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Abstract

The method of inclusive vertexing is based on a likelihood fit and allows to determine
an arbitrary number of vertices for a set of measured tracks. The likelihood function
is the probability that the tracks are produced at a given number of vertices. The
fit returns the vertex positions and for each track relative probabilities that a track
belongs to one of the vertices. The goodness of the fit is expressed in a quality factor.
Additional quality factors for each track provides the possibility to find tracks which
are unlikely to be produced at any of the vertices. The performance has been studied
for B vertexing, where a B, a D and a main vertex were fitted in event hemispheres.



1 Introduction

Vertexing is solved by testing a vertex hypothesis and estimating the vertex positions.
This is a two step procedure.

1. A hypothesis is formulated. E.g., a set of tracks originates from a common
vertex and the tracks are distributed around the vertex according to a likelihood
function L.

2. (a) The free parameters (vertex positions,...) in £ are estimated by minimizing

L — Lmin-

(b) The hypothesis can be disproved by calculating the probability P to obtain
a value £ which is smaller than Lpin: P = [, . dL.

min

The usual method, ezclusive vertezing, assigns tracks to vertices. The hypotheses
are that subsets of tracks in an event originate from common vertices. This leads to
more than one hypotheses per event which is the reason for two problems:

o The method can become unpractical due to limitations in computation time.

e If vertices are not well separated one can get more than one track combination
with a reasonable probability. The wrong track combinations will lead to wrong
(meaningless) estimations of vertex positions and wrong errors. This is always
true if tracks exist which fit to more than one vertex, either because the vertices
are too close together, a track is poorly measured or due to a large boost.

Ezclusive vertexing is useful for particle reconstruction, where the additional informa-
tion on the mass helps to suppress the background or allows to determine the amount
of correct combinations on a statistical basis from a fit to the mass distribution.
This paper describes the method of inclusive vertering where tracks are not as-
signed to vertices. The method works in a similar way as an unbinned maximum
likelihood fit to a mass distribution. Suppose there are mass measurements m; with
a constant error o,,. Finding the mass of two zero width resonances is a similar
problem as to find the position of vertices. The mass measurements correspond to
the space position measurements of tracks and the vertex position to the mass of
a resonance. The number of resonance decays is the equivalent to the number of
tracks produced at a vertex. Applying the method of ezclusive vertezing to the mass
measurement would mean to assign the measurements to one of the resonance and to
perform one fit for each resonance. For each of these combinations one gets masses
of the resonances and a probability for the fit. From all these combinations one then
has to decide (on the basis of the fit probability) which fit result to choose. This
is a nasty way to do a mass measurement and especially if the masses of the reso-
nances are close together this will result in a bias and in wrong errors. The normal
way to estimate the masses of the resonances doesn’t assign single measurements to
one of the resonances. One can never be sure to which resonance a measurement
belongs. Therefore a likelihood is defined which is the sum of two gaussians and an
unbinned maximum likelihood fit is performed. The method of inclusive vertezing



uses this technique. Only one hypothesis will be made per event and a likelihood will
be defined for this hypothesis. The minimization leads to the position of the vertices
and the number of tracks produced at each vertex. In addition relative probabilities
can be given for each track and vertex that the track is produced at this vertex.
Advantages of this method are:

e There is no combinatorial problem and the computation time is approximately
proportional to the number of tracks.

e There is only one result per event.

o Correlations between vertices can be included in the definition of the likelihood
function.

The likelihood function will be defined in the next section, followed by a descrip-
tion of the minimization procedure and the determination of the goodness of the fit.
The last section summarizes results of a performance test for Z° — bb decays.

2 The likelihood function

This section defines the likelihood function for the N* measured tracks with param-
eters:

T : a vector pointing on the track 2

T : a unit vector parallel to the track momentum

Vi : the track covariance matrix for the plane perpendicular to the track
direction

P : the momentum of track ¢

The hypothesis for the likelihood function is that the tracks are produced at N”
vertices. The free parameter in the likelihood L£(n,,7,) are the vertex positions 7,
and the number of tracks n,, originating from vertex p. To construct the likelihood
two approximations were made:

e Tracks have no curvature.

o There is no correlation between tracks. The likelihood is a product of proba-
bilities for each track.

