSUSY

1,gluino is in general positive and can reach values up to 0.5 × 10−3 for mg̃ = 200 GeV.
As can be seen in the figure, for larger values of mg̃ the contribution to ∆ρ decouples as
expected. Contrary to the SM case where the strong two-loop corrections screen the one-loop
result, the O(ααs) corrections in the MSSM increase the one-loop contributions by up to
35%, thus enhancing the sensitivity to scalar quark effects.

In Fig. 3.4 the numerical result of the leading O(α2
t ) MSSM corrections in the limit of
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Figure 3.1: ∆ρSUSY
1,gluon as a function of the common squark mass MSUSY for tanβ = 3, Xb = 0

and Xt = 0, 2MSUSY.
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Figure 3.2: ∆ρSUSY
1,gluino as a function of the common squark mass MSUSY for tan β = 3, Xb = 0,

Xt = 0 and mg̃ = 0, 10 (the curves are indistinguishable), 200, 500 GeV [97].

largeMSUSY (see Sect. 2.4.2) is shown. It is compared with the other contributions to ∆ρ: the
O(α2

t ) SM correction (with MSM
H = mh) and the SUSY contributions from the scalar quark

sector at O(α) and O(ααs). The results are shown as a function of MSUSY, which enters the
O(α2

t ) corrections indirectly via its effect on mh. For small tanβ and MA = 300 GeV, see
the left plot of Fig. 3.4, the effective change arising from the new genuine MSSM corrections
compared to the O(α2

t ) SM contribution with MSM
H = mh is sizable. While the full O(α2

t )
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Figure 3.3: ∆ρSUSY
1,gluino as a function of the common squark mass MSUSY for tan β = 3, Xb = 0,

Xt = 2MSUSY and mg̃ = 0, 10, 200, 500, 800 GeV.

result is larger than the O(α) corrections for MSUSY
>∼ 600 GeV, it is larger than the O(ααs)

corrections for all MSUSY. However, the genuine MSSM corrections are always smaller than
the MSSM O(α) contributions but they are of equal size as the O(ααs) corrections for
MSUSY ≈ 600 GeV. (Note that for smaller MSUSY the approximation of neglecting the
scalar-quark contributions in the O(α2

t ) result may no longer be valid.) Since they enter
with a different sign into ∆ρ, they can compensate each other. Similar results are found in
the no-mixing case, which is not shown here.

The case of large tan β and MA = 300 GeV is shown in the right plot of Fig. 3.4. The
curve for the O(α2

t ) MSSM corrections in the limit MSUSY → ∞ is indistinguishable in the
plot from the O(α2

t ) SM contribution with MSM
H = mh. The difference between these two

corrections is approximately 1.5 × 10−7, while the O(ααs) corrections are about 10−5 even
for MSUSY = 1000 GeV. The purely electroweak corrections decouple much faster for large
tanβ than the O(ααs) corrections, see also eq. (2.78).

In Fig. 3.5 we show the result for the O(α2
t ), O(αtαb), and O(α2

b) MSSM contributions
to ∆ρ in the mmax

h and the no-mixing scenarios [32,33] (see also App. B) compared with the
corresponding SM result with MSM

H = mh. In the left plot tanβ is fixed to tan β = 40 and
MA is varied from 50 GeV to 1000 GeV. In the right plot MA is fixed to MA = 300 GeV,
while tanβ is varied.

For large tanβ the O(αtαb) and O(α2
b) contributions yield a significant effect caused by

the heavy Higgs bosons in the loops, entering with the other sign than the O(α2
t ) corrections,

while the contribution of the lightest Higgs boson is SM-like. As one can see in Fig. 3.5, for
large tanβ the MSSM contribution to ∆ρ is smaller than the SM value. For large values of
MA, the SM result is recovered.
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Figure 3.4: The contribution of the leading O(α2
t ) MSSM corrections in the limit of large

MSUSY, ∆ρSUSY
1,Higgs, is shown as a function of MSUSY for MA = 300 GeV and tanβ = 3 (left

plot) or tanβ = 40 (right plot) in the case of the mmax
h scenario, see App. B. ∆ρSUSY

1,Higgs is
compared with the leading O(α2

t ) SM contribution and with the leading MSSM corrections
originating from the t̃/b̃ sector of O(α) and O(ααs). Both O(α2

t ) contributions are negative
and are for comparison shown with reversed sign. In the right plot the O(α2

t ) corrections
differ by about 1.5 × 10−7, which is indistinguishable in the plot.
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Figure 3.5: The O(α2
t ), O(αtαb), and O(α2

b) MSSM contributions to ∆ρ in the mmax
h and

the no-mixing scenarios (see App. B) are compared with the corresponding SM result with
MSM

H = mh. In the left plot tan β is fixed to tanβ = 40, while MA is varied from 50 GeV to
1000 GeV. In the right plot MA is set to 300 GeV, while tanβ is varied. The bottom quark
mass is set to mb = 4.25 GeV.
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Figure 3.6: The t̃/b̃ corrections to ∆r at the two-loop level, eq. (2.101), are compared
with the ∆ρ approximation, eq. (2.102). The results are shown as a function of MSUSY for
tanβ = 1.6, Xb = 0 and Xt = 0, 200 GeV.
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Figure 3.7: The t̃/b̃ corrections to ∆r at the two-loop level, eq. (2.101), are compared
with the ∆ρ approximation, eq. (2.102). The results are shown as a function of MSUSY for
tanβ = 40, Xb = 2500 GeV and Xt = 0, 200 GeV.
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Quality of the ∆ρ approximation

We now turn to the numerical effects on MW and sin2 θeff induced by ∆ρ. As a first step
the quality of the ∆ρ approximation, using eq. (2.58), is analyzed [140]. We show the
comparison of the ∆ρ approximation with the full evaluation at the two-loop level, where such
a calculation is available. As described in Sect. 2.5.2, only the two-loop gluonic corrections
to ∆r have been calculated so far. In Figs. 3.6, 3.7 we show the full gluonic two-loop
contribution to ∆r together with the corresponding ∆ρ approximation. The no-mixing case
in the b̃ sector is presented in Fig. 3.6 with tanβ = 1.6 and Xt = 0, 200 GeV. The case
with Xb = 2500 GeV is shown in Fig. 3.7 with tanβ = 40 and Xt = 0, 200 GeV. As for the
one-loop case, see Figs. 2.5, 2.6, also in the two-loop case the ∆ρ approximation reproduces
the full result to better than 10%.

Corrections to MW and sin2 θeff induced by ∆ρ

We illustrate the effects of the corrections to ∆ρ discussed above on the observables MW

and sin2 θeff for the example of the O(α2
t ) MSSM contributions in the limit of large MSUSY.

Fig. 3.8 shows the shift δMW induced by the O(α2
t ) MSSM contribution for MSUSY =

1000 GeV in the mmax
h scenario, see App. B. The other parameters are µ = 200 GeV, Ab =

At. mh is obtained in the left (right) plot from varying MA from 50 GeV to 1000 GeV, while
keeping tanβ fixed at tan β = 3, 40 (from varying tanβ from 2 to 40, while keeping MA fixed
at MA = 100, 300 GeV). Besides the absolute O(α2

t ) MSSM contribution (solid and short-
dashed lines) also the “effective change” compared to the SM is shown, i.e. the difference
between the O(α2

t ) MSSM contribution and the O(α2
t ) SM contribution with MSM

H = mh

(long-dashed and dot-dashed lines). While the full result shows contributions to MW of up
to 11 MeV, the effective change is much smaller, mostly below the level of 2 MeV.

For large tanβ the O(αtαb) and O(α2
b) contributions yield a significant effect from the

heavy Higgs bosons in the loops, entering with the other sign than the O(α2
t ) corrections,

while the contribution of the lightest Higgs boson is SM-like, see Sect. 2.4.2. The effective
change in the predictions for the precision observables from the O(αtαb) and O(α2

b) correc-
tions can exceed the one from the O(α2

t ) corrections. It can amount up to δMW ≈ +5 MeV
for tanβ = 40.

Fig. 3.9 shows the shift δ sin2 θeff induced by the absolute O(α2
t ) MSSM contribution

(solid and short-dashed lines) and the effective change (long-dashed and dot-dashed lines) for
MSUSY = 1000 GeV in the mmax

h scenario. The other parameters are µ = 200 GeV, Ab = At.
mh is obtained in the left (right) plot from varying MA from 50 GeV to 1000 GeV, while
keeping tanβ fixed at tan β = 3, 40 (from varying tanβ from 2 to 40, while keeping MA

fixed at MA = 100, 300 GeV). While the full result shows contributions to sin2 θeff of up to
6 × 10−5, the effective change is much smaller, mostly below the level of 1 × 10−5.

For large tanβ, the effective change in the predictions for the precision observables from
the O(αtαb) and O(α2

b) corrections can exceed the one from the O(α2
t ) corrections. It can

amount up δ sin2 θeff ≈ −3 × 10−5 for tanβ = 40.
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Figure 3.8: The shift δMW induced by the O(α2
t ) MSSM contribution and the effective

change compared with the SM result are shown for MSUSY = 1000 GeV in the mmax
h scenario.

The other parameters are µ = 200 GeV, Ab = At. mh is obtained in the left (right) plot
from varying MA from 50 GeV to 1000 GeV, while keeping tanβ fixed at tanβ = 3, 40 (from
varying tanβ from 2 to 40, while keeping MA fixed at MA = 100, 300 GeV).
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Figure 3.9: The shift δ sin2 θeff induced by the O(α2
t ) MSSM contribution and the effective

change compared with the SM result are shown for MSUSY = 1000 GeV in the mmax
h scenario.

The other parameters are µ = 200 GeV, Ab = At. mh is obtained in the left (right) plot
from varying MA from 50 GeV to 1000 GeV, while keeping tanβ fixed at tanβ = 3, 40 (from
varying tanβ from 2 to 40, while keeping MA fixed at MA = 100, 300 GeV).
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MSSM predictions for MW and sin2 θeff in comparison with present and future
experimental precisions

Now we focus on the comparison of the MW and sin2 θeff prediction with the present data
and the prospective experimental precision at the next generation of colliders.

In Fig. 3.10 we compare the SM and the MSSM predictions for MW as a function of mt.
The predictions within the two models give rise to two bands in the mt–MW plane with
only a relatively small overlap region (indicated by a dark-shaded (blue) area in Fig. 3.10).
The allowed parameter region in the SM (the medium-shaded (red) and dark-shaded (blue)
bands) arises from varying the only free parameter of the model, the mass of the SM Higgs
boson, from MH = 113 GeV (upper edge of the dark-shaded (blue) area) to 400 GeV (lower
edge of the medium-shaded (red) area). The light-shaded (green) and the dark-shaded
(blue) areas indicate allowed regions for the unconstrained MSSM. SUSY masses close to
their experimental lower limit are assumed for the upper edge of the light-shaded (green)
area, while the decoupling limit with SUSY masses of O(2 TeV) yields the lower edge of
the dark-shaded (blue) area. Thus, the overlap region between the predictions of the two
models corresponds in the SM to the region where the Higgs boson is light, i.e. in the
MSSM allowed region (mh

<∼ 140 GeV). In the MSSM it corresponds to the case where
all superpartners are heavy, i.e. the decoupling region of the MSSM. The current 68% C.L.
experimental results1 for mt and MW slightly favor the MSSM over the SM. The prospective
accuracies for the LHC and the ILC with GigaZ option, see Tab. 1.4, are also shown in the
plot (using the current central values), indicating the potential for a significant improvement
of the sensitivity of the electroweak precision tests [62].

In Fig. 3.11 the comparison between the SM and the MSSM is shown in the MW –sin2 θeff
plane (see also Refs. [226,227]). As above, the predictions in the SM (medium-shaded and
dark-shaded (red and blue) bands) and possible MSSM regions (light-shaded and dark-
shaded (green and blue) bands) are shown together with the current 68% C.L. experimental
results and the prospective accuracies for the LHC and the ILC with GigaZ option. Again the
MSSM is slightly favored over the SM. It should be noted that the prospective improvements
in the experimental accuracies, in particular at the ILC with GigaZ option, will provide a
high sensitivity to deviations both from the SM and the MSSM.

