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Data on low-pT hadronic spectra are widely regarded as evidence of a hydrodynamic expansion in nucleus-
nucleus collisions. In this interpretation, different hadron species emerge from a common medium that has
built up a strong collective velocity field. Here we show that the existence of a collective flow field implies
characteristic modifications of high-pT parton fragmentation. We generalize the formalism of parton energy
loss to the case of flow-induced oriented momentum transfer. We also discuss how to embed this calculation
in hydrodynamic simulations. Flow effects are found to result generically in characteristic asymmetries in the
η × φ plane of jet-energy distributions and of multiplicity distributions associated with high-pT trigger particles.
However, collective flow also contributes to the medium-induced suppression of single inclusive high-pT hadron
spectra. In particular, we find that low-pT elliptic flow can induce a sizable additional contribution to the high-pT

azimuthal asymmetry by selective elimination of those hard partons that propagate with significant inclination
against the flow field. This reduces, at least partially, the recently observed problem that models of parton energy
loss tend to underpredict the large azimuthal asymmetry v2 of high-pT hadronic spectra in semiperipheral Au +
Au collisions.

DOI: 10.1103/PhysRevC.72.064910 PACS number(s): 12.38.Mh

I. INTRODUCTION

What happens if a hard process, such as the production
of high-ET jets, is embedded in a dense nuclear environment
created, e.g., in a nucleus-nucleus collision at the Brookhaven
National Laboratory’s Relativistic Heavy Ion Collider (RHIC)
or at the Large Hadron Collider (LHC) ? While parton-parton
interactions at high virtuality Q2 � �2

QCD occur at too-short
time and length scales to be affected by the typical modes in
the medium, the parton showers associated with the incoming
and outgoing state can interact with the medium [1–6]. This
is expected to result in an energy degradation of the leading
parton [1–6], in a transverse momentum broadening of the
parton shower [7–10], and in an enhanced and softened
multiplicity distribution of the hadronic final state [10].
Measurements in Au + Au collisions at the RHIC support
this picture by the observed suppression of leading hadron
spectra [11–16] and leading back-to-back correlations [17], as
well as the medium-modified “jetlike” properties of particle
production associated with high-pT trigger particles [18–20].
The analysis of these “jet-quenching” observables has become
one of the most active and most diverse research fields in
ultrarelativistic nucleus-nucleus collisions, mainly because the
pattern of medium-induced partonic energy loss is expected to
allow for a detailed characterization of the properties of the
produced dense medium.

Parton energy loss is known to be sensitive to the total
in-medium path length and to the average squared transverse
momentum transferred from the medium to the hard parton
[21–25]. In recent phenomenological studies, the latter quan-
tity has been parametrized by the Baier-Dokshitzer-Mueller-
Peigné-Schiff (BDMPS) transport coefficient q̂ [10,26] or
by physically equivalent model-dependent quantities such as
twist-4 multiple-scattering matrix elements [27], the medium
opacity, or the number of initially produced gluons per unit
rapidity [28]. These model parameters can be related to the

energy density of the produced matter [10,29,30]:

q̂(ξ ) = cε3/4(ξ ). (1.1)

Here, c is a medium-dependent constant (c ∼ 2 for the case
of an ideal quark-gluon plasma [26,29]), and Eq. (1.1) also
holds for a time-dependent energy density, as indicated by
the explicit ξ dependence. Recently, several phenomeno-
logical analyses have used the medium modifications of
high-pT hadron production to extract information about the
energy density attained in nucleus-nucleus collisions at the
RHIC [24,26,27,31]. These models also account successfully
for the centrality dependence of the suppression pattern
[27,31,32] and the reduction of leading back-to-back corre-
lation [27,31,32]. However, they tend to underpredict [31,32]
the elliptic flow v2(pT ) at high transverse momentum, which is
thought to originate from parton energy loss in an azimuthally
asymmetric geometry [28,33].

In nucleus-nucleus collisions at the RHIC and at the CERN
Super Proton Synchrotron (SPS), there is strong experimental
evidence that the produced medium is only locally—-if at all—
equilibrated and is thus characterized only locally by its energy
density. Measurements of low-pT inclusive hadron spectra [34,
35] and their azimuthal asymmetry [36–38] support the picture
that different hadron species emerge from a common medium
that has built up a strong collective velocity field [39–43].
These measurements are broadly consistent with calculations
based on ideal hydrodynamics [41–45], in which the dynamic
behavior of the produced QCD matter is fully specified by
its equation of state p = p(ε, T , µB ) that enters the energy-
momentum tensor

T µν(x) = (ε + p)uµuν − pgµν. (1.2)

For the case of a longitudinal Bjorken-type flow field
uµ = (1, �β)/

√
1 − β2, �β = βẑ, the longitudinal component

of the energy-momentum tensor increases from T zz = p to

0556-2813/2005/72(6)/064910(13)/$23.00 064910-1 ©2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.72.064910


ARMESTO, SALGADO, AND WIEDEMANN PHYSICAL REVIEW C 72, 064910 (2005)

FIG. 1. (Color online) Sketch of the expected energy or multi-
plicity distribution of a jet fragmenting (left) in the vacuum (middle)
in a medium that is longitudinally comoving with the rest frame of
the jet, and (right) in a medium that is longitudinally boosted with
respect to the rest frame of the jet.

T zz = p + �p, where �p = (ε + p)uzuz = 4pβ2/(1 − β2)
for the equation of state of an ideal gas, ε = 3p. For a rapidity
difference η = 0.5, 1.0, and1.5 between the rest frame that is
longitudinally comoving with the jet and the rest frame of the
medium, the component T zz of the energy-momentum tensor
“seen” by the hard parton is thus increased by a factor of
1, 5, and18, respectively. It is thus reasonable to assume that
the momentum transfer from the medium to a test particle
such as a hard parton does not depend solely on the local
energy density ε, but rather on the energy-momentum tensor
(1.2), which involves a significant directed collective flow field
uµ(x) [46].

