The Forward-Backward Asymmetry for Charm Quarks at the Z Pole

Abstract

High momentum D*±'s are used to define a purified sample of Z \rightarrow c \overline{c} events, from which is measured the charm forward-backward asymmetry. This analysis is based on 1.4 million Z decays recorded with the ALEPH detector at LEP, more than three times the sample used for the previously published value. The charm quark forward-backward asymmetry at the Z pole is measured to be $A_{FB}^{0,c}=(8.1\pm2.3)\%$ corresponding to an effective electroweak mixing angle of $\sin^2\!\theta_W^{eff}=0.2300\pm0.0052$.

Contribution to the 27th International Conference on High Energy Physics, Glasgow, Scotland, 20-27 July 1994

1

Introduction 1

The forward-backward asymmetry in the $Z \to f\bar{f}$ decay is related to couplings in the Standard Model. At the Z pole, this asymmetry is expressed as:

$$A_{FB}^f \simeq rac{3}{4} rac{2 {
m v_e a_e}}{({
m v_e}^2 + {
m a_e}^2)} rac{2 {
m v_f a_f}}{({
m v_f}^2 + {
m a_f}^2)}$$

Therefore, the measurement of the F-B asymmetry for each produced fermion type constitutes an important test of the Standard Model. In this contribution is described a measurement of the charm quark asymmetry, experimentally defined as:

$$A_{FB}^c = rac{\sigma_{charm}^F - \sigma_{charm}^B}{\sigma_{charm}^F + \sigma_{charm}^B}$$

This paper is an update of Ref. [1], with statistics increased to 1.4 million hadronic Z's collected at a center-of-mass energy of 91.25 GeV. $D^{*\pm}$ produced in the $Z \to q\bar{q}$ process are used to tag charm and beauty quarks. Indeed, in hadronic Z decays, charmed mesons are expected to be produced either directly from the hadronization of charm quarks in the process $Z \to c\bar{c}$ or from the decay of b hadrons produced in $Z \to b\bar{b}$ events, with an approximately equal rate. A selection of high momentum D*±'s, removing a large amount of background events and enriching the sample to 79% in charmed mesons originating from the $Z \to c\bar{c}$ process, allows a precise measurement of the charm asymmetry.

 D^{*+} 's are searched for in the decay channel $D^{*+} \to D^0 \pi^+$, and three D^0 decay channels have been considered (charge-conjugate modes are implied throughout):

(i)
$$D^0 \to K^-\pi^+$$
;

$$egin{array}{ll} (i) & {
m D}^0 o {
m K}^-\pi^+\,; \ (ii) & {
m D}^0 o {
m K}^-\pi^+\pi^+\pi^-\,; \ (iii) & {
m D}^0 o {
m K}^-\pi^+\pi^0\,. \end{array}$$

$$(iii) \quad \mathrm{D^0} o \mathrm{K^-} \pi^+ \pi^0 \,.$$

The channel (iii) is studied in a different way from Ref. [1]. The π^0 , previously reconstructed with the electromagnetic calorimeter for energy above 0.5 GeV, is not used here in the D⁰ reconstruction. D⁰'s containing a soft π^0 and originating mainly from a ρ^+ are considered through the so-called S^0 peak. This new selection increases the number of selected $D^0 \to K^-\pi^+\pi^0$ by a factor of 2.

Selection of the D^{*+} Decays 2

The channels ${\rm D}^{*+}$ \to $\pi_s^+ K^- \pi^+$ and ${\rm D}^{*+}$ \to $\pi_s^+ K^- \pi^+ \pi^+ \pi^-$ are selected as described in detail in Ref. [1]. Namely, the invariant mass of a system combining 2 tracks ($D^0 \rightarrow$ $K^-\pi^+$) or 4 tracks (D⁰ $\to K^-\pi^+\pi^+\pi^-$) with relevant mass assignments is required to be within 30 MeV of the D⁰ mass. A low momentum pion $(P_{\pi_s^+} < 4.2 \ GeV)$ is added to the system and a D*+ candidate is kept if it satisfies:

143.5 $MeV < \Delta M = M_{\pi^{+}D^{0}} - M_{D^{0}} < 147.5$ MeV and $X_{E} = E_{D^{*+}}/E_{beam} > 0.5$.