The central value for the experimental value of sin2 θeff in Fig. 3.11 is based on both
leptonic and hadronic data. The two most precise measurements, ALR from SLD and Ab

FB

from LEP, differ from each other by about 3σ (see Ref. [18]). This, together with the NuTeV
anomaly (see below), gave rise to a relatively low fit probability of the SM global fit in the
past years, and had caused considerable attention in the literature. In particular, several
analyses have been performed where the hadronic data on AFB have been excluded from
the global fit (see e.g. Refs. [228,229]). It has been noted that in this case the SM global
fit, possessing a significantly higher fit probability, yields an upper bound on MH which
is rather low in view of the experimental lower bound on MH of MH > 114.4 GeV [13].
The value of sin2 θeff corresponding to the measurement of ALR(SLD) alone is sin2 θeff =
0.23098 ± 0.00026 [18]. Fig. 3.11 shows that adopting the latter value of sin2 θeff makes the
agreement between the data and the SM prediction much worse, while the MSSM provides
a very good description of the data. In accordance with this result, in Ref. [229] it has

1The plot shown here is an update of Refs. [136,226,227].
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Figure 3.10: The current experimental results for MW and mt and the prospective accuracies
at the next generation of colliders are shown in comparison with the SM prediction (medium-
shaded and dark-shaded (red and blue) bands) and the MSSM prediction (light-shaded and
dark-shaded (green and blue) bands).

been found that the contribution of light gauginos and scalar leptons in the MSSM (in a
scenario with vanishing SUSY contribution to ∆ρ) gives rise to a shift in MW and sin2 θeff
as compared to the SM case which brings the MSSM prediction in better agreement with
the experimental values of MW and ALR(SLD).

On the other hand, it has also been investigated whether the discrepancy between ALR

and Ab
FB could be explained in terms of contributions of some kind of new physics. The

(loop-induced) contributions from SUSY particles in the MSSM are however too small to
account for the 3σ difference between the two observables (see e.g. Ref. [229]). Thus, the
quality of the fit to ALR and Ab

FB in the MSSM is similar to the one in the SM.
With the latest experimental values of the precision observables and the most up-to-date

theory predictions the probability of the global fit in the SM is about 26% [18] (if the NuTeV
result is not included). In particular, the most recent experimental value of the top-quark
mass, mt = 178.0 ± 4.3 GeV [134], and a slight shift in the experimental value of MW have
led to an improvement of the overall fit quality. Although the discrepancy between ALR

from SLD and Ab
FB from LEP remains, it seems not well motivated to discard any of the two
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Figure 3.11: The current experimental results for MW and sin2 θeff and the prospective
accuracies at the next generation of colliders are shown in comparison with the SM prediction
(medium-shaded and dark-shaded (red and blue) bands) and the MSSM prediction (light-
shaded and dark-shaded (green and blue) bands).

measurements.
As mentioned above, another observable for which the SM prediction shows a large

deviation by about 3σ from the experimental value is the neutrino–nucleon cross section
measured at NuTeV [230]. Also in this case loop effects of SUSY particles in the MSSM are
too small to account for a sizable fraction of the discrepancy (see e.g. Refs. [231,232]).

3.1.2 Intrinsic uncertainty in MW and sin2 θeff from SUSY correc-

tions

The remaining theoretical uncertainties in the prediction for MW and sin2 θeff from unknown
higher-order corrections in the MSSM (i.e. loop corrections from SM particles and superpart-
ners) are considerably larger than in the SM, since the results for higher-order corrections in
the MSSM are not quite as advanced yet as in the SM. The current intrinsic uncertainties
in the MSSM can roughly be estimated by comparing the size of the known corrections in
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the MSSM (see above) to the corresponding corrections in the SM and by assuming that
the unknown higher-order corrections in the MSSM enter with the same relative weight as
the corresponding corrections in the SM, whose numerical effects are known. This kind of
estimate does not take into account specific enhancement factors in the MSSM, like for in-
stance corrections that grow with powers of tanβ. In general, the additional contributions
from superpartners in the loops will be bigger the smaller the SUSY mass scale is. As in the
case of mh, the estimate for the intrinsic uncertainty of MW and sin2 θeff should be under-
stood to refer to “typical” regions of the MSSM parameter space. In parts of the parameter
space where certain corrections are particularly enhanced (see the discussion in Sect. 2.2)
the intrinsic uncertainties can be larger.

Taking the above considerations into account, a crude estimate of the current intrinsic
uncertainties yields [227]

MSSM: δM intr
W (current) = 10 MeV , δ sin2 θintr

eff (current) = 12 × 10−5 , (3.1)

i.e. uncertainties that are roughly twice as large as the current uncertainties in the SM.
With sufficient effort on higher-order calculations in the MSSM, it should be possible in

the future to reduce the intrinsic uncertainties to the same level as we had estimated for the
SM (see eqs. (2.96), (2.126)):

MSSM: δM intr
W (future) = 2 MeV , δ sin2 θintr

eff (future) = 2 × 10−5 . (3.2)

3.1.3 Results in the NMFV MSSM

The analytical results obtained for the EWPO in the NMFV MSSM have been derived for
the general case of mixing between the third and second generation of squarks, i.e. all NMFV
contributions, ∆LL,LR,RL,RR, can be chosen independently in the t̃/c̃ and in the b̃/s̃ sector,
see Sect. 1.2.6. Corrections from the first-generation squarks are not considered, for reasons
discussed in Sect. 1.2.6. The numerical analysis of NMFV effects for the EWPO, however,
have been performed for the simpler, but well motivated, scenario where only mixing between
t̃L and c̃L as well as between b̃L and s̃L is considered. The only flavor off-diagonal entries in the
squark-mass matrices are normalized according to ∆t,b

LL = λt,bMQ̃3
MQ̃2

, following [21,23,24] 2,
where MQ̃3,Q̃2

are the soft SUSY-breaking masses for the SU(2) squark doublet in the third
and second generation. NMFV is thus parametrized in terms of the dimensionless quantities
λt and λb (see [23,24,233,234] for experimentally allowed ranges). The case of λt = λb = 0
corresponds to the MSSM with minimal flavor violation (MFV). In detail, it has been set

∆t
LL = λtML̃t

ML̃c
, ∆t

LR = ∆t
RL = ∆t

RR = 0 ,

∆b
LL = λbML̃b

ML̃s
, ∆b

LR = ∆b
RL = ∆b

RR = 0 , (3.3)

for the entries in the matrices (1.44) and (1.45).
For the sake of simplicity, the same flavour mixing parameter has been assumed in the

numerical analysis for the t̃ − c̃ and b̃ − s̃ sectors, λ = λt = λb. It should be noted in
this context that the LL blocks of the up-squark and down-squark mass matrices are not

2The parameters λt and λb introduced here are denoted by (δu
LL)23 and (δd

LL)23 in [21,23,24].
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independent because of the SU(2) gauge invariance; they are related trough the CKM mass
matrix [24], which also implies that a large difference between these two parameters is not
allowed.

Results for ∆ρ

For the numerical evaluation [25], the mmax
h and the no-mixing scenario have been used [33],

but with a free scale MSUSY, see App. B. The results are independent of MA. The numerical
values of the SUSY parameters are

MSUSY = 1 TeV and 2 TeV, tan β = 30, µ = 200 GeV, ǫ = 0.04, (3.4)

if not explicitly stated otherwise. The variation with µ and tan β is very weak, since they
do not enter the squark couplings to the vector bosons.

The behaviour with the sign of ǫ is shown in Fig. 3.12 for the corrections to ∆ρq̃ as
a function of λ(= λt = λb). The results are shown for different relative signs of ǫ and
λ, choosing λ > 0, and fixing |ǫ| = 0.04. MSUSY has been set to MSUSY = 2 TeV. For
the mmax

h scenario the effect is small, but in the no-mixing scenario the results are affected
significantly by the sign of ǫ. The squark contribution to ∆ρq̃ can become of O(10−3) for
λ ≥ 0.5.
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Figure 3.12: The variation of ∆ρq̃ with λ(= λt = λb) in the mmax
h and no-mixing scenarios

for different relative signs of ǫ and λ [25]). MSUSY = 2 TeV, the other SUSY parameters are
given in eq. (3.4).

In Fig. 3.13 we show the dependence of ∆ρq̃ on λ(= λt = λb) for both the mmax
h and no-

mixing scenario and for two values of the SUSY mass scale, MSUSY = 1 TeV and MSUSY =
2 TeV. It is clear that ∆ρq̃ grows with the λ parameter, being close to zero for λ = 0 and
MSUSY = 2 TeV. One can also see that the effects on ∆ρq̃ are in general larger for the
no-mixing scenario (see also the results shown in Ref. [97]). For large values of MSUSY the
correction increases with increasing λ since the splitting in the squark sector increases.
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MSUSY has been fixed to 1 TeV and 2 TeV [25].
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Figure 3.14: The variation of ∆ρq̃ with MSUSY in the mmax
h scenario (left panel) and no-

mixing scenario (right panel), for different values of λ [25].

The behavior of the corrections with the SUSY mass scale is shown in Fig. 3.14 for
different values of λ in the mmax

h scenario (left panel) and in the no-mixing scenario (right
panel). The region below MSUSY

<∼ 400 GeV (depending on the scenario) implies too low and
hence forbidden values for the squark masses. The curves are only for the allowed regions.
For λ = 0, ∆ρq̃ decreases, being zero for large MSUSY values, in agreement with the results
shown in Ref. [97]. We have also found that, for λ 6= 0 and small values of MSUSY, ∆ρq̃

decreases until it reaches a minimum and then increases for largest values of the SUSY scale.
This increasing behavior is more pronounced for larger λ values, reaching the level of a few
per mill. The reason lies once again in the increasing mass splitting.
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Numerical evaluation for MW and sin2 θeff

Here the numerical effects of the NMFV contributions on the electroweak precision observ-
ables, δMW and δ sin2 θeff , are briefly analyzed [25]. The shifts in MW and sin2 θeff have been
evaluated both from the complete expressions for the scalar quark contributions, eq. (2.101)
and eq. (2.132), and using the ∆ρq̃ approximation (2.58). The corrections to these two ob-
servables based on eq. (2.58) as a function of λ(= λt = λb) are presented in Fig. 3.15 with the
other parameters chosen according to (3.4). The mmax

h scenario and no-mixing scenario are
selected for both plots, with two values of MSUSY, as before. The induced shifts in MW can
become as large as 0.14 GeV for the extreme case, i.e. when MSUSY = 2 TeV, λ = 0.6 and
the case of no-mixing is considered. In the mmax

h scenario δMW is smaller, δMW
<∼ 0.05 GeV,

but still sizeable. Using the complete expressions, eq. (2.101) and eq. (2.132), yields results
practically indistinguishable from those shown in Fig. 3.15 [25]. Thus eq. (2.58) is a suffi-
ciently accurate, simple approximation for squark-mixing effects in the electroweak precision
observables.
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Figure 3.15: The variation of δMW and δ sin2 θeff as a function of λ = λt = λb, for the mmax
h

and no-mixing scenarios and different choices of MSUSY obtained with eq. (2.58) [25]. Using
the complete expressions, eq. (2.101) and eq. (2.132), yields practically indistinguishable
results.

The shifts δ sin2 θeff , shown in the right plot of Fig. 3.15, can reach values up to 7× 10−4

for MSUSY = 2 TeV and λ = 0.6 in the no-mixing scenario, being smaller (but still sizeable)
for the other scenarios considered here.

Extreme parts of the NMFV parameter space (especially for λt 6= λb) can be excluded
already with today’s precision. But even small values of λ = λt = λb could be probed with
the future precision on sin2 θeff , provided that theoretical uncertainties will be sufficiently
under control [227].

84



3.2 The lightest MSSM Higgs boson mass

The light CP-even MSSM Higgs boson mass, mh, depends at tree-level on MA and tan β. Via
loop corrections, see Sect. 2.7.1, it depends most strongly on the top quark mass and on the
parameters of the scalar top sector. As an example, in Fig. 3.16 we show mh as a function of
tanβ in two benchmark scenarios, the mmax

h and the no-mixing scenario [33], see App. B. mh

is shown for a central value of mt = 178.0 GeV (dashed curves), and the variation with mt

by ±4.3 GeV is shown as the shaded (green) band. Higher mh values are obtained for larger
mt. (All results in this section have been obtained with FeynHiggs2.1 [99,175,180,181].)