Figure 1 sketches the qualitative picture first advocated in
Ref. [46]: A jet that fragments inside a medium is known to
broaden its shape and to soften its multiplicity distribution.
However, if the medium exhibits a collective motion, then
a smaller local energy density is sufficient for the same net
momentum transfer to the hard parton and thus for the same
medium-induced parton energy loss. Moreover, the directed
momentum transfer can be expected to break the rotational
symmetry of the jet shape in the η × φ plane. In this work,
we give a detailed description of the formalism incorporating
these effects and we explore observable consequences of the
resulting interplay of oriented and random momentum transfer
to a hard parton.

For each jet, rotational symmetry in the η × φ plane is
broken even in the absence of a medium, mainly for two
reasons: Statistically, any finite multiplicity distribution of a

rotationally symmetric sample breaks the rotational symmetry.
If this were the only source of symmetry breaking, one
could search for medium-induced asymmetries in realigned
jet samples, similar to the analysis of elliptic flow in realigned
event samples [47,48]. In addition, however, the kT ordering
of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
parton shower implies that the first parton splitting in the
shower contains significantly more transverse momentum
than the second, thus leading to a dynamical asymmetry in
the η × φ plane. Both effects lead to symmetry breaking
in a random direction in the η × φ plane—thus rotational
symmetry is restored in sufficiently large jet samples. To search
for symmetry-breaking effects caused by collective motion
in η × φ distributions of jet energy and jet multiplicity, it
is thus important to control experimentally the direction of
this collective motion. From these arguments, we foresee two
classes of applications for our calculations.

First, in general, a hard parton needs not be produced
in the Lorentz frame that is longitudinally comoving with
the medium (Fig. 2a); and even if it is produced in the
longitudinally comoving frame, it will in general not stay in
this frame during the entire time evolution of the medium.
This is so because the hard parton moves—like any effectively
massless particle—on a straight lightlike line in the (z, t)
diagram, whereas the collective flow field is expected to
show significant deviations [49,50] from Bjorken expansion
and will thus intersect this straight line. In such cases, the
collective component of the momentum transfer to the hard
parton is directed along the beam axis. Hence averaged
samples of medium-modified jet shapes and jet multiplicities
can be expected to show an asymmetry that is preferentially
oriented along the beam direction in the η × φ plane. (At
mid-rapidity, the jet sample must be symmetric with respect
to the η → −η mirror symmetry, but, in general, it will
not be rotationally symmetric in the η × φ plane.) In the
case of a significant transverse collective flow (Fig. 2b), the
analogous argument implies the occurrence of jet asymmetries
preferentially oriented along the φ direction. In principle, the
initial-state radiation associated with a hard process can also
be shifted in phase space because of a flow field; see Ref. [51]
for related work. This work, however, focuses entirely on the
final-state radiation underlying jet fragmentation. In general,
the size and the orientation of the jet asymmetry depend on
how hard processes are spatially distributed in the dynamical
expansion case.

Second, flow effects manifest themselves not only in the
azimuthal asymmetries of jet observables, but also in inclusive
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FIG. 2. (Color online) Schematic view of two
cases in which jets interact with collective flow
fields: (a) If the hard parton is not produced in
the Lorentz frame longitudinally comoving with the
medium, or if the longitudinal collective flow does
not show Bjorken scaling, then the parton interacts
with a flow component parallel to the beam. (b) On
their propagation in the transverse direction, hard
partons generically test transverse flow components,
except for the special trajectories that are parallel to
the flow field.
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high-pT hadron spectra. In the presence of a flow field, a
smaller local energy density is sufficient for the same net
momentum transfer to the hard parton and thus for the
same medium-induced parton energy loss. This is relevant
for the interpretation of the nuclear modification factor in
terms of a local energy density. Moreover, hard partons
propagating parallel to a flow field can be expected to suffer
less momentum transfer and hence less parton energy loss
than those traveling along nonparallel trajectories. In this
way, low-pT collective flow can induce high-pT azimuthal
asymmetry by selective elimination of those hard partons that
propagate with significant inclination against the flow field.
We show that this can yield a sizable additional contribution
to high-pT v2.

This paper is organized as follows: In Sec. II, we introduce
the formalism in which the effects of anisotropic momentum
transfer on parton energy loss are calculated. In Sec. III, we
calculate the induced asymmetry of the medium-dependent
gluon-energy distribution, and in Sec. IV we analyze the re-
sulting anisotropic jet-energy distribution. Up to this point, the
medium will be characterized schematically by the momentum
scale µ that determines the random momentum transfer to
the hard parton and the vector q0 that specifies the oriented
momentum transfer. The ratio q0/µ indicates the relative
strength of collective flow. In Sec. V, we then discuss how to
embed this calculation in a dynamical expansion scenario, and
we estimate the flow-induced parton energy loss contribution
to high-pT v2. Finally, we summarize the main conclusions.

II. THE FORMALISM

The starting point of our calculation is the energy distribu-
tion of partons into which the initially produced parent parton
fragments:

ω
dI tot

dω dk
= ET − �ET

ET

ω
dI vac

dω dk
+ ω

dImed

dω dk
. (2.1)

Here, ET denotes the total energy of the hard parton and
�ET = ∫

dω dk ωdImed/dω dk is that part of the total en-
ergy that is redistributed by medium-induced radiation. The
radiation spectrum in the vacuum is normalized to ET =∫

dω dk ωdI vac/dω dk, since, in the absence of a medium,
the entire energy ET of the initial parton resides in the
vacuum component. In the presence of a medium, this vacuum
contribution is reduced by the factor (ET − �ET )/ET . With
this prefactor, one finds

∫
dω dkω dI tot/dω dk = ET , i.e.,

the total energy radiated always equals the initial energy of
the parent parton, irrespective of the strength of medium
effects. In this sense, the factor (ET − �ET )/ET ensures
energy-momentum conservation.