The likelihood :
Lt=T[Pt eV (1)

is based on a track probability density P?. The total number of tracks N = [dP} is
equal to N =3, n,.
The probability P} is the sum over the probabilities P, that track i is produced

at the vertex pu:
Pi=2_Pi (2)
“



'P;}’” = nl‘w'i# P:y ,P::l. (3)
and
n, : The number of tracks from vertex pu.
Wiy : An a priori probability that track i comes from vertex u. This factor
allows to include additional information like lepton identification.
PrL(7u) : the probability to measure for track i the impact parameter J;#

with respect to vertex pu.

PL(mn) = 2 fi Gi (4)
k

1 1 -
Gy = ———— exp (——d,- Vi ld; ) (5
m or |Vzk| o dinVik Gin )

The sum of gaussians allows a description of tails in the resolution
(Zh fe = 1)

PE.(p)1 p?) : Particles, decaying at a secondary vertex, are boosted. Conse-
quently the track directions 7;* are correlated with the flight di-
rection of the mother particle. The flight direction is given by the
difference A7, = 7 — Tori(u), Where ori(p) is the production vertex
of the particle decaying at vertex p. This correlation has to be taken
into account by including the probability to observe a track with
the direction 7;* with respect to A7,. It is convenient to describe
this by using the transverse and longitudinal momentum, allowing
for the approximation P?(p|,p}) = P?+(p}) PPI(p))- Then only
the component for the longitudinal momentum depends on the mo-
mentum spectrum of the decaying particle. The p, spectrum is
invariant.

The effect of including P?, is that small p, values are favored. This includes naturally
the jet direction in the fit. This also means that neutral tracks without tracking
information can be used for the fit since they carry information on Af,.

2.1 Additional constraints

Three additional constraint for the vertices are included in the likelihood:
L=CLL° (6)

with

vertices

Lf = H fPl;:oa fP‘l‘ife :Pgir (7)
m

The constraints are:



e Vertex position constraint

A measurement of a vertex position 7,° is included by using the probability

s[> 1 1 ond = c c —-1/=> —c
pﬁo (Tu) = M exp (_g(rﬂ_ru )Vu I(Tu—"u ))

(8)

Examples are the main vertex constraint or for a secondary vertex a recon-

structed ¢ — K+ K~ decay which is assumed to come from a D, mesons.
e Decay length
'Plife A"‘ — 1 —AFy /Ty
" ( Tﬂ-) - ;— €

m

This allows to add information about the lifetime of decaying particles.

e Flight direction
The probability

. 1 ‘ o?
zpdrr A-‘ — _ M
u ( ) 2ro. exp( 202“)
A—o . —
cosa, = %#
"

(9)

(10)
(11)

constraints the flight direction A7), to the direction #,. This constraint can
be used to include the information from the jet direction without the need to

specify the momentum distribution P%,(py, p%).

2.2 Correcting for the poisson error on the number of tracks

Minimizing the likelihood function will give estimates for the vertex positions and
for the number of tracks produced at each vertex. Since an extended maximum
likelihood method is used the error on the number of tracks will contain the poisson
error. The total number of tracks will be always A = N with an error oy = V/N.

The contribution from the poisson error can be eliminated by a transformation

g — ! ! = v/ = v/
(R1,M2y ey UNe, 1y ooTve) —> (N0, e, Ty )
N = Eni
ip
!/
Mu>2 = Mu>2
vl __
p = Tu
and adding a constraint to the likelihood:
N — N¥)?
L— L' =L exp —g—
€

(12)
(13)

(14)
(15)

(16)



with € — oo. This constraint does not change the position of the minimum of the
likelihood function but subtracts the poisson errors on the number of tracks. The
relation between the inverse of the covariance matrix

0> —InLl'
(i il 1
%= "oy (7
and V,;l can be derived by using
0 0 g

(18)

Oniysy Onu>2 Ong

For 7,7 > 2 this leads to:

Vit o= Vit (19)
-Vit ifi <N (20)
-V if j < N” (21)
+Viit ifi,7 < N? (22)

This is the covariance matrix without poisson error. The number of tracks from
vertex 1 is just given by ny = N* — 3,5, n,.

2.3 Track classes

Usually tracks can be divided in hemispheres or jets. Only tracks from one hemisphere
or jet can come from the same secondary vertex. This should be directly included in
the likelihood to avoid problems with the definition of P}, and to save computation
time. For this reason track classes are defined for each event. Each track belongs to
exactly one track class. E.g., there can be one track class for each jet. Each vertex
might belong to more than one vertex (every secondary vertex belongs to one jet
while the main vertex belongs to all classes since all tracks could come from the main
vertex). The track likelihood is replaced by a product of likelihoods for each class:

classes

= I (23)

This increases the number of parameters n,,. There are now parameters for each class
n¢, where p stays for all vertices in class c. It is straight forward to generalize the
formulas in this note for track classes.