From the result for the mmax
h scenario in Fig. 3.16 the upper bound of mh

<∼ 136 GeV
for mt = 178 GeV and MSUSY = 1 TeV (neglecting the intrinsic theoretical uncertainties)
can be read off that was mentioned in Sect. 2.7. Allowing a 1 σ variation of mt shifts the
upper bound on mh to about 140 GeV. The variation of the mh prediction with mt is even
larger in the region of small tanβ. Fig. 3.16 shows that a 1 σ upward fluctuation of mt shifts
the minimum of mh in the mmax

h scenario to a value above 114 GeV. Thus, in this case the
exclusion bound from LEP does not rule out any value of tanβ. The comparison of the
MSSM prediction with the LEP exclusion bound is shown in more detail in Fig. 3.18 below.
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Figure 3.16: mh is shown as a function of tan β in the mmax
h and the no-mixing scenario.

mt has been varied in the interval mt = 178.0 ± 4.3 GeV.

The relevance of the parametric uncertainty in mh induced by different experimental
errors on mt is emphasized in Fig. 3.17 [63], where the prediction for mh is shown as a
function of MA in the mmax

h benchmark scenario. The evaluation of mh has been done for a
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central value of the top quark mass of mt = 175 GeV and for tanβ = 5. The figure shows
that a reduction of the experimental error from δmexp

t = 1–2 GeV (LHC) to δmexp
t = 0.1 GeV

(ILC) has a drastic effect on the prediction for mh.
The prospective experimental error on mh is also shown in Fig. 3.17, while no intrinsic

theoretical uncertainty from unknown higher-order corrections is included. If this intrinsic
uncertainty can be reduced to a level of δmintr,future

h ≈ 0.1 GeV, its effect in the plot would
be roughly as big as the one induced by δmexp

t = 0.1 GeV. An intrinsic uncertainty of
δmintr,future

h ≈ 1 GeV, on the other hand, would lead to a significant widening of the band
of predicted mh values (similar to the effect of δmexp

t = 1 GeV). In this case the intrinsic
uncertainty would dominate, implying that a reduction of δmexp

t = 1 GeV to δmexp
t =

0.1 GeV would lead to an only moderate improvement of the overall theoretical uncertainty
of mh.
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Figure 3.17: mh is shown as a function of MA in the mmax
h scenario for tanβ = 5 [63].

Three different precisions for mt are indicated (with a central value of mt = 175 GeV). The
anticipated experimental error on mh at the ILC of 0.05 GeV is indicated by a horizontal
band.

Confronting the theoretical prediction for mh with a precise measurement of the Higgs-
boson mass constitutes a very sensitive test of the MSSM, which allows one to obtain con-
straints on the model parameters. The sensitivity of the mh prediction to MA shown in
Fig. 3.17 cannot directly be translated into a prospective indirect determination of MA,
however, since Fig. 3.17 shows the situation in a particular benchmark scenario [33] where,
by definition, certain fixed values of all other SUSY parameters are assumed. In a realistic
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situation the anticipated experimental errors of the other SUSY parameters and possible
effects of intrinsic theoretical uncertainties have to be taken into account. In Sect. 3.5 the
prospects for an indirect determination of SUSY parameters from precision physics in the
MSSM Higgs sector will be discussed.

As another example we demonstrate the impact of the current theory uncertainty of
δmintr

h ≈ 3 GeV [170] on the exclusion bound of tanβ, see Ref. [188] for a detailed discussion.
The mmax

h benchmark scenario [33] has been designed such that for fixed values of mt and
MSUSY the predicted value of the lightest CP-even Higgs boson mass is maximized for each
value of MA and tan β. In Fig. 3.18 we show again mh as a function of tanβ, together
with the LEP exclusion bound for the mass of a SM-like Higgs [13], MSM

H ≥ 114.4 GeV, as
a vertical long–dashed line. The solid thick line shows the result in the mmax

h scenario for
mt = 178.0 GeV.
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Figure 3.18: mh is shown as a function of tan β in the mmax
h scenario (solid) and for

mt = 178.0 + 4.3 GeV, MSUSY = 2 TeV (dot-dashed). A theory uncertainty from unknown
higher-order uncertainties of δmintr

h = 3 GeV has been neglected (thick lines) or included
(thin). The SM exclusion bound of MH = 114.4 GeV, which for small values of tan β also
roughly applies for the MSSM, is indicated by a dashed line.
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While in general a detailed investigation of a variety of different possible production and
decay modes is necessary in order to determine whether a particular point of the MSSM
parameter space can be excluded via the Higgs searches or not, the situation simplifies
considerably in the region of small tanβ values. In this parameter region the lightest CP-even
Higgs boson of the MSSM couples to the Z boson with SM-like strength, and its decay into a
bb̄ pair is not significantly suppressed. Thus, within good approximation, constraints on tanβ
can be obtained in this parameter region by confronting the exclusion bound on the SM Higgs
boson with the upper limit on mh within the MSSM. From the intersection of the theoretical
upper bound in the mmax

h scenario (solid thick line) with the experimentally excluded region
for mh the experimentally excluded region for tanβ can be read off. For comparison we
also show the same upper bound including the theory uncertainty from unknown higher
order corrections, δmintr

h ≈ 3 GeV [170] (solid thin line). Taking the theory uncertainty into
account, the bound on tan β is considerably weakened (see also Ref. [187]). Furthermore we
show the mmax

h scenario with the top-quark mass shifted upwards by one standard deviation,
mt = 182.3 GeV and with MSUSY = 2 TeV (dot-dashed thick line), also including the 3 GeV
intrinsic theoretical uncertainty (dot-dashed thin line). Even without taking into account
the intrinsic theoretical uncertainty, in this case no region of tanβ can be excluded from the
Higgs search at LEP. This example shows that both a reduction of the experimental error
on mt and of the intrinsic theoretical uncertainty will be crucial in order to obtain reliable
bounds on the SUSY parameters from measurements in the Higgs sector (see also Sect. 3.5).

3.3 MSSM predictions for (g − 2)µ

In our numerical discussion of SUSY contributions to the anomalous magnetic moment of the
muon we first analyze the one-loop results from a scan over the MSSM parameter space [202]
and then focus on two recently obtained two-loop corrections: the corrections involving a
closed SM fermion/sfermion loop [205], and the ones involving closed chargino/neutralino
loops [197].

3.3.1 One-loop results from a MSSM parameter scan

The possible size of the MSSM one-loop contributions to aµ can be assessed by a parameter
scan. In Fig. 3.19 (from Ref. [202]) the possible MSSM contributions to aµ are shown as a
function of the lightest observable SUSY particle (LOSP). The lighter (green) dots corre-
spond to a µ̃ LOSP, darker (red) dots represent charginos/neutralinos as LOSP. The dashed
lines show the allowed contours if |Aµ| is allowed to vary up to 100 TeV. The shaded bands
correspond to the one/two σ allowed ranges in the year 2001. One can see that the MSSM
can easily explain the discrepancy in eq. (2.147). On the other hand, aµ can place stringent
constraints on the allowed MSSM parameter space. In order to set reliable bounds in the
MSSM the theoretical uncertainties have to be under control. This requires the evaluation
of higher-order contributions. The existing two-loop corrections are reviewd in the following
subsections.
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Figure 3.19: MSSM one-loop contributions to aµ are shown as a function of the mass of the
lightest observable SUSY particle (LOSP), obtained from a scan over the MSSM parameter
space [202]. The lighter (green) dots correspond to a µ̃ LOSP, darker (red) dots represent
charginos/neutralinos as LOSP. The dashed lines show the allowed contours if |Aµ| is allowed
to vary up to 100 TeV. The shaded bands correspond to the one/two σ allowed ranges in
the year 2001.

3.3.2 Contributions from closed SM fermion/sfermion loops

The two-loop corrections to (g − 2)µ involving a closed SM fermion/sfermion loop, corre-
sponding to the diagrams in lines 2–4 of Fig. 2.9, have been evaluated in Ref. [205], ex-
tending earlier analyses of Refs. [206,207]. These two-loop corrections have a complicated
parameter dependence. Therefore a parameter scan has been performed. tanβ was set to
tanβ = 50, and universal soft SUSY-breaking parameters in the scalar fermion mass matri-
ces were assumed. It turned out to be crucial to take experimental constraints from mh, ∆ρ,
BR(b → sγ) and BR(Bs → µ+µ−) into account (for details see Ref. [205]). It was shown
that the diagrams involving a photon and a Higgs boson (diagram no. 12 in Fig. 2.9) give
the by far largest contribution.

The whole contribution of this set of diagrams is shown in Fig. 3.20. The results shown
in the figure are the following (see Ref. [205] for further details):

• The outer lines show the largest possible results if all experimental constraints are
ignored. They show a steep rise of ∆a2L

µ for decreasing mf̃1
; for mf̃1

< 150 GeV
contributions larger than 15 × 10−10, corresponding to two standard deviations of the
experimental error on aµ, are possible.

• The next two lines show the possible results if the bound mh > 106.4 GeV (it results
from the experimental bound of 114.4 GeV by taking into account a 5 GeV parametric
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uncertainty from the experimental error of mt and a 3 GeV intrinsic uncertainty, see
Sect. 2.7.2) and then in addition the bound on ∆ρ are satisfied. The maximum contri-
butions are very much reduced already by the mh bound, and the ∆ρ bound reduces
further the positive region for small sfermion masses. If both bounds are taken into
account, ∆a2L

µ > 5 × 10−10 and ∆a2L
µ < −10 × 10−10 is excluded for mf̃1

>∼ 100 GeV.

• The two innermost lines correspond to taking into account in addition the bound on
BR(Bs → µ+µ−) and finally also on BR(b → sγ), resulting in the shaded area. In
particular taking into account the BR(b → sγ) bound eliminates most data points
with mf̃1

<∼ 150 GeV and thus leads to a strong reduction of the possible size of the
contributions (see however the discussion in Ref. [235]). The largest contributions of
±4 × 10−10 to ∆a2L

µ , corresponding to ∼ 0.7σ of the experimental error, are possible
for mf̃1

≈ 150 . . . 200 GeV.
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Figure 3.20: Maximum contributions of the diagrams with a closed SM fermion/sfermion
loop to ∆a2L

µ as a function of the lightest squark mass, min{mt̃1 , mt̃2 , mb̃1
, mb̃2

}. The
constraints from mh, ∆ρ, BR(b → sγ) and BR(Bs → µ+µ−) have been taken into account
(for details see Ref. [205]).

It should be kept in mind that the size of the corrections shown in Fig. 3.20 depend
on the assumption of the univesality of the soft SUSY-breaking parameters. It has been
shown in Ref. [205] that lifting this universality assumption can lead to substantially larger
contributions. As an example, for MD̃/MŨ = 10 (see eq. (1.15)), ∆a2L

µ > 15 × 10−10 could
be achieved without violating any experimental constraint.
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3.3.3 Contributions from closed chargino/neutralino loops

The 2-loop contributions to aµ containing a closed chargino/neutralino loop [197] constitute a
separately UV-finite and gauge-independent class. The corresponding diagrams were shown
in the last line of Fig. 2.9. The chargino/neutralino two-loop contributions, aχ,2L

µ , depend
on the mass parameters for the charginos and neutralinos µ, M1,2, the CP-odd Higgs mass
MA, and tanβ.
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Figure 3.21: Comparison of the supersymmetric one-loop result aSUSY,1L
µ (dashed) with the

two-loop chargino/neutralino contributions aχ,2L
µ (dash-dotted) and the sum (full line) [197].

The parameters are µ = M2 = MA ≡MSUSY, tanβ = 50, and the sfermion mass parameters
are set to 1TeV.

The chargino/neutralino sector does not only contribute to aχ,2L
µ but already to aSUSY,1L

µ ,
so it is interesting to compare the one- and two-loop contributions. For the case that all
masses, including the smuon and sneutrino masses, are set equal to MSUSY, the one-loop and
two-loop contributions can be trivially compared using eqs. (2.155), (2.162), showing that
the two-loop contribution shifts the one-loop result by about 2%.

However, the chargino/neutralino sector might very well be significantly lighter than the
slepton sector of the second generation, in particular in the light of FCNC and CP-violating
constraints, which are more easily satisfied for heavy 1st and 2nd generation sfermions. In
Fig. 3.21 the chargino/neutralino two-loop contributions are therefore compared with the
supersymmetric one-loop contribution aSUSY,1L

µ at fixed high smuon and sneutrino masses
Ml̃ = 1 TeV. The other masses are again set equal, µ = M2 = MA ≡ MSUSY. Furthermore,
we use a large tanβ value, tanβ = 50, which enhances the SUSY contributions to aµ.