In the absence of a nuclear environment, the parton
fragments according to the distribution I tot = I vac. In the
medium, the parent parton radiates additional gluons because
of medium-induced multiple scattering. This medium-induced
gluon radiation has been calculated to leading order in 1/E,
resumming an arbitrary number of scattering centers [2–5].
It depends to leading order in 1/E on the in-medium path
length L and on the average squared transverse momentum
transferred to the hard parton per unit path length. The latter

property of the medium is parametrized differently in different
approaches, e.g., in terms of the BDMPS transport coefficient
q̂ [2–4], or as the product of the longitudinal density of
scattering centers n0 along the parton trajectory and their
typical momentum transfer µ2 [4,5]. These parametrizations
are known to lead to equivalent results for the medium-
induced gluon radiation [9]. In what follows, we use the
single-hard scattering approximation, in which the effects of
multiple scattering are characterized by the number of effective
scattering centers n0L times the radiation off a single scattering
center. The elastic-scattering cross section is modeled in terms
of Debye-screened Yukawa potentials:

|a(q)|2 = µ2

π (µ2 + q2)2
. (2.2)

The medium-induced gluon radiation is given by Refs. [4,5,9]

ω
dImed

dω dk
= αs

(2π )2

4CRn0

ω

∫
dq|a(q)|2 k · q

k2

×
−L

(k+q)2

2ω
+ sin

[
L

(k+q)2

2ω

]
[(k + q)2/2ω]2

. (2.3)

This radiation spectrum is for a time-independent homoge-
neous medium. However, it also applies to a time-dependent
density of scattering centers if the density n0 is replaced with
an appropriate time average (see Refs. [9,52] and Sec. V A).
Moreover, by going step by step through the derivation of
Eq. (2.3) given in Ref. [4], we have checked explicitly that
Eq. (2.3) holds also for azimuthally anisotropic-scattering
potentials in which |a(q)|2 is not a function of |q| only.

If a flow component is directed orthogonally to the parton
trajectory, then the momentum transfer from the medium is
anisotropic. We denote by �q0 = (q0, q

l
0) the directed momen-

tum transfer to the hard parton that is parallel to the spatial
components of the flow field uµ(x). Here and in the following
discussion, transverse vectors lie in the plane orthogonal to the
trajectory of the hard parton while longitudinal components are
parallel to this trajectory. In the high-energy limit, momentum
transfers parallel to the hard parton are negligible. Thus the
effect of collective flow on the medium-induced radiation
[Eq. (2.3)] can be accounted for by use of an anisotropic
scattering potential

|a(q)|2 = µ2

π [(q − q0)2 + µ2]2
. (2.4)

The parameters µ and |q0| characterize the strength of the
random and directed momentum transfers from the medium to
the hard test particle, respectively. The component ql

0 is parallel
to the parton trajectory and does not enter our calculation. We
work in radial coordinates,

dq = qdqdϕ, dk = k dk dα, (2.5)

where α denotes the angle between the transverse momenta
k and q0. The ϕ integration in Eq. (2.3) can then be done
analytically. We always work in the frame longitudinally
comoving with the hard parton in which the parton propagates
orthogonal to the beam direction.

We now consider more explicitly the case of a longitudinal
flow component parallel to the beam direction; see Fig. 3. To

064910-3



ARMESTO, SALGADO, AND WIEDEMANN PHYSICAL REVIEW C 72, 064910 (2005)

jet

gluon

beam

k

β

α

φ

ω

FIG. 3. (Color online) Definition of kinematic variables of a gluon
emitted inside a jet cone. Variables are defined in the Lorentz frame
that is longitudinally comoving with the jet.

express the radiation spectrum as a function of pseudorapidity
η and azimuthal angle φ with respect to the center of the jet at
η = φ = 0, we write the pseudorapidity of an emitted gluon
as η = − ln tan β/2, where β is the angle between the gluon
momentum and the beam axis. We have

tan β = ω

k cos α

√
1 −

(
k

ω

)2

cos2 α, tan φ = k sin α√
ω2 − k2

.

(2.6)

Inversion leads to

cos α = sinh η√
cosh2 η − cos2 φ

,
k

ω
=

√
cosh2 η − cos2 φ

cosh η
.

(2.7)

The Jacobian for the transformation to jet observables η, φ
reads

k dk dα = ω2 cos φ

cosh3 η
dηdφ. (2.8)

Our final expression is

ω
dImed

dω dη dφ
= ω3 cos φ

cosh3 η

αsCR

π2

4n0 µ2

k2

∫ ∞

0
dq2

Lq2

2ω
− sin Lq2

2ω

q4

× k2[q2+µ2+(q0+k)2]−2q2k · (q0+k){
[q2+µ2−(q0+k)2]2+4µ2(q0+k)2

}3/2 ,

(2.9)

where k and the angle α are given by Eq. (2.7) in terms of η

and φ. The case of a transverse flow component is obtained by
obvious rotations and redefinitions of the vectors in Fig. 3.

III. TRANSVERSE MOMENTUM DEPENDENCE OF THE
MEDIUM-INDUCED GLUON RADIATION IN THE

PRESENCE OF FLOW

In this section, we discuss the generic properties of the
medium-induced gluon radiation [Eq. (2.3)] in the presence
of collective flow. To this end, it is convenient to change to
dimensionless variables

κ̄ = |k|/µ, q̄ = |q|/µ, γ̄ = ω̄c/ω, ω̄c = 1
2µ2L.