3 Minimization

The log likelihood F' = —In £ is a function of N? parameters p’ = (n§,n3, ..., iyer, 71, --TNv)-
The minimization of the likelihood function is an iterative procedure beginning with



a start vector p;. At any step k in the minimization the next parameter vector pi41
is derived from pj by using a second order Taylor expansion

— — — 1 —, -
F(p) = F(pr) + gAP + SAPGAP (24)

with Ap = p — pr. The first and second order derivatives

. O—-InLl
g = —5= (25)
P Pr
02—InLl
G —_— 26
5507 |, (26)

are explicitly given in the appendix.

If G is positive definite normal procedures like the Newton method can be used.
This can not be guaranteed here. It is possible that no or one track is produced
at a vertex. In this case the vertex position is not fully defined, if there are no
other constraints. Directions in the parameter space, where the likelihood has no
maximum can be determined by calculating the eigenvalues e; and eigenvectors v; of
G. If an eigenvalue is close to zero the corresponding eigenvector gives the direction
which is not well constrained. This can be shown by using the eigenvectors as coordi-
nates Ap = Y; a;v;. The NP dimensional problem then splits in N? one dimensional
problems

o o 1
F@)=F(@)+ )Y aig + 5 > ale; (27)
with g; = gv;. The minimum of F(a) is at
i
i = —— 2
==L (29

The directions ¥; can be treated separately. There is no minimum of F, if e; < 0.
This could be because the likelihood is not constraint in this direction or because the
second order expansion is not a sufficient approximation for F'(§). One then has to
search for a minimum along the corresponding direction of the eigenvector.

It is also convenient to use the eigenvalues to calculate the covariance matrix to
avoid the inversion of G.

1
Vii=>_ Eax—Ej (29)
k €k
with
E - (171,’!72, ...,17Np) (30)
4 Quality factors

From the minimization one obtains the likelihood L,.i.. To test if the assumed
likelihood function agrees with the data the probability to observe a smaller value
for the likelihood £ < Lmin, assuming the parameters found by the minimization are
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track position measurement | Q¢ =min, ¥ fi P(di.Viz 'dis, 2[1 — 3/N7))
vertex position constraint | Q2**=P([7, — 73]V, [r, — 7], 3[1 — 3/N])
vertex direction Qﬁi' =P(ai/a‘§“, 2-15/N; —1.5/NZ )
vertex probability Qu =P(Zixt 2+ x5+ x5 *+,Np - 3)

| overall quality | Q =P(Em' x2, YulNT -3 N®) l

Table 1: Definition of quality factors

the true ones, can be calculated. For a gaussian distribution it is given by the x?
probability

2_ND0F/2

Q = P(X27 NDOF) = ) (X’)NDOF/ze—X,2/2dX12 (31)

x? F(NDOF/Z
which is the PROB function on CERNLIB. The degrees of freedom Np,r is the
dimension of the parameter space minus the number of free parameters in the like-
lihood. The likelihood function for the inclusive vertexing is too complicated to
do the integration. Instead a quality factors @ will be defined by using the gaus-
sian contributions to the likelihood (see table 1). The number used for the degrees of
freedom takes into account the “number of measurements” for vertex p: N = 2-n,+
3 (for a constraint on the vertex position)+1 (for a constraint on the flight direction).

5 Program package VNFIT

5.1 Program Code

The main fit program VNFIT is stored with all subroutines on ALOHA in the library:
/u3/xu/oest/vertexfit/vnfit0
The input for the fit (track parameters, number of vertices to be fitted,...) has to be
passed to the fit by filling the input COMMON VNINPUT
in /u3/xu/oest/vertexfit/vnfit0/vncomm.inc.

QVNHEM on /u3/xu/oest/vertexfit/alphaO is an example for a B, D and main
vertex fit for one hemisphere. To run QUNHEM on has to

e link the libraries
/u3/xu/oest/vertexfit/alphad/ligsaga.a (for OSF/1)
/u3/xu/ocest/vertexfit/alpha0/libshift.a (for IRIX)
and
/cern/nag/libnag.a

e specify the input variables for QUNHEM as explained in the routine.