It has been found that forMSUSY
<∼ 400 GeV the two-loop contributions become more and

more important. For MSUSY ≈ 100 GeV they amount to 50% of the one-loop contributions,
which are suppressed by the large smuon and sneutrino masses.
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Figure 3.22: Constraints on the MSSM parameter space in the µ–M2-plane for MA =
200 GeV from comparing the MSSM prediction with the data. The different regions re-
sulting from the MSSM prediction based on aSUSY,1L

µ + aχ,2L
µ (contours with solid border)

and from the prediction based on aSUSY,1L
µ alone (dashed contours) are shown. The slepton

mass scale (which enters only the one-loop prediction) and tan β are indicated for each plot.
The contours are at (24.5, 15.5, 6.5,−2.5,−11.5,−20.5)× 10−10 corresponding to the central
value of aexp

µ − atheo,SM
µ = (24.5 ± 9.0) × 10−10 and intervals of 1–5σ [197]).

The two-loop corrections have an important impact on constraints on the MSSM pa-
rameter space obtained from confronting the MSSM prediction with the experimental value.
This is shown in Fig. 3.22, where the regions in the µ–M2-plane resulting from the MSSM
prediction including the two-loop correction, aSUSY,1L

µ + aχ,2L
µ , are compared with the cor-

responding regions obtained by neglecting the two-loop correction, i.e. with aSUSY,1L
µ alone.

The different panels correspond to different values of tanβ and the common smuon and
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sneutrino mass Ml̃ (the latter has an impact only on the one-loop contribution), while MA

has been fixed to MA = 200 GeV. These parameter choices are allowed essentially in the
entire µ–M2-plane by the current experimental constraints mentioned above, provided the
t̃ and b̃ mass parameters are of O(1 TeV). The contours drawn in Fig. 3.22 correspond to
the 1σ, 2σ, . . . regions around the value aexp

µ − atheo,SM
µ = (24.5 ± 9.0) × 10−10, based on

Refs. [68,72]. We find that for the investigated parameter space the SUSY prediction for aµ

lies mostly in the 0− 2 σ region if µ is positive. However, the new two-loop corrections shift
the 1 σ and 2 σ contours considerably. This effect is more pronounced for smaller tanβ and
larger Ml̃.

3.4 MSSM fits and constraints from existing data

There have been many studies of the sensitivity of low-energy observables to the scale of
supersymmetry, including the precision electroweak observables [62,203,229,236–240]. Such
analyses face the problem of the large dimensionality of the MSSM parameter space. In this
section we discuss global fits in the unconstrained MSSM (for real parameters and using
certain universality assumptions). Analyses in specific soft SUSY-breaking scenarios, such
as mSUGRA, will be discussed in Sect. 4. An overview of non-supersymmetric analyses of
precision observables and resulting constraints can be found in Ref. [241].

The most recent global fit of the MSSM to the electroweak precison data has been
performed in Ref. [239] (for previous analyses, see Refs. [56,236–238]). The results are shown
in Fig. 3.23, where the predictions in the SM, the MSSM and the constrained MSSM (i.e. the
mSUGRA scenario) are compared with the experimental data (the SUSY predictions are for
tanβ = 35). Fig. 3.23 shows the features discussed above: the MSSM predictions for MW

and (for large tanβ) (g − 2)µ are in better agreement with the data than in the SM (slight
improvements also occur for the total width of the Z boson, ΓZ , and for B → Xsγ). On the
other hand, for the observables with the largest deviations between theory and experiment,
namely Ab

FB and the neutrino–nucleon cross section measured at NuTeV (the latter is not
shown in Fig. 3.23), the MSSM does not yield a significant improvement compared to the
SM. The global fit in the MSSM has a lower χ2 value than in the SM. Since the MSSM fit
has less degrees of freedom than the SM one, the overall fit probability in the MSSM is only
slightly better than in the SM.

3.5 Future expectations

In this section we give a few examples of the possible physics gain obtainable with the
anticipated improvements of the accuracies of the experimental results and the theoretical
predictions for the precision observables (see Tab. 1.4 and the discussion in chapter 2). We
focus here on the effects from MW , sin2 θeff and mh. For a discussion of (g − 2)µ in the
framework of the mSUGRA scenario, see chapter 4 below.

Two examples of future prospects were already presented in Sect. 3.1.1. In Fig. 3.10 the
SM and MSSM predictions in the mt–MW plane are shown and compared with the current
and future experimental precisions. Likewise, in Fig. 3.11 the results for the MW –sin2 θeff
plane are given. It becomes aparent that the prospective improvements in the experimental

93



LEP:

SLC:

MZ

ΓZ

σhad

Rl

A
FB

l

Rb

Rc

A
FB

b

A
FB

c

Mt

sin2θ
eff

lept

MW(LEP)

sin2θ
eff

lept(ALR)

b → Xsγ

aµ
SUSY

pulls=(data-theo)/error

SM: χ2/d.o.f = 27.2/16

MSSM: χ2/d.o.f = 16.4/12

CMSSM: χ2/d.o.f = 23.2/16

Figure 3.23: The predictions in the SM, the MSSM and the mSUGRA scenario (CMSSM)
are compared with the data [239]. Deviations between theory and experiment are indicated
in units of one standard deviation of the experimental results.

accuracies, in particular at the ILC with GigaZ option, will provide a high sensitivity to
deviations both from the SM and the MSSM.

The indirect constraints on supersymmetric models from electroweak precision tests, in
particular with GigaZ accuracy, will yield complementary information to that obtained from
the direct observation of supersymmetric particles at the Tevatron, the LHC or the ILC (for
a comprehensive overview on the prospects of the LHC and the ILC and the potential for
combined analyses using LHC and ILC data, see Ref. [10]). As an example we present an
analysis in the scalar top sector [226]. Direct information on the stop sector parameters
mt̃1 and θt̃ can be obtained at the ILC from the process e+e− → t̃1t̃1, yielding a precision
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of O(1%) [242]. These direct measurements can be combined with the indirect information
from requiring consistency of the MSSM with a precise measurement of mh, MW and sin2 θeff .
This is shown in Fig. 3.24, where the allowed parameter space according to measurements of
mh, MW and sin2 θeff is displayed in the plane of the heavier stop mass, mt̃2 , and | cos θt̃| for
the accuracies at the ILC with and without the GigaZ option and at the LHC (see Tab. 1.4).
For mt̃1 (with an assumed central value of 180 GeV) a precision at the ILC of 1.25 GeV is
taken [242], while for the LHC an (optimistic) uncertainty of 10% in mt̃1 is assumed. For
the other parameters the following central values and prospective experimental errors have
been used: MA = 257± 10 GeV, µ = 263± 1 GeV, M2 = 150± 1 GeV, mg̃ = 496± 10 GeV.
For the top-quark mass an error of 0.2 GeV has been used for GigaZ/ILC and of 2 GeV
for the LHC. For tan β a lower bound of tan β > 10 has been taken. For the future theory
uncertainty of mh from unknown higher-order corrections an error of 0.5 GeV has been
assumed. The central values for MW and sin2 θeff have been chosen in accordance with a
non-zero contribution to the precision observables from SUSY loops. For the experimental
errors at the different colliders the values given in sect. Tab. 1.4 have been used. For the
future intrinsic theoretical uncertainties the estimates of eq. (3.2) have been taken.

As one can see in Fig. 3.24, the allowed parameter space in the mt̃2–| cos θt̃| plane is
significantly reduced from the LHC to the ILC, in particular in the GigaZ scenario (i.e.
precision measurements of MW and sin2 θeff). Using the information on | cos θt̃| from the
direct measurement [242] allows an indirect determination of mt̃2 with a precision of better
than 5% in the GigaZ case. By comparing this indirect prediction for mt̃2 with direct
experimental information on the mass of this particle, the MSSM could be tested at its
quantum level in a sensitive and highly non-trivial way.

As a further example [63] for the potential of a precise measurement of the EWPO to
explore the effects of new physics, we show in Fig. 3.25 the predictions for MW and sin2 θeff in
the SM and the MSSM in comparison with the prospective experimental accuracy obtainable
at the LHC and the ILC without GigaZ option (labelled as LHC/LC) and with the accuracy
obtainable at the ILC with GigaZ option (labelled as GigaZ). For the assumed experimental
central values of MW and sin2 θeff the current central values [18] are used. For the Higgs-
boson mass a future measured value of mh = 115 GeV has been assumed. The MSSM
parameters have been chosen in this example according to the reference point SPS1b [34].
In Fig. 3.25 the inner (blue) areas correspond to δmexp

t = 0.1 GeV (ILC), while the outer
(green) areas arise from δmexp

t = 2 GeV (LHC). For the error of ∆αhad we have assumed
a future determination of 7 × 10−5. In the SM, this is the only relevant uncertainty apart
from δmt (the remaining effects of future intrinsic uncertainties have been neglected in this
figure). The future experimental uncertainty ofmh is insignificant for this kind of electroweak
precision tests. For the experimental errors on the SUSY parameters we have assumed a 5%
uncertainty for mt̃1 , mt̃2 , mb̃1

, mb̃2
around their values given by SPS1b. The mixing angles in

the t̃ and b̃ sectors have been left unconstrained. The mass of the CP-odd Higgs boson MA

is assumed to be determined to about 10%, and it is assumed that tan β ≈ 30 ± 4.5.
The figure shows that the improvement in δmt from δmt = 2 GeV to δmt = 0.1 GeV

strongly reduces the parametric uncertainty in the prediction for the EWPO. In the SM
case it leads to a reduction by about a factor of 10 in the allowed parameter space of the
MW − sin2 θeff plane. In the MSSM case, where many additional parametric uncertainties
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Figure 3.24: Indirect constraints on the MSSM parameter space in the mt̃2–| cos θt̃| plane
from measurements of mh, MW , sin2 θeff , mt and mt̃1 in view of the prospective accuracies
for these observables at the ILC with and without GigaZ option and at the LHC. The direct
information on the mixing angle from a measurement at the ILC is indicated together with
the corresponding indirect determination of mt̃2 .

enter, a reduction by a factor of more than 2 is obtained in this example. The comparison
of the theoretical prediction in both models with the GigaZ accuracy on sin2 θeff and MW

illustrates how sensitively the electroweak theory will be tested via EWPO (for a compari-
son with the current experimental errors, which are not shown in Fig. 3.25, see Fig. 3.11).
The simultaneous improvement of the precision on mt, sin2 θeff (by an order of magnitude
compared to the situation at the LHC) and MW (by a factor of two compared to the LHC
case) will greatly enhance the potential for establishing effects of new physics via EWPO.

As mentioned above, the precision observable mh will allow to set very stringent con-
straints on the MSSM parameters, in particular in the scalar top sector (for large values
of tanβ also in the scalar bottom sector). This can be crucial for determining the mixing
angle in the scalar top sector, and (as a related quantity) the trilinear Higgs-stop coupling,
At. If the scalar top quarks are too heavy to be directly produced at the ILC, only rather
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Figure 3.25: The predictions for MW and sin2 θeff in the SM and the MSSM (SPS1b) [63].
The inner (blue) areas correspond to δmexp

t = 0.1 GeV (ILC), while the outer (green) areas
arise from δmexp

t = 2 GeV (LHC). The anticipated experimental errors on MW and sin2 θeff
at the LHC/ILC and at the ILC with GigaZ option are indicated.

limited information on the mixing in the stop sector will be available from the LHC [10].
The prospects for an indirect determination of At within the MSSM from a precision mea-
surement of mh are illustrated in Fig. 3.26. A precise knowledge of the parameter At turned
out to be crucial for global fits of the MSSM to the data [53,54], which will be necessary in
order to determine the low-energy SUSY Lagrangian parameters, and for an extrapolation
of the results obtainable at the next generation of colliders to physics at high scales [63].