(3.1)

We transform Eq. (2.3) to radial coordinates dq = µ2q̄dq̄dϕ

and dk = µ2κ̄ dκ̄dα, where α denotes the angle between the
transverse momenta k and q0. Doing the ϕ integration in
Eq. (2.3), we find

ω
dImed

dωκ̄dκ̄dα
= αsCR

π2
2n0L

∫
dq̄2

q̄2 − 1
γ̄

sin γ̄ q̄2

κ̄2q̄4

κ̄2
[
q̄2 + 1 + (

q̄2
0 + κ̄2 + 2q̄0κ̄ cos α

)] − 2q̄2(κ̄2 + κ̄ q̄0 cos α){[
q̄2 + 1 − (

q̄2
0 + κ̄2 + 2q̄0κ̄ cos α

)]2 + 4
(
q̄2

0 + κ̄2 + 2q̄0κ̄ cos α
)}3/2 .

(3.2)

In Fig. 4, we plot the medium-induced energy distribution
as a function of κ̄2 and α for fixed ratios of γ̄ = ω̄c/ω. Here,
α = 0 denotes the direction of the collective flow vector q0.
Figure 4 shows clearly that more energy is deposited in the
direction of the collective flow vector q0. For the same reason,
the energy distribution is depleted in the direction opposite to
q0, i.e., for α ∼ π . For the medium-induced component plotted
in Fig. 4, this shows up as a negative contribution, while the
total energy distribution (2.1) stays, of course, positive.

For nonzero values of the flow vector q0, the triple
differential gluon distribution (3.2) has a singular behavior
for κ̄ → 0:

lim
κ̄→0

ω
dImed

dω κ̄dκ̄ dα
=

{+∞ for −π
2 < α < π

2

−∞ for π
2 < α < 3π

2

. (3.3)

Figure 4 displays only finite values of κ̄ , but the limit
(3.3) is consistent with the small-κ̄ behavior seen in Fig.
4. This singularity is unphysical. It stems from the fact
that the formalism leading to Eq. (2.3) calculates medium
modifications to a perturbative parton splitting ∝ 1/k2

without regularization of this collinear divergence. At κ̄ = 0,
the anisotropic flow field shifts part of this singularity as a
positive contribution to the half plane −π/2 < α < π/2 while
depleting the region π/2 < α < 3π/2. In the η × φ plane,
Eq. (2.9) integrated over energy shows the same singular
structure, namely a positive divergence for η → 0+ and a
negative divergence for η → 0−. These two divergences
cancel each other if integrated over an arbitrary small
neighborhood around κ̄ = 0 (i.e., around η = φ = 0). They
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FIG. 4. (Color online) Plot of the medium-induced gluon energy distribution (3.2) as a function of the angle α and rescaled transverse
momentum κ̄2 = k2/µ2 for different values of the rescaled gluon energy 1

2 µ2L/ω and the collective flow strength q0. Plots are for µ = 2 GeV and
L = 6 fm.

represent a very small contribution to the total jet energy (see
the discussion below).

In Fig. 5, we plot the gluon-energy distribution (3.2)
for a sample of medium-modified jet shapes for which the

orientation ±q0 of the collective flow is known but the
directions q0 and −q0 are equally likely. The figure clearly
indicates that the singular behavior for κ̄ → 0 disappears.
For fixed values of γ̄ = ω̄c/ω, the energy distribution has a
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FIG. 5. (Color online) The gluon-energy distribution (3.2) for the same parameters as in Fig. 4, but averaged over the cases q0 and −q0.
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finite constant value for κ̄ → 0. By construction, the obtained
distribution is symmetric around α = π/2, but it shows a
marked angular dependence.

IV. COLLECTIVE FLOW LEADS TO ANISOTROPIC
JET-ENERGY DISTRIBUTIONS

In this section, we discuss the medium modification of
jet-energy distributions. Our starting point is the gluon-energy
distribution (2.1). We constrain the vacuum contribution I vac of
this spectrum by data on the energy fraction of a jet contained
in a subcone of radius R =

√
η2 + φ2:

ρvac(R) ≡ 1

Njets

∑
jets

ET (R)

ET (R = 1)

= 1 − 1

ET

∫
dω

∫ ω

dk �

(
k

ω
− R

)
ω

dI vac

dω dk
.

(4.1)

For the jet shape ρvac(R), we use the parametrization [53] of
the Fermilab D0 Collaboration determined for jets in the range
≈50 < Et < 170 GeV and opening cones 0.1 < R < 1.0:

ρ(D0)
vac (R) = AR0.1 + BR0.3 + CR0.5 + DR0.7 + ER0.9,

(4.2)

where

A(ET ) = −3.47 + 0.85 × 10−2ET − 0.25 × 10−4E2
T ,

D(ET ) = 3.30 − 0.77 × 10−2ET + 0.22 × 10−4E2
T , (4.3)

B = 9.75, C = −8.32, E = −0.30.

At very small values of R, this parametrization turns negative.
We cure this unphysical behavior by matching Eq. (4.2) with a
third-order polynomial that smoothly interpolates to ρvac(R =
0) = 0:

ρvac(R) =
{

ρ(D0)
vac (R) for R > 0.04

aR2 + bR3 for R < 0.04.
(4.4)

We fix the parameters a and b in Eq. (4.4) by requiring that
ρvac(R) and its first derivative are continuous.

The medium-induced part of the jet-energy distribution is
determined from Eq. (2.9):

dEmed

dη dφ
=

∫ E

0
dω ω

dImed

dω dη dφ
. (4.5)

It contains a fraction �ET /ET of the available jet energy:

�ET =
∫

dη

∫
dφ

dEmed

dη dφ
. (4.6)

For the vacuum contribution, the corresponding distribution is
defined by the vacuum jet shape [Eq. (4.4)]:

dEvac

dη dφ
= (ET − �ET )

dρvac

2πR dR
. (4.7)

Here, the prefactor (ET − �ET ) ensures energy conservation.