The vertex information from the fit is stored in the output COMMON VNOUT
in /u3d/xu/oest/vertexfit/vnfit0/vncomm.inc.



,o The number of tracks from the
main vertex PAR(1) = N*—PAR(2)-PAR(3),

B vertex PAR(2),
D vertex PAR(3).

o The vertex positions z,y, z for the
main vertex PAR(4),...,PAR(6),
B vertex PAR(7),...,PAR(9),
D vertex PAR(10),...,PAR(12).

e The covariance matrix DCOVAR(i, j) for PAR(1),...,PAR(12).

The output COMMON contains further fit information like the quality factors. The
routine itself returns

DLI  the difference in -log likelihood between the three vertex fit and the case
of having only one main vertex.

XMV the B+D vertex mass.

XCV  the B+D vertex charge.

The program QVNHEM is not a final version and should be modified for different
analysis. This concerns the track selection (ITRQUA, QADJET), the VO selection (QVO,
IVOQUA), the tails for the track resolution (QTRKPA, QVOPA), the momentum spectrum
for tracks (VNLIPF) and the determination of start values for the fit (VNSTRT).

5.2 Hemisphere Fit

The program QVNHEM has been used to fit three vertices in 1993 HVFL04 Monte Carlo
events. The hemispheres are defined by the thrust axis, requiring | cos 9¢nrust| < 0.7.
The likelihood contribution P%,(p),p3) was not used in the fit (DL = .FALSE.). The
results of the fit for a B tag and vertex charge reconstruction are displayed in figures
1,2 and figure 3, respectively.

6 Conclusion

The method of inclusive vertexing estimates vertex positions without assigning tracks
to vertices. The program package VNFIT allows to fit an arbitrary number of vertices
to a given set of tracks. The fit returns vertex positions, probabilities for each track
to belong to one of the vertices and quality factors which describes the goodness
of the fit. Additional information like lepton identification or different momentum
spectra for particles from different vertices can be included in a consistent way. As
an example a B fit with three vertices has been studied and found to work with a
good performance.



©
>

0.35
0.3

0.25

b efficiency

0.2

0.15

¢ background

0.1

0.05

TT VT[T VI T[T T T[T TTr[rrrrJrrrryrrrrpreed

h

0 IIIIIIIIII|III'l|l [ T T |

100 90 -80 -70 -60 -50 -40 -30 20 -10 O
AlnL

0.45 [ .
0.4
0.35 .
0.3 b .

0.25 .

02 .

0.15 b ¢

01
0.05 {{
0 | I I I I | I I | |

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
¢ background

o
n
|

.

iciency

b eff

Figure 1: b reconstruction efficiency as a function of a cut on the difference in -
log likelihood (DLI) between the three vertex fit and the assumption of only one
(main) vertex. The ¢ background is shown as full histogram. The b efficiency versus
¢ background which can be obtained is displayed below. Efficiencies are given for
events with | cos Y4prust| < 0.7 and a event selection efficiency of 63.8% for bb events.
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for DLI> —30.
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A Derivatives of

—InLl

A.1 Likelihood definition

L = L'L°
L, = [[Pt-e
—Ingt = i:—lnpf-f-/\/'
N = Y
Pt = 2“379:;,
m
P = muwi, Pi, PL(p,pl)
pr = Xk:fk Gipk
G = - 1|V}k| exp (—%«ZME‘@)
. Giuk
Riwe = ,—P;:r
Ry = 7;*’?

A.2 First and second order derivatives of —In £

0—InLt —InP}
6’",” - Z Wip + Z an
0 —In Lt —In ’Pt
On, On, - Z 3n“8n,,
O—InP} 0—InP},
T8 - e
?—-InP!  0—InP} 0—InP} +
oz Oy Oz Oy
—-lnP;, 0-WP; 0-InP},
Z“: Riu ( 0z ly B Oz Oy )
8 —ln Py, _ 0—InP], 0-1nP], n
Oz Oy Oz Oy
ln Gipk 8 —In G,',,k 8 - ln G,'“k
E Rl ( dzdy Oz Oy
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Second order derivatives of P} :
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m 14
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W = (6pu— 0p1 u) (8w — 6p-1, v)
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Relations for the vertex correlation.
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2 _ .2 [P AT
Lot ( |Af|)
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