Fig. 3.26 shows the prediction for mh as a function of At, where the parametric uncer-
tainties induced by all other MSSM input parameters are taken into account according to the
prospective experimental information on the SUSY spectrum from the LHC and the ILC in
the SPS 1b scenario [34] (see Ref. [10]). The impact of the LHC and the ILC precision on the
top-quark mass is indicated. The sensitivity for an indirect determination of At follows from
intersecting the MSSM prediction for mh with the experimental value. This comparison is
affected, however, by the intrinsic theoretical uncertainties of the mh prediction. The effect
of the intrinsic theoretical uncertainties is shown by two horizontal bands illustrating the
present intrinsic uncertainty of 3 GeV and a prospective uncertainty of 0.5 GeV. While the
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Figure 3.26: The prediction for mh within the SPS 1b scenario, assuming experimental
information from the LHC and the ILC on the SUSY spectrum with experimental errors
according to Ref. [10], is shown as a function of At. The light shaded (green) band indicates
the uncertainty induced by the experimental errors of all MSSM input parameters (except At)
and an assumed error on the top-quark mass of δmexp

t = 2 GeV. The dark shaded (blue) band
shows the parametric uncertainty induced by the experimental errors of all input parameters
for the case of δmexp

t = 0.1 GeV. The experimental error of a prospective measurement of
mh is shown as a horizontal band. Two further bands are shown, demonstrating the effect
of an intrinsic theoretical uncertainty on mh of 3 GeV (today) and 0.5 GeV (future).

present intrinsic uncertainty on mh would not allow to obtain a reliable indirect determina-
tion of At, a future theoretical uncertainty of 0.5 GeV together with a precision measurement
of mt at the ILC would allow an indirect determination of At to better than about 10%, up
to a sign ambiguity. The sign ambiguity can be resolved using precision measurements of
Higgs branching ratios at the ILC, see Ref. [243].

Likewise, it has been shown in Ref. [243] that an indirect determination of MA can be
performed (investigated in the case of the SPS 1a scenario [34]) from Higgs boson branching
ratio measurements at the ILC combined with a precision measurement ofmt and information
on the SUSY spectrum from the LHC and ILC.
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Chapter 4

Implications in soft SUSY-breaking
scenarios

The fact that no SUSY partners of the SM particles have so far been observed means that
low-energy SUSY cannot be realized as an unbroken symmetry in nature, and SUSY models
thus have to incorporate additional Supersymmetry breaking contributions. This is achieved
by adding to the Lagrangian (defined by the SU(3)C ×SU(2)L ×U(1)Y gauge symmetry and
the superpotential W ) further terms that respect the gauge symmetry but break SUSY
(softly, i.e. no quadratic divergences appear), so called “soft SUSY-breaking” (SSB) terms.
The assumption made in the MSSM that the R-parity symmetry is conserved reduces the
amount of new soft terms allowed in the Lagrangian.

In the previous sections the EWPO have been discussed within the unconstrained MSSM.
In the MSSM, no further assumptions are made on the structure of the soft SUSY-breaking
parameters, and a parametrization of all possible SUSY-breaking terms is used [244,245].
This gives rise to the huge number of more than 100 new parameters in addition to the SM,
which in principle can be chosen independently of each other. A phenomenological analysis
of the EWPO in this model in full generality would clearly be very involved, and one usually
restricts to certain benchmark scenarios, see e.g. Refs. [32–35]. On the other hand, models
in which all the low-energy parameters are determined in terms of a few parameters at
the Grand Unification scale (or another high-energy scale), employing a specific soft SUSY-
breaking scenario, provide an attractive framework for investigating SUSY phenomenology.
The most prominent scenarios in the literature are minimal Supergravity (mSUGRA) [26,27],
minimal Gauge Mediated SUSY Breaking (mGMSB) [28] and minimal Anomaly Mediated
SUSY Breaking (mAMSB) [29–31].

The Higgs boson sector has been analyzed in all three soft SUSY-breaking scenarios,
see Refs. [16,17,187,246,247] and references therein. For a comprehensive analysis of EWPO
within the mSUGRA scenario see Ref. [248].

4.1 The soft SUSY-breaking scenarios

The three most commonly studied soft SUSY-breaking scenarios are
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• mSUGRA (minimal Super Gravity scenario) [26,27]:
Apart from the SM parameters (for the experimental values of the SM input parameters
we use Ref. [3]), 4 parameters and a sign are required to define the mSUGRA scenario:

{ m0 , m1/2 , A0 , tan β , sign(µ) } . (4.1)

The parameter m0 is a common scalar mass, m1/2 a common fermion mass and A0 a
common trilinear couplings, all defined at the GUT scale (∼ 1016 GeV). On the other
hand, tan β (the ratio of the two vacuum expectation values) and sign(µ) are defined
at the low-energy scale.1

• mGMSB (minimal Gauge Mediated SUSY-Breaking) [28]:
An interesting alternative to mSUGRA is based on the hypothesis that the soft SUSY-
breaking occurs at relatively low energy scales and is mediated mainly by gauge inter-
actions through the so-called “messenger sector” [28,249,250]. Also in this scenario,
the low-energy phenomenology is characterized in terms of 4 parameters and a sign,

{Mmess, Nmess, Λ, tan β, sign(µ) } , (4.2)

where Mmess is the overall messenger mass scale; Nmess is a number called the mes-
senger index, parametrizing the structure of the messenger sector; Λ is the universal
soft SUSY-breaking mass scale felt by the low-energy sector. The phenomenology of
mGMSB is characterized by the presence of a very light gravitino G̃ with mass given

by m3/2 = mG̃ = F√
3M ′

P

≃
( √

F
100 TeV

)2

2.37 eV [251], where
√
F is the fundamental scale

of SUSY breaking and M ′
P = 2.44 × 1018 GeV is the reduced Planck mass. Since

√
F

is typically of order 100 TeV, the G̃ is always the LSP in the GMSB scenario.

• mAMSB (minimal Anomaly Mediated SUSY-Breaking) [29–31]:
In this model, SUSY breaking happens on a separate brane and is communicated to
the visible world via the super-Weyl anomaly. The particle spectrum is determined by
3 parameters and a sign:

{maux, m0, tanβ, sign(µ)}. (4.3)

The overall scale of SUSY particle masses is set by maux, which is the VEV of the
auxiliary field in the supergravity multiplet. m0 is introduced as a phenomenological
parameter to avoid negative slepton mass squares, for other approaches to this problem
see Refs. [29,252–255].

1More precisely, the scenario where universality of the soft SUSY-breaking parameters m0, m1/2 and
A0 at the GUT scale is assumed should be called the constrained MSSM (CMSSM). An economical way
to ensure this universality is by gravity-mediated SUSY breaking in a minimal supergravity (mSUGRA)
scenario, but there are other ways to validate the CMSSM assumptions. The mSUGRA scenario predicts
in particular a relation between the gravitino mass and m0, which is not necessarily filfilled in the CMSSM.
For simplicity, we do not make the distinction between the CMSSM and the mSUGRA scenario but use the
phrase “mSUGRA” for both.
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4.2 ∆ρ in mSUGRA, mGMSB, mAMSB

In order to compare the prediction for ∆ρ in three soft SUSY-breaking scenarios, a scan has
been performed over the parameters defined in eqs. (4.1)–(4.3). For our numerical analysis,
the scan has been done in the following ranges:

• mSUGRA:

50 GeV ≤ m0 ≤ 1 TeV ,

50 GeV ≤ m1/2 ≤ 1 TeV ,

−3 TeV ≤ A0 ≤ 3 TeV ,

1.5 ≤ tanβ ≤ 60 ,

signµ = +1. (4.4)

• GMSB:

104 GeV ≤ Λ ≤ 2 × 105 GeV ,

1.01 Λ ≤ Mmess ≤ 105 Λ ,

1 ≤ Nmess ≤ 8 ,

1.5 ≤ tan β ≤ 60 ,

signµ = +1. (4.5)

• AMSB:

20 TeV ≤ maux ≤ 100 TeV,

0 ≤ m0 ≤ 2 TeV,

1.5 ≤ tan β ≤ 60,

sign µ = +1. (4.6)

For each scan point the full low-energy spectrum of the MSSM has been evaluated. It
has been checked that the low-energy result respects the existing experimental constraints
(for a more detailed discussion, see Ref. [246]):

• LEP Higgs bounds:

The results from the Higgs search at LEP have excluded a considerable part of the
MSSM parameter space [12,13]. The results of the search for the MSSM Higgs bosons
are usually interpreted in three different benchmark scenarios [32]. The 95% C.L.
exclusion limit for the SM Higgs boson of MSM

H > 114.4 GeV [13] applies also for
the lightest CP-even Higgs boson of the MSSM except for the parameter region with
small MA and large tanβ. In the unconstrained MSSM this bound is reduced to
mh > 91.0 GeV [12] for MA

<∼ 150 GeV and tanβ >∼ 8 as a consequence of a reduced
coupling of the Higgs to the Z boson. For the CP-odd Higgs boson a lower bound
of MA > 91.9 GeV has been obtained [12]. In order to correctly interpolate between
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the parameter regions where the SM lower bound2 of MSM
H

>∼ 113 GeV and the bound
mh

>∼ 91 GeV apply, we use the result for the Higgs-mass exclusion given with respect
to the reduced ZZh coupling squared (i.e. sin2(β−αeff)) [256]. We have compared the
excluded region with the theoretical prediction obtained at the two-loop level for mh

and sin2(β − αeff) for each parameter set (using mt = 175 GeV).

• Experimental bounds on SUSY particle masses

In order to restrict the allowed parameter space in the three soft SUSY-breaking sce-
narios the current experimental constraints on their low-energy mass spectrum [3] have
been employed. The precise values of the bounds that we have applied can be found
in Ref. [246].

• Other restrictions

As mentioned above, the top-quark mass is fixed to mt = 175 GeV in our analysis.
While ∆ρSM depends quadratically on mt at the one-loop level, the impact on ∆ρSUSY

is relatively mild.

We briefly list here the further restrictions that we have taken into account for the
analysis in this section. For a detailed discussion see Ref. [246].

– The GUT or high-energy scale parameters are taken to be real, no SUSY CP-
violating phases are assumed.

– In all models under consideration the R-parity symmetry is taken to be conserved.

– Parameter sets that do not fulfil the condition of radiative electroweak symmetry
breaking (REWSB) are discarded (already at the level of generating the model
parameters).

– Parameter sets that do not fulfil the constraints that there should be no charge or
color breaking minima are discarded (already at the level of generating the model
parameters).

– We demand that the lightest SUSY particle (LSP) is uncolored and uncharged.
In the mGMSB scenario the LSP is always the gravitino, so this condition is
automatically fulfilled. Within the mSUGRA and mAMSB scenario, the LSP is
required to be the lightest neutralino. Parameter sets that result in a different
LSP are excluded.

– We do not apply any further cosmological constraints, i.e. we do not demand a
relic density in the region favored by dark matter constraints [257].

– The scan has been stopped at high squark masses, since the contributions of heavy
particles to ∆ρSUSY decouple [97,119]. No parameter points with mq̃

>∼ 1.5 TeV
have been considered.

2Instead of the actual experimental lower bound, MSM

H
>∼ 114.4 GeV [13], we use the value of 113 GeV in

order to take into account some effect of the uncertainty in the theoretical evaluation of mh from unknown
higher-order corrections, which is currently estimated to be ∼ 3 GeV in the unconstrained MSSM (see
eq. (2.145)).
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If a point has passed all constraints, the results for the masses and mixing angles have been
used to determine ∆ρ, based on the one-loop result given in eq. (2.64) and the SUSY two-
loop contributions described in Sect. 2.4.2. The result is shown in Fig. 4.1, where ∆ρSUSY is
plotted as a function of the lightest scalar top quark mass, mt̃1 . In general, mSUGRA allows
smaller scalar quark masses than mGMSB and mAMSB, and correspondingly larger values of
∆ρSUSY can be realized. For mt̃1

<∼ 300 GeV values of ∆ρmSUGRA <∼ 7×10−4 can be reached.

For larger mt̃1 values all three soft SUSY-breaking scenarios result in ∆ρSUSY <∼ 1 × 10−4

(a shift in ∆ρSUSY of 1 × 10−4 corresponds to shifts in MW and sin2 θeff of about ∆MW =
6 MeV and ∆ sin2 θeff = −3 × 10−5, respectively). No part of the mSUGRA, mGMSB, or
mAMSB parameter space that fulfils all other phenomenological constraints (see above) can
be excluded with the current precision on the EWPO. On the other hand, formt̃1

>∼ 500 GeV
all three scenarios result in roughly the same prediction, i.e. it would be very challenging in
this case to obtain information on the soft SUSY-breaking scenario with the help of ∆ρ.
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Figure 4.1: ∆ρSUSY is shown in the three soft SUSY-breaking scenarios as a function of the
lightest scalar top quark mass.