A. Harmonic expansion of jet-energy distribution

In this subsection, we characterize the flow-induced asym-
metry of jet-energy distributions in terms of a harmonic
analysis in the η × φ plane. We introduce radial coordinates
in this plane:

R =
√

η2 + φ2, (4.8)

α′ = arctan (φ/η) . (4.9)

The flow field points in the direction α′ = 0. We calculate now
the jet-energy distribution in the η × φ plane:

dET

RdRdα′ = dET

dη dφ
= dEvac

T

dη dφ
+ dEmed

T

dη dφ
. (4.10)

In the absence of flow, the radiation spectrum (3.2) is
rotationally symmetric in the coordinates κ̄ (or k) and α.
However, the energy distribution (4.10) is elongated in the
φ direction because of the Jacobian (2.8) in the coordinate
transform. In general, this reduces the effect of η broadening
that is due to longitudinal flow, and it can be corrected for
analytically. However, this asymmetry is rather small (<10%)
for small cone sizes (R < 0.3), and can be neglected safely
in the following discussion. To analyze the asymmetries of
jet-energy distribution (4.10) in the η × φ plane, we use a
harmonic expansion:

dET

RdR dα′ = E(0)(R) + 2
∞∑

n=1

E(n)(R) cos
(
nα′) . (4.11)

The coefficients proportional to sin
(
nα′) cancel since the jet-

energy distribution (4.10) is by construction symmetric with
respect to α′ → −α′.

For illustration, we now study the case of a jet of total
energy ET = 100 GeV traversing a medium in which �ET =
23 GeV were redistributed in phase space because of medium
effects. This parton energy loss is obtained, e.g., for an in-
medium path length of nuclear size (L = 6 fm), a momentum
transfer per scattering center of µ = 1 GeV, and a collective
flow effect of the same size q0 = µ, with an effective coupling
constant in Eq. (2.3) fixed to n0LαsCR = 1. This corresponds
to a gluon jet (CR = CA = 3) with a reasonable perturbative
coupling αs = 1/3 and an opacity n0L = 1. Changes in the
coupling can be absorbed in a redefinition of the density of
scattering centers. Recent model comparisons with RHIC data
support the picture of an opaque medium that may result in
significantly larger medium-induced modifications than the
ones modeled here. However, to illustrate the sensitivity of
jet-shape measurements, we prefer to work with a sizable but
relatively small effect.

In Fig. 6, we show the first six harmonic coefficients ex-
tracted for the jet-energy distribution (4.11). Since the vacuum
term [Eq. (4.4)] is rotationally symmetric, it contributes only
to E(0)(R). The total jet energy is obtained by integration of
this zeroth moment over R. The shape of the medium-induced
part of E(0)(R) is negative at small R, which indicates the
medium-induced depletion of the jet energy in this region
of phase space. This is the result of multiple scattering that
broadens the jet-energy distribution by moving a fraction of
the total jet energy to larger values of R. The higher moments
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FIG. 6. The harmonic coefficients
that characterize the asymmetry of the
jet-energy distribution of a 100-GeV jet
in the η × φ plane. Parameters are given
in the text.

E(n)(R), n � 1, contain information about asymmetries in the
energy distribution but do not contribute to the total jet energy.
For the case of averaged jet samples over opposite flow
directions q0 and −q0, the odd harmonic moments vanish
while the even ones stay the same. The absolute size of the
harmonic moments decreases by approximately 1 order of
magnitude per moment n. This indicates that the first and
second moments are sufficient to characterize the asymmetries
of the jet shape. We note that to reconstruct the jet shape
from the moments E(0)(R), E(1)(R), and E(2)(R), we have to
integrate over RdR—this tames significantly the large values
of these moments in the region R ∼ 0. We expect that most
of the experimentally accessible structures lie in the range
0.05 < R < 0.3.

The technical advantage of the harmonic expansion (4.11)
is that the unphysical singularities of the vacuum contribution
(4.7) and the medium contribution (4.5) at R = 0 can be
removed easily. In the harmonic coefficients E(n)(R) of Eq.
(4.11), these singularities appear in the odd moments at
R → 0. The smallest value calculated for Fig. 6 is for R =
0.01. For much smaller values of R, we find numerically
E(1)(R = 10−4) ∼ 2 × 105 and E(1)(R = 10−6) ∼ 2 × 107.
For the figures presented in this work, we cut off this artificial
small-R structure in the harmonics and plot the jet-energy
distribution according to Eq. (4.11). As explained above, the
presence of these singularities indicates that our formalism
becomes unreliable in the collinear region of very small R. For
the arguments in this paper, this is not a problem since only a
small amount (<5% for R < 0.01) of the total jet energy lies
inside this small phase-space region.

B. Profile and displacement of jet-energy distribution

In general, collective flow shifts the calorimetric jet center
and distorts the shape of the jet-energy distribution. Any
calorimetric jet-finding algorithm can be expected to center
the cone around the medium-displaced jet center. Figure 7
shows this displacement �η as a function of the collective flow

FIG. 7. The displacement �η of the calorimetric center of the
jet cone as a function of collective flow strength q0 and average
momentum transfer µ from the medium.
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FIG. 8. The jet-energy distribution
(4.10), plotted along different cuts in the
η × φ plane, as indicated. The variables
Rd and αd denote the distance and ori-
entation, respectively, with respect to the
displaced calorimetric center of the jet
cone. Parameters are the same as those
of Fig. 6.

strength, calculated by averaging the jet-energy distribution
(4.10) over a central cone of size R < 0.3. For a fixed average
momentum transfer µ per scattering center, the displacement
grows approximately linearly with the directed momentum
transfer q0. Also, �η grows approximately linear with the
average momentum transfer µ for a fixed ratio q0/µ. The
overall size of the displacement is rather small: A displacement
of size �η = 0.1 results only for rather large parameter
values (e.g., q2

0 = 4µ2 = 8 GeV2), that correspond to a large
medium-induced average energy loss (�ET ≈ 62 GeV). This
is consistent with the picture that the most energetic jet
fragments are radiated collinear. These energetic components
that dominate the energy distribution are shifted very little in
the η × φ plane even if they pick up a significant transverse
momentum.