Using eq. (2.58) the SUSY contribution to ∆ρ can be translated into a shift in the
prediction of MW and sin2 θeff . For mt̃1

<∼ 300 GeV the shift induced within the mSUGRA
scenario can amount up to

δMmSUGRA
W

<∼ 35 MeV, |δ sin2 θmSUGRA
eff | <∼ 2 × 10−4 , (4.7)

which corresponds roughly to one standard deviation of the current experimental uncertain-
ties. For larger mt̃1 , mt̃1

>∼ 500 GeV, the shifts induced in MW and sin2 θeff for all three soft
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SUSY-breaking scenarios fulfil

δMSUSY
W

<∼ 6 MeV, |δ sin2 θSUSY
eff | <∼ 3.5 × 10−5 . (4.8)

While for MW the possible shift in this case is about one standard deviation of the GigaZ
precision, for sin2 θeff deviations of 2-3 σ of the GigaZ precision could be realized.

4.3 Prediction for mh in mSUGRA, mGMSB, mAMSB

We now turn to the prediction of the lightest Higgs-boson mass for the case where the
low-energy parameters are obtained from high-scale parameters within specific soft SUSY-
breaking scenarios. Since the low-energy parameters are connected to each other via the
renormalization group equations, they cannot be chosen independently. This results in a
reduction of the upper bound on mh compared to the unconstrained MSSM. As an example,
we show in Fig. 4.2 the allowed values of tanβ as function of xtop ≡ Xt/MSUSY in the
mGMSB scenario [258]. The high-energy scan parameters are chosen as in eq. (4.5) (but
with both signs of µ). It can be seen that large values of tanβ, which are necessary for large
mh values, can only be realized for Xt/MSUSY between −0.3 and −1. On the other hand, the
largest values for mh are obtained for Xt/MSUSY ≈ +2 [166,167], which cannot be realized
in the mGMSB. Similarly, also the variation of the upper bound on mh with mt turns out to
be somewhat different in the soft SUSY-breaking scenarios compared to the unconstrained
MSSM (see below).

                   

ta
nβ

xtop

µ > 0 µ < 0

     

Figure 4.2: Allowed tan β values as a function of xtop = Xt/MSUSY in the mGMSB scenario
[258]. The high-energy scan parameters are chosen as in eq. (4.5) (but with both signs of µ).

In the following we refer to the results of Ref. [187], which are in agreement with the
previous results in Refs. [17,246], but use the most recent experimental value of the top-
quark mass. In Tab. 4.1 the maximum values of mh for mt = 178.0 GeV in mSUGRA,
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mGMSB and mAMSB are compared. In order to have comparable numbers an upper limit
on the scalar top masses in all scenarios has been chosen,

√
mt̃1 mt̃2 ≤ 2 TeV. No theoretical

uncertainties are included. One can see that all three scenarios result in significantly lower
maximum mh values than the uncontrained MSSM, where masses up to ∼ 138 GeV can
be realized for MSUSY

<∼ 2 TeV and mt = 178.0 GeV (see Figs. 3.16, 3.18). The variation
of this maximum mh value with mt is also shown. In the unconstrained MSSM one has
δmh/δmt ≈ 1 [188]. In the mSUGRA, mGMSB and mAMSB scenarios this is reduced down
to ∼ 0.58–0.7.

maximum mh [GeV] δmh/δmt

mSUGRA 129.0 0.65

mGMSB 123.7 0.70

mAMSB 124.6 0.58

Table 4.1: The maximum mh values (for mt = 178.0 GeV and
√
mt̃1 mt̃2 ≤ 2 TeV) and

the variation of this maximum value with mt are shown in the three soft SUSY-breaking
scenarios. No theoretical uncertainties are included. See Refs. [17,187,246].

These results have an interesting consequence for the Higgs search at the Tevatron. The
Tevatron has the potential to exclude a SM-like Higgs boson with a mass of MSM

H
<∼ 130 GeV

with an integrated luminosity of 4–8 fb−1 [14] per experiment (and it will furthermore reduce
the experimental error on mt). Since the coupling of the lightest CP-even Higgs boson to
gauge bosons is close to the SM value for essentially all the parameter space of the three soft
SUSY-breaking scenarios [246], the Tevatron should either observe an excess of Higgs-like
events over the background expectation or rule out the mSUGRA, the mGMSB and the
mAMSB scenarios.

4.4 EWPO in mSUGRA

In this section we review the prediction for MW , sin2 θeff , the lightest Higgs boson mass,
the anomalous magnetic moment of the muon, aµ ≡ (g − 2)µ/2, and BR(b → sγ) within
the mSUGRA scenario, taking into account constraints on the cold dark matter (CDM)
relic density from WMAP and other cosmological data [257]. More details can be found
in Ref. [248]. The results have been obtained by scanning the universal soft supersymmetry-
breaking gaugino mass m1/2 and scalar mass m0 for different representative values of tan β
and the trilinear soft supersymmetry-breaking parameter A0. The sign of the supersymmetric
Higgs parameter µ has been chosen to be positive.

We require the cosmological relic density Ωχh
2 due to the neutralino LSP to fall into the

range
0.094 < Ωχh

2 < 0.124 . (4.9)

Lower values of Ωχh
2 would be allowed if not all the cosmological dark matter is composed

of neutralinos. However, larger values of Ωχh
2 are excluded by cosmology. The CDM con-
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straints have the effect within the mSUGRA scenario, assuming that the dark matter consists
largely of neutralinos, of restricting m0 to very narrow allowed strips for any specific choice of
A0, tanβ and the sign of µ [260,261]. Thus, the dimensionality of the mSUGRA scenario is
effectively reduced, and one may explore SUSY phenomenology along these “WMAP strips”.
We furthermore take into account the constraints on the parameter space from the direct
search for supersymmetric particles [3] and Higgs bosons [12,13].

For tanβ two values have been chosen, tanβ = 10, 50, representing values in the lower
and the upper part of the (experimentally and theoretically) allowed parameter space. For
the GUT-scale parameter A0 five different values have been investigated (below also a scan
over A0 is performed), A0 = (−2, −1, 0, 1, 2)×m1/2, in order to cover the allowed parameter
space. The top-quark mass has been fixed to mt = 178 GeV. Since the results are analyzed
along the WMAP strips, they are given as a function of m1/2. The corresponding m0 values
(for fixed A0 and tan β) follow from the CDM constraint. The non-excluded values for m1/2

start at around m1/2 ≈ 200 GeV for both values of tanβ. While for tan β = 10 m1/2 is

restricted by the CDM constraint to be m1/2
<∼ 900 GeV, for tanβ = 50 the allowed values

exceed m1/2
>∼ 1500 GeV.

We start with the prediction forMW . The evaluation is based on the corrections described
in Sect. 2.5. We display in Fig. 4.3 the mSUGRA prediction forMW and compare it with the
present measurement (solid lines) and a possible future determination with GigaZ (dashed
lines). Panel (a) shows the values of MW obtained with tan β = 10 and |A0| ≤ 2, and
panel (b) shows the same for tanβ = 50. It is striking that the present central value of
MW (for both values of tanβ) favours low values of m1/2 ∼ 200–300 GeV, though values as
large as 800 GeV are allowed at the 1-σ level, and essentially all values of m1/2 are allowed
at the 90% confidence level. The GigaZ determination of MW might be able to determine
indirectly a low value of m1/2 with an accuracy of ±50 GeV, but even the GigaZ precision

would still be insufficient to determine m1/2 accurately if m1/2
>∼ 600 GeV (in accordance

with the discussion in Sect. 4.2).

The situtation is similar for the prediction of sin2 θeff shown in Fig. 4.4. The results are
based on the corrections described in Sect. 2.6 and are given for the same values of A0 and
tanβ as in Fig. 4.3. As in the case of MW , low values of m1/2 are also favoured by sin2 θeff .
The present central value prefers m1/2 = 300–500 GeV, but the 1-σ range extends beyond
1500 GeV (depending on A0), and all values of m1/2 are allowed at the 90% confidence level.
The GigaZ precision on sin2 θeff would be able to determine m1/2 indirectly with even greater

accuracy than MW at low m1/2, but would also be insufficient if m1/2
>∼ 700 GeV.

Next the prediction of aµ within mSUGRA is analyzed. The evaluation is based on
the full one-loop result [198], the corresponding QED two-loop corrections [204] and the
two-loop corrections from the closed SM fermion/sfermion loops [205]. The very recent
two-loop corrections of Ref. [197] have been included via an approximation formula. For
older evaluations of aµ within mSUGRA (mostly based on the full one-loop result and the
corresponding QED corrections), see Refs. [200–203].

As seen in Fig. 4.5, the mSUGRA prediction for aµ is almost independent of A0 for
tanβ = 10, but substantial variations are possible for tanβ = 50, except at very large m1/2.
In the case tanβ = 10, m1/2 ∼ 200–400 GeV is again favoured at the ±1-σ level, but this
preferred range shifts up to 400 to 800 GeV if tanβ = 50, depending on the value of A0.
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Figure 4.3: The mSUGRA prediction for MW as a function of m1/2 along the WMAP strips
for (a) tan β = 10 and (b) tanβ = 50 for various A0 values [248]. In each panel, the
centre (solid) line is the present central experimental value, and the (solid) outer lines show
the current ±1-σ range. The dashed lines correspond to the anticipated GigaZ accuracy,
assuming the same central value.
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Figure 4.4: The mSUGRA prediction for sin2 θeff as a function of m1/2 along the WMAP
strips for (a) tan β = 10 and (b) tanβ = 50 for various A0 values [248]. In each panel, the
centre (solid) line is the present central experimental value, and the (solid) outer lines show
the current ±1-σ range. The dashed lines correspond to the anticipated GigaZ accuracy,
assuming the same central value.
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Figure 4.5: The mSUGRA prediction for ∆aµ as a function of m1/2 along the WMAP strips
for tan β = 10, 50 and different A0 values [248]. The central (solid) line is the central value
of the present discrepancy between experiment and the SM value evaluated using e+e− data,
and the other solid (dotted) lines show the current ±1(2)-σ ranges, see eq. (2.147).

For the two tanβ values the requirement of agreement of the mSUGRA prediction with the
experimental data at the 95% C.L. restricts m1/2 to

tanβ = 10 : 200 GeV <∼ m1/2
<∼ 600 GeV , (4.10)

tan β = 50 : 350 GeV <∼ m1/2
<∼ 1100 GeV . (4.11)

Now we turn to the decay b → sγ. Since this decay occurs at the loop level in the SM,
the MSSM contribution might be of similar magnitude. The most up-to-date theoretical
estimate of the SM contribution to the branching ratio is [262]

BR(b→ sγ) = (3.70 ± 0.30) × 10−4, (4.12)

where the calculations have been carried out completely to NLO in the MS renormalization
scheme, and the error is dominated by higher-order QCD uncertainties. However, the error
estimate for BR(b → sγ) is still under debate, see e.g. Ref. [235]. The MSSM evaluation
shown below is based on Refs. [262,263].

For comparison, the present experimental value estimated by the Heavy Flavour Aver-
aging Group (HFAG) is [264]

BR(b→ sγ) = (3.54+0.30
−0.28) × 10−4, (4.13)

where the error includes an uncertainty due to the decay spectrum, as well as the statistical
error. The very good agreement between eq. (4.13) and the SM prediction eq. (4.12) imposes
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important constraints on the MSSM. The uncertainty range shown in Fig. 4.6 combines
linearly the current experimental error and the present theoretical uncertainty in the SM
prediction. Since the mSUGRA corrections are generally smaller for smaller tanβ, even
values of m1/2 as low as ∼ 200 GeV would be allowed at the 90% confidence level if tanβ =

10, whereas m1/2
>∼ 400 GeV would be required if tanβ = 50. These limits are very sensitive

to A0, and, assuming that in the future the experimental and theoretical uncertainty in
BR(b→ sγ) can be reduced by a factor ∼ 3, the combination of BR(b→ sγ) with the other
precision observables might be able, in principle, to constrain A0 significantly.
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Figure 4.6: The mSUGRA predictions for BR(b→ sγ) as a function ofm1/2 along the WMAP
strips for (a) tan β = 10 and (b) tanβ = 50 and various choices of A0. The uncertainty shown
combines linearly the current experimental error and the present theoretical uncertainty in
the SM prediction. The central (solid) line indicates the current experimental central value,
and the other solid (dotted) lines show the current ±1(2)-σ ranges [248].