In Fig. 8, we show different one-dimensional cuts through
the jet-energy distribution (4.10). These cuts go through
the displaced jet center and are quantified by the radial
coordinates Rd and αd of the displaced center. Along the
beam direction (αd = 0), the jet-energy distribution is shifted
with the flow field; see Fig. 8. The medium-induced part
of the jet-energy distribution takes negative values in the
region of phase space that is depleted because of medium
effects. We observe in particular a pronounced long tail of the
distribution in the direction of the flow. We attribute this tail

to the soft jet fragments that can be displaced significantly
in η by a typical momentum transfer from the medium. In
contrast, in the direction orthogonal to the collective flow, one
observes a numerically small medium-induced broadening of
the jet-energy distribution, which is not accompanied by a
displacement.

For measurements at mid-rapidity, one can obtain exper-
imentally only the orientation but not the direction of the
collective flow component. Then each jet of the sample is
positioned around its calorimetric center that is shifted with
equal probability in the positive or negative beam direction.
We have given numerical results for this case already in a
previous exploratory study [46]. The main conclusion is that
the jet-energy distribution can broaden significantly along the
orientation of the flow. The analogous conclusion holds for the
case of a strong transverse collective flow field, in which only
φ → −φ-symmetrized samples are measurable.

C. Asymmetries in the jet-multiplicity distributions

If the jet-energy distribution is sensitive to collective flow,
then high-pT particle correlations and jet multiplicities should
be sensitive too. From the medium-induced gluon-energy
distribution (2.7), we can explore this sensitivity qualitatively
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FIG. 9. The medium-induced contri-
bution (4.12) to the total jet-multiplicity
distribution for different cuts in the η × φ

plane. Parameters are the same as those
of Fig. 6.

by calculating the number of medium-induced gluons emitted
with a gluon energy ω > ωcut. In the η × φ plane, this
medium-induced multiplicity distribution reads

N (φ, η, ωcut) ≡ dN(ωcut)

dη dφ
=

∫ E

ωcut

dω
dImed

dη dφ
. (4.12)

Relating Eq. (4.12) to an experimentally accessible quantity
requires a hadronization model and faces uncertainties that
have been mentioned before [9]. In Fig. 9, we plot the medium-
induced modification (4.12) of the jet multiplicity for the
case of a collective flow in the positive beam direction.
The qualitatively expected effects are illustrated clearly. In the
beam direction, there is a marked reshuffling from negative to
positive rapidities that is due to collective flow effects. In the
direction orthogonal to the beam, there is a somewhat smaller
reshuffling from smaller to larger cone sizes: This is the result
of multiple scattering in an isotropic medium, which leads to a
characteristic broadening of the jet-multiplicity distributions.

As a result of the eikonal approximation that underlies the
calculation of the medium-induced gluon-energy distribution
(2.7), the leading hard parton does not change its direction
because of medium effects. This corresponds to the assumption
that the leading hadron of the jet is located at η ≈ φ ≈ 0. Then,
Fig. 9 provides an estimate of the rotational asymmetry of
hadron production associated with a high-pT trigger particle.
Recently, two-particle correlations and their possible medium

modifications were discussed in several approaches [54–58].
From the present study, we expect flow-induced asymme-
tries to affect such two-particle correlation measurements
in nucleus-nucleus collisions. In particular, asymmetries are
expected in multiplicity distributions associated with high-pT

trigger particles and in leading two-particle correlations [46].

V. PARTON ENERGY LOSS IN DYNAMICAL
SIMULATIONS

A. A proposal to determine parton energy loss from the
energy-momentum tensor

In a realistic dynamical case of a nucleus-nucleus collision,
the produced hard parton propagates through a medium of
varying spatial and temporal energy density ε(r, z, ξ ) and
varying collective flow uµ(r, z, ξ ). Thus its parton energy
loss will depend on the spatial position �r0 of its production
point (the production time is ξ ∼ 0 for hard processes) and the
orientation �n of its trajectory:

�r(ξ ) = �r0 + ξ �n. (5.1)

In the absence of collective flow, numerical studies of the
medium-induced gluon-energy distribution have shown that
the medium-induced gluon radiation for a medium of time-
dependent density is equivalent to that of a static medium
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whose density has been rescaled appropriately. This rescaling
requires the determination of the linearly line-averaged char-
acteristic gluon energy along the trajectory �r(ξ ) [28,52,59]:

ωc

[�r(ξ )
] =

∫ ∞

0
dξ ξ c ε3/4[�r(ξ ), ξ ]. (5.2)

Here, we have expressed the BDMPS transport coefficient
(1.1) in terms of the local energy density, q̂(�r, ξ ) = c ε3/4(�r, ξ ).
In the same way, we can determine the time-averaged total
transverse momentum squared

(q̂L)
[�r(ξ )

] =
∫ ∞

0
dξ c ε3/4[�r(ξ ), ξ ], (5.3)

and construct the quotient ωcL = 2ω2
c/q̂L. The probability

distribution that an additional fraction �E of the parton energy
is lost because of medium-induced scattering depends on ωc

and ωc L. A numerical routine for its calculation is publicly
available [9]. The characteristic gluon energy of Eq. (5.2)
and momentum broadening of Eq. (5.3) can be related to the
model parameters entering the medium-induced gluon-energy
distribution (2.3) by means of

ωc = 1
2 q̂L2 = 1

2 (n0L) µ2L, (5.4)

q̂L = (n0L)µ2. (5.5)

Remarkably, the time averages (5.2) and (5.3) do not require a
priori knowledge of the in-medium path length L. In the case of
a time-independent energy density of a medium of finite size,
ε(r) ∝ �(|r| − L), one recovers the expressions for the static
case. For further details of how to relate parton energy loss in
a time-dependent medium to an equivalent time-independent
calculation, we refer the reader to Refs. [9,52,60].