Finally we present results for the lightest Higgs boson mass in the CDM allowed strips
of the mSUGRA parameter space. In Fig. 4.7 we show the results for mh. A hypothetical
measurement at mh = 120 GeV is shown. Since the experimental error at the ILC will
be smaller than the prospective theory uncertainties (see Sect. 2.7.2), we display the effect
of the current and future intrinsic uncertainties. In addition, a more optimistic value of
∆mh = 200 MeV is also shown. The figure clearly illustrates the high sensitivity of this
electroweak precision observable to variations of the supersymmetric parameters (detailed
results for Higgs boson phenomenology in mSUGRA can be found in Ref. [16,17,246,247]).
The comparison between the measured value of mh and a precise theory prediction will allow
to set tight constraints on the allowed parameter space of m1/2 and A0.

109



200 400 600 800 1000 1200 1400
m1/2 [GeV]

100

110

120

130
m

h [G
eV

]

CMSSM, µ > 0

tanβ = 10, A0 = 0

tanβ = 10, A0 = +m1/2

tanβ = 10, A0

=�m

1/2

tanβ = 10, A0 = +2 m1/2

tanβ = 10, A0

=�2m

1/2

200 400 600 800 1000 1200 1400
m1/2 [GeV]

100

110

120

130

m
h [G

eV
]

CMSSM, µ > 0

tanβ = 50, A0 = 0

tanβ = 50, A0 = +m1/2

tanβ = 50, A0

=�m

1/2

tanβ = 50, A0 = +2 m1/2

tanβ = 50, A0

=�2m

1/2

Figure 4.7: The mSUGRA predictions for mh as functions of m1/2 with (a) tanβ = 10 and
(b) tanβ = 50 for various A0 [248]. A hypothetical experimental value is shown, namely
mh = 120 GeV. We display an optimistic anticipated theory uncertainty of ±0.2 GeV, as
well as a more realistic theory uncertainty of ±0.5 GeV and the current theory uncertainty
of ±3 GeV.

4.5 Fits in mSUGRA

The results for EWPO presented in the last section have been used to perform a fit for
the mSUGRA parameter space with CDM constraints [248]. We first review the fit using
the currently existing data on MW , sin2 θeff , aµ and BR(b → sγ). Secondly, we show the
precision that can be obtained in the future, using improved measurements of the EWPO
and including also themh measurement as well as the measurement of Higgs boson branching
ratios. More details can be found in Ref. [248]

4.5.1 Present situation

We now investigate the combined sensitivity of the four low-energy observables for which
experimental measurements exist at present, namely MW , sin2 θeff , (g−2)µ and BR(b→ sγ).
We begin with an analysis of the sensitivity tom1/2 moving along the WMAP strips with fixed
values of A0 and tanβ. The experimental uncertainties, the intrinsic errors from unknown
higher-order corrections and the parametric uncertainties have been added quadratically,
except for BR(b → sγ), where they have been added linearly. Assuming that the four
observables are uncorrelated, a χ2 fit has been performed with

χ2 ≡
N∑

n=1

(
Rexp

n − Rtheo
n

σn

)2

. (4.14)

Here Rexp
n denotes the experimental central value of the nth observable, so that N = 4 for

the set of observables included in this fit, Rtheo
n is the corresponding mSUGRA prediction
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and σn denotes the combined error, as specified above.
The results are shown in Fig. 4.8 for tanβ = 10 and tan β = 50. They indicate that,

already at the present level of experimental accuracies, the electroweak precision observables
combined with the WMAP constraint provide a sensitive probe of the mSUGRA scenario,
yielding interesting information about its parameter space. For tan β = 10, mSUGRA
provides a very good description of the data, resulting in a remarkably small minimum χ2

value. The fit shows a clear preference for relatively small values of m1/2, with a best-fit
value of about m1/2 = 300 GeV. The best fit is obtained for A0 ≤ 0, while positive values of
A0 result in a somewhat lower fit quality. The fit yields an upper bound on m1/2 of about
600 GeV at the 90% C.L. (corresponding to ∆χ2 ≤ 4.61). The mass spectrum favored at
the 90% C.L. contains many light states that should be accessible at the LHC and the ILC,
offering good prospects of the direct detection of SUSY.

For tan β = 50 the overall fit quality is worse than for tanβ = 10, and the sensitivity to
m1/2 from the precision observables is lower. This is related to the fact that, whereas MW

and sin2 θeff prefer small values of m1/2 also for tan β = 50, as seen in Figs. 4.3 and 4.4, the
CMSSM predictions for (g − 2)µ and BR(b → sγ) for high tanβ are in better agreement
with the data for larger m1/2 values, as seen in Figs. 4.5 and 4.6. Also in this case the best
fit is obtained for negative values of A0, but the preferred values for m1/2 are 200–300 GeV
higher than for tan β = 10. The mass spectrum favored at the 90% C.L. is heavier than
for tan β = 10. However, still several SUSY particles should be accessible at the ILC. Since
colored SUSY particles should be within the kinematic reach of the LHC, also in this case
there are good prospects of the direct detection of SUSY.

We now turn to the results obtained from a scan over the m1/2–A0 parameter plane.
Fig. 4.9 shows the CDM-allowed regions in the m1/2–A0 plane for tanβ = 10 and tanβ = 50.
The current best-fit values obtained via χ2 fits for tan β = 10 and tan β = 50 are indicated.
The coloured regions around the best-fit values correspond to the 68% and 90% C.L. regions
(corresponding to ∆χ2 ≤ 2.30, 4.61, respectively).

For tan β = 10 (upper plot of Fig. 4.9), the precision data yield sensitive constraints on
the available parameter space for m1/2 within the WMAP-allowed region. The precision data
are less sensitive to A0. The 90% C.L. region contains all the WMAP-allowed A0 values in
this region of m1/2 values. As expected from the discussion above, the best fit is obtained
for negative A0 and relatively small values of m1/2. At the 68% C.L., the fit yields an upper
bound on m1/2 of about 450 GeV. This bound is weakened to about 600 GeV at the 90%
C.L.3

As discussed above, the overall fit quality is worse for tanβ = 50, and the sensitivity
to m1/2 is less pronounced. This is demonstrated in the lower plot of Fig. 4.9, which shows
the result of the fit in the m1/2–A0 plane for tanβ = 50. The best fit is obtained for
m1/2 ≈ 500 GeV and negative A0. The upper bound on m1/2 increases to nearly 1 TeV at
the 68% C.L.

3A preference for relatively small values of m1/2 within the mSUGRA has also been noticed in Ref. [239],
where only (g − 2)µ and BR(b → sγ) had been analyzed.
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Figure 4.8: The results of χ2 fits based on the current experimental results for the precision
observables MW , sin2 θeff , (g − 2)µ and BR(b → sγ) are shown as functions of m1/2 in the
mSUGRA parameter space with CDM constraints for different values of A0 [248]. The upper
plot shows the results for tanβ = 10, and the lower plot shows the case tanβ = 50.
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Figure 4.9: The results of χ2 fits for tan β = 10 (upper plot) and tanβ = 50 (lower plot)
based on the current experimental results for the precision observables MW , sin2 θeff , (g−2)µ

and BR(b→ sγ) are shown in the m1/2–A0 planes of the mSUGRA scenario with the WMAP
constraint [248]. The best-fit points are indicated, and the coloured regions correspond to
the 68% and 90% C.L. regions, respectively.
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4.5.2 Future expectations

We now investigate the combined sensitivity of the precision observables MW , sin2 θeff ,
(g − 2)µ, BR(b→ sγ), mh and the ratio BR(h→ bb̄)/BR(h→WW ∗) in the m1/2–A0 plane
of the mSUGRA scenario using ILC (and GigaZ) accuracies. For (g − 2)µ we assume a
reduction of the error by two, for BR(b → sγ) by a factor of three. At the ILC with√
s = 1 TeV a measurement of BR(h → bb̄)/BR(h → WW ∗) with an accuracy of ∼ 1.5%

can be envisaged [265]. Fig. 4.10 shows the fit results for tanβ = 10, while Fig. 4.11 shows
the tanβ = 50 case.

In each figure we show two plots, where the WMAP-allowed region and the best-fit point
according to the current situation (see Fig. 4.9) are indicated. In both plots two further
hypothetical future ‘best-fit’ points have been chosen for illustration. For all the ‘best-fit’
points, the assumed central experimental values of the observables have been chosen such
that they precisely coincide with the ‘best-fit’ points4. The coloured regions correspond to
the 68% and 90% C.L. regions around each of the ‘best-fit’ points according to the ILC
accuracies.

The comparison of Figs. 4.10, 4.11 with the result of the current fit, Fig. 4.9, shows that
the ILC experimental precision will lead to a drastic improvement in the sensitivity to m1/2

and A0 from comparing precision data with the mSUGRA predictions. For the best-fit values
of the current fits for tan β = 10 and tanβ = 50, the ILC precision would allow one to narrow
down the allowed mSUGRA parameter space to very small regions in the m1/2–A0 plane.
The comparison of these indirect predictions for m1/2 and A0 with the information from
the direct detection of supersymmetric particles would provide a stringent test of the model
at the loop level. A discrepancy could indicate that supersymmetry is realised in a more
complicated way than assumed in mSUGRA.

The additional hypothetical ‘best-fit’ points shown in Figs. 4.10, 4.11 illustrate the in-
direct sensitivity to the mSUGRA parameters in scenarios where the precision observables
prefer larger values of m1/2. Because of the decoupling property of supersymmetric theories,
the indirect constraints become weaker for increasing m1/2.

For tan β = 10, we have investigated hypothetical ‘best-fit’ values for m1/2 of 500 GeV,
700 GeV (for A0 > 0 and A0 < 0) and 900 GeV. For m1/2 = 500 GeV, the 90% C.L.
region in the m1/2–A0 plane is significantly larger than for the current best-fit value of
m1/2 ≈ 300 GeV, but interesting limits can still be set on both m1/2 and A0. For m1/2 =
700 GeV and m1/2 = 900 GeV, the 90% C.L. region extends up to the boundary of the
WMAP-allowed parameter space for m1/2. Even for these large values of m1/2, however, the
precision observables (in particular the observables in the Higgs sector) still allow one to
constrain A0.

4It was checked explicitly that assuming future experimental values of the observables with values dis-
tributed statistically around the present ‘best-fit’ points with the estimated future errors does not degrade
significantly the qualities of the fits.
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Figure 4.10: The results of a χ2 fit based on the prospective experimental accuracies for the
precision observables MW , sin2 θeff , (g − 2)µ, BR(b → sγ), mh and Higgs branching ratios
at the ILC are shown in the m1/2–A0 plane of the mSUGRA with WMAP constraints for
tanβ = 10 [248]. In both plots the WMAP-allowed region and the best-fit point according
to the current situation (see Fig. 4.9) are indicated. In both plots two further hypothetical
future ‘best-fit’ values have been chosen for illustration. The coloured regions correspond to
the 68% and 90% C.L. regions according to the ILC accuracies.
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Figure 4.11: The results of a χ2 fit based on the prospective experimental accuracies for the
precision observables MW , sin2 θeff , (g− 2)µ, BR(b→ sγ), mh and Higgs branching ratios at
the ILC are shown in the m1/2–A0 plane of the mSUGRA scenario with WMAP constraints
for tan β = 50 [248]. In both plots the WMAP-allowed region and the best-fit point for
tanβ = 50 according to the current situation (see Fig. 4.9) are indicated. In both plots two
further hypothetical future ‘best-fit’ values have been chosen for illustration. The coloured
regions correspond to the 68% and 90% C.L. regions according to the ILC accuracies.
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For tanβ = 50, where the WMAP-allowed region extends up to much higher values
of m1/2, we find that for a ‘best-fit’ value of m1/2 as large as 1 TeV the precision data
still allow one to establish an upper bound on m1/2 within the CDM-allowed region. This
indirect sensitivity to m1/2 could give important hints for supersymmetry searches at high-
energy colliders. For ‘best-fit’ values of m1/2 in excess of 1.5 TeV, on the other hand,
the indirect effects of heavy sparticles become so small that they are difficult to resolve even
with ILC accuracies. To conclude, the indirect sensitivity from the measurement of precision
observables at the ILC have a potential even to exceed the direct search reach of both the
LHC and ILC.
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Chapter 5

Conclusions

An overview of the current status of precision tests of supersymmetry has been given, and
future prospects have been discussed. We have mainly focused on the W boson mass, MW ,
the effective leptonic weak mixing angle, sin2 θeff , the anomalous magnetic moment of the
muon, (g − 2)µ, and the lightest CP-even MSSM Higgs boson mass, mh, but constraints
from b physics, direct collider searches and cosmological data have also been included in the
discussion.