Collective flow is an additional source of momentum
transfer to the hard parton and will result in additional parton
energy loss. To account for this effect, we suggest to replace
the energy density in Eq. (5.2) with the relevant boosted
component of the energy-momentum tensor (1.2). To be more
specific, we consider the component T n⊥n⊥ , where n⊥ is
orthogonal to the trajectory (5.1) of the hard parton:

T n⊥n⊥ = p(ε) + [ε + p(ε)]
�β2
⊥

1 − β2
. (5.6)

Here, β⊥ is the spatial component of the collective flow field
that is orthogonal to the parton trajectory. In general, all
quantities entering Eq. (5.6) will depend on space and time. In
the absence of flow effects, β⊥ = 0, the component T n⊥n⊥ = p

determines the pressure and hence it determines by means of
the equation of state the energy density ε(p) entering Eqs. (5.2)
and (5.3). For finite flow β⊥, our proposal is to use ε(T n⊥n⊥)
instead of ε(p) in evaluating the characteristic gluon energy
and momentum broadening:

q̂ = cε3/4(p) −→ q̂ = cε3/4(T n⊥n⊥). (5.7)

This is consistent with what is known from analytical esti-
mates and numerical studies about the dependence of parton
energy loss on momentum transfer from the medium. For
the determination of jet asymmetries in a dynamical case,
relation (5.6), one has to determine the relative strength of
the random and directed momentum transfers in Eq. (2.3). For

a feasible model, q0/µ should increase monotonically with
{[ε + p(ε)]/p(ε)}[ �β2

⊥/(1 − β2)].

B. Low- pT elliptic flow induces high- pT azimuthal asymmetry

In general, a hard parton will suffer less energy loss if it
propagates on a trajectory parallel to the flow field. Thus,
for the same medium-induced suppression, the azimuthal
asymmetry at high transverse momentum becomes larger when
the contribution of the collective flow field is increased. To
estimate the size of this effect, we consider a simple two-
dimensional model. The hard parton is produced at an arbitrary
position (x0, y0) in the transverse plane according to the
nuclear overlap. It propagates in its longitudinally comoving
rest frame in the transverse direction �n = (cos ϕ, sin ϕ), along
the trajectory

r0(ξ ) = (x0 + ξ cos ϕ, y0 + ξ sin ϕ) . (5.8)

For simplicity, we assume that the longitudinally comoving
rest frame of this hard parton is the longitudinal rest frame
of the medium. Then there is only a transverse, but not
a longitudinal, flow component. For the BDMPS transport
coefficient that includes collective flow effects, we make the
ansatz

q̂(ξ ) = qnf + qf |uT [r0(ξ )] · nT |2. (5.9)

Here qf and qnf stand for the flow and nonflow components
to q̂, and the two-dimensional vector nT is orthogonal to the
trajectory (5.8) and projects out the corresponding transverse
component of the collective flow field uT [r0(ξ )]. We discuss
now the motivation for this ansatz. In the absence of col-
lective flow, qnf defines the time-averaged BDMPS transport
coefficient of the dynamically equivalent static scenario, as
specified in the discussion of Eqs. (5.2) and (5.3). Thus
ansatz (5.9) can account for one of the main effects of
longitudinal expansion, namely the time-dependent decrease
of scattering centers. In the presence of collective flow, there
is an additional momentum transfer orthogonal to the parton
trajectory and hence parallel to �nT = (−sin ϕ, cos ϕ). Since
the BDMPS transport coefficient denotes the squared average
momentum transfer per unit path length, this contribution
enters quadratically, |uT [r0(ξ )] · nT |2. For a small collective
flow field, this quadratic dependence is consistent with the
more general ansatz (5.6).

For an exploratory model study, we use a blast-wave
parametrization of the hadronic freeze-out stage of the col-
lision [45]. The transverse density distribution of the produced
matter is specified by

�(r, φs) = 1

1 + exp
(

r̂−1
as

) , (5.10)

where r̂ = r̂(r, φs) denotes a rescaled elliptic position vector:

r̂(r, φs) =
√

x2

R2
x

+ y2

R2
y

. (5.11)

Here, Rx and Ry are the extensions of the collision region
in the reaction plane and orthogonal to it, respectively, φs is
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FIG. 10. (Color online) Contour plots of the characteristic gluon
energy (5.14) as a function of the production point r0 = (x, y) of the
hard parton and for different angles ϕ = 0, π/4, π/2 of its trajectory.
The dependence of ωc on the relative flow strength qf /qnf indicates
the extent to which hard partons can escape with less energy loss on
trajectories parallel to the flow field. See text for more details.

the azimuthal angle with respect to the reaction plane, and
we write transverse positions (x, y) in radial coordinates x =
r cos φs and y = r sin φs . We choose a sharp, almost boxlike,
density distribution with as = 0.002. For the flow field uµ(x),
we assume a longitudinal Bjorken expansion and we use the
standard notation

uµ(x) = (cosh η cosh ρ, sinh ρ cos φb,

sinh ρ sin φb, sinh η cosh ρ). (5.12)

The coordinate η denotes the longitudinal space-time rapidity,
and we work at mid-rapidity η = 0; φb defines the orientation
that is orthogonal to the elliptic freeze-out surface assumed
in the model, tan φs = tan φb(Ry/Rx)2. The transverse flow is
parametrized as

ρ(r, φs) = r̂ [ρ0 + ρa cos(2φb)] , (5.13)

where ρ0 = 0.88, and ρa = 0.048 for semiperipheral Au +
Au collisions [45]. For the transverse radius parameters, we
do not use the extension at freeze-out, but the initial transverse
radii for an impact parameter b = 7 fm, namely Rx = 3.1 fm
and Ry = 5.6 fm.