Precise experimental data are available forMW , sin2 θeff and (g−2)µ, while mh is expected
to become a precision observable if a supersymmetric Higgs sector is realised in nature.
Confronting the high experimental precision with the theory predictions provides sensitivity
to quantum corrections of the theory, where the whole structure of the model enters. This
allows to set indirect constraints on the properties of particles even if they are too heavy
to be produced directly. In order to exploit the experimental precision, the theoretical
predictions for the electroweak precision observables in supersymmetry (or in other models
that are confronted with the data) should be at least at the same level of accuracy. Ideally,
the remaining theoretical uncertainties should be so small that they are negligible compared
to the experimental errors. Sophisticated higher-order calculations are necessary in order
to match this demand, and a considerable effort will be required for keeping up with the
prospective improvements of the experimental accuracies in future experiments.

We have briefly discussed the necessary ingredients of higher-order calculations in super-
symmetry, focusing in particular on regularisation and renormalization, and have pointed
out important differences compared to the case of the SM. The large number of parameters
in the MSSM, most of which are not directly related to any particular physical observable,
and the relations imposed by the underlying symmetry make it quite involved to formulate
a coherent and easily applicable renormalization prescription for the whole MSSM. Differ-
ent prescriptions exist in the literature for various sectors of the MSSM, but no common
standard has emerged yet.

The current status of the theoretical predictions for the most important precision ob-
servables has been revieved, and estimates of the remaining theoretical uncertainties from
unknown higher-order corrections and from the experimental errors of the SM input pa-
rameters have been given. The theoretical predictions have then been compared with the
current experimental results (in the case of mh the MSSM prediction has been confronted
with the exclusion bounds from the Higgs search at LEP). The resulting constraints on the
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MSSM parameter space have been analyzed. We have investigated how well the MSSM
describes the data and whether the data give some preference for the MSSM as compared
to the SM. This has been analyzed both for the unconstrained MSSM and for specific soft
SUSY-breaking scenarios. The mSUGRA scenario, characterised by four parameters and
a sign, can still simultaneously satisfy the constraints from the electroweak precision data,
direct collider searches and the stringent bounds on cold dark matter in the universe from
WMAP and other cosmological data. It turns out that the mSUGRA scenario with cosmo-
logical constraints in fact yields a very good fit to the data. The fit results indicate a clear
preference for a relatively light mass scale of the SUSY particles, offering good prospects for
direct SUSY searches at the LHC and at the ILC.

We have investigated future prospects of electroweak precision tests of supersymmetric
models. Anticipated improvements in the experimental precision have been discussed in
view of the LHC and the ILC, and the prospects for a further reduction of the theoretical
uncertainties have been analyzed. Based on these estimates of future experimental and
theoretical precisions, we find that the sensitivity of the precision tests will improve very
significantly, leading to stringent constraints on the MSSM parameter space (and on any
other conceivable model of new physics). If supersymmetric particles are discovered at the
next generation of colliders, the combination of information from the direct observation of
SUSY particles and the indirect information from electroweak precision observables will allow
very powerful tests of the model. This can lead to a discrimination between the minimal and
non-minimal models, a distinction between different SUSY-breaking scenarios, and indirect
predictions for parameters or particle masses that are not directly experimentally accessible.
These consistency tests at the quantum level using all available experimental information
will be crucial in the quest to extrapolate the results of the next generation of colliders to
physics at high scales.
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Appendix A

Loop integrals

In this appendix we present the loop integrals needed for the two-loop evaluation of the
SUSY contributions to the EWPO. D denotes the space-time dimension and δ ≡ 1

2
(4 −D).

In the following formulas we neglected the terms proportional to γE − ln(4π µ2), which are
connected to the divergent parts. They always cancel for physical observables.

The analytical formulas for A0 and B0 are taken from Ref. [141], T134 and T234′ are taken
from Ref. [142], the other integrals can be found in Ref. [126]. The notation for the integrals
is as in Ref. [214].

A.1 A0(m)

A0(m1) =
m2

1

δ
+m2

1

(
1 − ln(m2

1)
)

+δ m2
1

(
π2

12
+

1

2
ln2(m2

1) − ln(m2
1) + 1

)
, (A.1)

special cases:
A0(0) = 0 (A.2)

derivatives:

∂

∂m2
A0(m) =

D/2 − 1

m2
A0(m) (A.3)

∂2

∂(m2)2
A0(m) =

D/2 − 1

m4

(
D

2
− 2

)
A0(m) (A.4)

A.2 B0(p
2,m1,m2)

B0(p
2, m1, m2) =

1

δ
B

1/δ
0 +Bfin

0 (p2, m1, m2) + δBδ
0(p

2, m1, m2)
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with B
1/δ
0 = 1

Bfin
0 (p2, m1, m2) = −

{1

2

(
ln(m2

1) + ln(m2
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− 2 +
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(A.5)

(A.6)

r1 and r2 are the solutions of

m2
2 r +

m2
1

r
= m2

1 +m2
2 − p2. (A.7)

special cases:

B0(0, m1, m2) =
A0(m1) − A0(m2)

m2
1 −m2

2

(A.8)

B0(0, m,m) =
D/2 − 1

m2
A0(m) (A.9)

B0(0, m, 0) =
1

m2
A0(m) (A.10)

derivatives:
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N
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− m2
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2

q2
(B0(q
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2] (A.12)

Special cases:

B′
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2, m,m) =
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[
2m2
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B′
0(q
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−m
4

q2
(B0(q

2, 0, m) − B0(0, 0, m))
]

(A.15)

B′
0(q

2, 0, 0) = − 1

q2
(A.16)

A.3 T134

The masses have to fulfil the relation m3 > m1, m2.

T134 =
1

2 δ2
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1 +m2
2 +m2

3

)
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with
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(A.18)

λ(x, y) =
√

1 + x2 + y2 − 2x− 2y − 2xy (A.19)
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special cases:
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T13′4′(m
2, 0, 0) =
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2 δ2

(
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)
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A.4 T234′

Here p2 contains a small imaginari part, iǫ, ǫ > 0.
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where r1 and r2 are given by eq. (A.7).

A.5 T123′4

The following formula, looking at the series expansion in 1/δ, are correct up to O(δ0).

T123′4(m
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with the following functions

B̃(p2, m2
i , m

2
j ) =

1

δ
+

{
1

2


2 +


 m2

i

−p2
−

m2
j

−p2
+

√

λ

(
m2

i

−p2
,
m2

j

−p2

)
 ln(xij) − ln

(
m2

i

−p2

)


+
1

2


2 +


 m2

j

−p2
− m2

i

−p2
+

√

λ

(
m2

i

−p2
,
m2

j

−p2

)
 ln(xji) − ln

(
m2

j

−p2

)

}

(
1 + (ln(p2) − iπ)δ

)

+δ

(
Bδ

0(p
2, mi, mj) −

1

2
(ln(p2) − iπ)2

)
(A.26)
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λ(x, y) = 1 + 2x+ 2y + (x− y)2 (A.29)

F (x) = 6Li3(x) − 4Li2(x) ln(x) − ln2(x) ln(1 − x) (A.30)

G(x) = −2Li2(1 − x) +
π2

3
+

x

1 − x
ln2(x) (A.31)

A.6 T1123′4

The following formula, looking at the series expansion in 1/δ, correct up to O(δ0).
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A.7 T123′45

The following formula, looking at the series expansion in 1/δ, correct up to O(δ0).

T123′45(m
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1, m

2
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2
4, m

2
4) =
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2
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(F (1) + F (x14x41) − F (x14) − F (x41)) (A.33)

This function is finite in the limit δ → 0.
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Appendix B

Input parameters and benchmark
scenarios

For our numerical results, the following values of the SM parameters have been used (all
other quark and lepton masses are negligible):

GF = 1.16639 × 10−5, mτ = 1.777 GeV,

MW = 80.450 GeV, mt = 174.3 GeV,

MZ = 91.1875 GeV, mb = 4.25 GeV,

ΓZ = 2.4952 GeV, mc = 1.5 GeV.

(B.1)

The predictions for the observables in this report are in some cases expressed in terms of
running bottom- and top-quark masses in order to absorb QCD corrections. The numerical
values of these running masses differ from the pole masses given in eq. (B.1).

For our numerical evaluation we often refer to four benchmark scenarios that have been
defined in Ref. [33] for Higgs boson searches at hadron colliders and beyond. The four
benchmark scenarios are (more details can be found in Ref. [33])

• the “mmax
h ” scenario, which yields a maximum value of Mh for given MA and tan β,

mt = 174.3 GeV, MSUSY = 1 TeV, µ = 200 GeV, M2 = 200 GeV,

Xt = 2MSUSY, Aτ = Ab = At, mg̃ = 0.8MSUSY ,
(B.2)

• the “no-mixing” scenario, with no mixing in the t̃ sector,

mt = 174.3 GeV, MSUSY = 2 TeV, µ = 200 GeV, M2 = 200 GeV,

Xt = 0, Aτ = Ab = At, mg̃ = 0.8MSUSY , (B.3)

• the “gluophobic-Higgs” scenario, with a suppressed ggh coupling,

mt = 174.3 GeV, MSUSY = 350 GeV, µ = 300 GeV, M2 = 300 GeV,

Xt = −750 GeV, Aτ = Ab = At, mg̃ = 500 GeV , (B.4)
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• the “small-αeff” scenario, with possibly reduced decay rates for h→ bb̄ and h→ τ+τ−,

mt = 174.3 GeV, MSUSY = 800 GeV, µ = 2.5MSUSY, M2 = 500 GeV,

Xt = −1100 GeV, Aτ = Ab = At, mg̃ = 500 GeV . (B.5)

As explained above, for the sake of simplicity, MSUSY is chosen as a common soft SUSY-
breaking parameter for all three generations.

127



Bibliography

[1] H.P. Nilles, Phys. Rep. 110 (1984) 1;
H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75;
R. Barbieri, Riv. Nuovo Cim. 11 (1988) 1.

[2] S.L. Glashow, Nucl. Phys. B22 (1961) 579;
S. Weinberg, Phys. Rev. Lett. 19 (1967) 19;
A. Salam, in: Proceedings of the 8th Nobel Symposium, Editor N. Svartholm, Stockholm,
1968.

[3] S. Eidelman et al. [Particle Data Group Collaboration], Phys. Lett. B 592 (2004) 1.

[4] S. Abel et al. [SUGRA Working Group Collaboration], hep-ph/0003154.

[5] ATLAS Collaboration, Detector and Physics Performance Technical Design Report,
CERN/LHCC/99-15 (1999), see:
atlasinfo.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html .

[6] CMS Collaboration, see:
cmsinfo.cern.ch/Welcome.html/CMSdocuments/CMSplots/ .

[7] J. Aguilar-Saavedra et al., TESLA TDR Part 3: “Physics at an e+e− Linear Collider,”
hep-ph/0106315, see: tesla.desy.de/tdr/ .

[8] T. Abe et al. [American Linear Collider Working Group Collaboration], Resource book
for Snowmass 2001, hep-ex/0106055, hep-ex/0106056, hep-ex/0106057,

[9] K. Abe et al. [ACFA Linear Collider Working Group Collaboration], hep-ph/0109166.

[10] [LHC / LC Study Group], G. Weiglein et al., hep-ph/0410364.

[11] J. Gunion, H. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide, Addison-
Wesley, 1990.

[12] [LEP Higgs working group], hep-ex/0107030; hep-ex/0107031; LHWG-Note 2004-01,
see: lephiggs.web.cern.ch/LEPHIGGS/papers/ .

[13] G. Abbiendi et al. [ALEPH, DELPHI, L3, OPAL Collaborations and LEP Working
Group for Higgs boson searches], Phys. Lett. B 565 (2003) 61, hep-ex/0306033;

128



[14] M. Carena et al., [Tevatron Higgs working group], hep-ph/0010338;
updated as:
L. Babukhadia et al. [CDF and D0 Working Group Members Collaboration],
FERMILAB-PUB-03-320-E, see:
library.fnal.gov/archive/test-preprint/fermilab-pub-03-320-e.shtml .

[15] M. Carena and H. Haber, Prog. Part. Nucl. Phys. 50 (2003) 63, hep-ph/0208209.

[16] J. Ellis, S. Heinemeyer, K. Olive and G. Weiglein, Phys. Lett. B 515 (2001) 348,
hep-ph/0105061.

[17] A. Dedes, S. Heinemeyer, S. Su and G. Weiglein, Nucl. Phys. B 674 (2003) 271, hep-
ph/0302174.
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