FIG. 11. (Color online) The dependence of elliptic flow v2 and
the nonflow component of the BDMPS transport coefficient qnf

on the relative flow strength qf /qnf , for the case of a nuclear
modification factor RAA = 0.5 in semiperipheral Au + Au collisions.
The calculation is done at fixed transverse momentum pT = 7 GeV.

With this input, we calculate the characteristic gluon
energy and average transverse momentum squared for a parton
trajectory (5.8) in a medium characterized by its density
distribution (5.10) and its collective flow field (5.12). With
ansatz (5.9) for the BDMPS transport coefficient, we find

ωc(r0, ϕ) =
∫ ∞

0
dξ ξ q̂(ξ ) �[r(ξ ), ξ ], (5.14)

(q̂L) (r0, ϕ) =
∫ ∞

0
dξ q̂(ξ ) �[r(ξ ), ξ ]. (5.15)

For a qualitative estimate of the size of parton energy loss, one
can use the pocket formula �E ≈ αsωc [29]. This motivates
one to investigate ωc(r0, ϕ) as a function of the production
point r0 of the hard parton for different orientations ϕ of the
parton trajectory. As seen from Eq. (5.9), ωc depends linearly
on qnf and on the relative flow strength qf /qnf . As this flow
strength is increased, ωc increases for parton trajectories that
are not parallel to the flow field. Thus the distortions seen in
Fig. 10 provide a first indication of the extent to which parton
energy loss depends on a transverse flow field and affects the
azimuthal distribution of inclusive hadron spectra.

To estimate the effects of transverse flow, we calculated
from Eqs. (5.14) and (5.15) the relative suppression of hadronic
spectra that is due to medium-induced parton energy loss:

N (x0, y0, ϕ, pT ) = dσ med

dpT

/
dσ vac

dpT

. (5.16)

Our evaluation of Eq. (5.16) follows Ref. [9]: We assume a
power law dσ vac/dpT ∝ 1/p7

T , and we calculate the medium
modification by means of the quenching weights [9,61,62] that
depend on Eqs. (5.14) and (5.15). The integral of Eq. (5.16)
over r0 and ϕ weighted with the density of production points
determines the nuclear modification factor RAA. We adjust
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the nonflow component qnf such that RAA = 0.5 that is the
experimentally observed value for semiperipheral collisions
of impact parameter b = 7 fm. The results shown in Fig. 11
were obtained for pT = 7 GeV and αs = 1/3. They illustrate
two qualitative effects of transverse flow: First, low-pT

elliptic flow induces an additional contribution to high-pT

azimuthal asymmetry. This effect may reduce significantly
the discrepancy of models of parton energy loss [31,32] in
accounting for high-pT v2. Second, the presence of collective
flow diminishes strongly the local energy density ε ∝ q

4/3
nf of

the medium required for a nuclear modification factor RAA of
fixed size.

VI. CONCLUSION

In general, hard initially produced partons do not stay in
the locally comoving rest frame of the QCD matter generated
in a nucleus-nucleus collision. Rather, they propagate through
a matter that has collective velocity components orthogonal
to the parton trajectory. The resulting flow-induced directed
momentum transfer can modify parton splitting significantly.
Here we have studied this effect by calculating the triple-
differential medium-induced gluon-energy distribution (2.9)
radiated off a hard parton as a function of gluon energy, gluon
transverse momentum, and azimuthal angle with respect to
the flow field. Directed momentum transfers lead to a marked
asymmetry of the medium-induced energy distribution, since
partonic fragmentation moves significantly with the direction
of the collective flow field: See Sec. III.

From the medium-induced gluon radiation spectrum (2.3)
and simple assumptions about the dynamical evolution of
the matter produced in nucleus-nucleus collisions, we have
reached several qualitative conclusions of phenomenological

relevance. In particular, as discussed in Sec. IV, flow-induced
distortions of parton fragmentation will be experimentally
accessible in calorimetric jet measurements, multiplicity
distributions associated with high-pT trigger particles, and
leading two-hadron correlation functions. Moreover, as seen
in Fig. 11, different combinations of local energy density and
collective flow can account for the same suppression of single
inclusive hadron spectra. This illustrates the generic argument
of Subsec. V A that the strength of parton energy loss is not
governed by the local energy density, but the rather by the
local energy-momentum tensor (1.2). Flow effects can also
contribute appreciably to the size of the high-pT v2 that has
been underpredicted in recent model comparisons [31,32].

In general, the effects of medium-induced parton energy
loss depend on time-integrated properties of the medium; See
Subsec. V A. Thus a more quantitative study of flow-induced
parton energy loss effects requires a realistic model of the
dynamical evolution of the collision region. It also requires
information about the spatial distribution of hard processes
in the produced matter. Determining this information is a
challenge that—in an interplay of theory and further data
analysis at RHIC and the LHC—should come within reach
in the near future. We hope that our work is of use for
further studies in this direction and in particular for relating
the dynamics of a hydrodynamical medium to the dynamics
of hard processes in that medium, work that was started in
Refs. [63,64].
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