The scalar nature of the D^0 is exploited to remove a large fraction of the remaining background, requiring $|\cos \theta^*| \leq 0.8$, where θ^* is the angle between the K track ($D^0 \to K^-\pi^+$ case) or the sphericity axis of the four decay products ($D^0 \to K^-\pi^+\pi^+\pi^-$ case) and the D^0 direction, in the D^0 rest frame.

The background behaviour is reproduced by selecting D^0 candidates in a mass range above the D^0 mass from 1.96 GeV to 2.26 GeV, and passing the other selection criteria. The background mass-difference spectrum is normalized to the data upper side spectrum ($\Delta M > 160$ MeV), giving an estimate of the number of background events under the selected ΔM region (fig. 1 and 2). A fraction of D^0 from $D^{*+} \to \pi_s^+ K^- \pi^+ \pi^+ \pi^-$ are only partially reconstructed, but the charm-quark signed angular distribution is well estimated in such case because the π_s carries the D^* charge. Thus, their contribution is taken into account and tagged as signal when estimating the background. In addition, a D^0 decaying into $K^-\pi^+\pi^+\pi^-$ is counted twice in about 18% of the cases due to extra-candidates with a K^-/π^- inversion in the D^0 or with one of the four D^0 tracks taken from the combinatorial background. Therefore, for each $Z \to q\bar{q}$ event, only the candidate with the mass closest to the D^0 mass is kept. The selection leads to samples containing 1022 ± 33 $D^{*+} \to \pi_s^+ K^-\pi^+$ and 1860 ± 72 $D^{*+} \to \pi_s^+ K^-\pi^+\pi^-$.

The D⁰'s from D*+ $\to \pi_s^+ K^- \pi^+ \pi^0$ are not fully reconstructed. Leaving out the π^0 , the D⁰ is selected by requiring a $K\pi$ invariant mass in the range from 1.5 GeV to 1.7 GeV, populated mainly by the D⁰ $\to K^- \rho^+$ contribution to the D⁰ $\to K^- \pi^+ \pi^0$ channel. The selection is done along the same lines as for previous channels, but the X_E cut is lowered to 0.42 and the range for ΔM is enlarged from 141 MeV to 152 MeV, to take into account the 4-momentum carried by the π^0 . The mass-difference distribution is shown in fig. 3. This selection leads to a sample of 2439 \pm 73 D*+ $\to \pi_s^+ K^- \pi^+ \pi^0$.

3 Forward-Backward Asymmetry Measurement

The thrust axis oriented to the reconstructed D* direction is used to define the production angle θ_{thrust} of the $q\bar{q}$ pair with respect to the e^- beam axis. The charge sign of the D* labeling the c quark, the cosine of the c quark production angle is well estimated by $cos\theta = Q_{\pi_s} \times cos\theta_{thrust}$. The distribution of the 3 samples are considered simultaneously. The charm-quark asymmetry is extracted from the observed angular distributions by means of an unbinned maximum likelihood fit. The likelihood function is defined as:

$$egin{aligned} l = \sum_{modes} ^{i=3}_{i=1} & \sum_{j=1}^{n_i} log(\mathcal{L}_{ij}) \ \end{aligned}$$
 where $\mathcal{L}_{ij} = \mathbf{f}_{ij}^{\mathrm{charm}} + \mathbf{f}_{ij}^{\mathrm{beauty}} + \mathbf{f}_{ij}^{\mathrm{back}}$

with the probability density for observing an event of kind q being:

$$f_{ij}^q = F_i^q imes (1 + cos heta_j^2 + rac{8}{3}*A_{FB}_i^q*cos heta_j)$$

The function is calculated for each D^{*+} candidate j and l is maximized to get the best estimate of the single unknown parameter A_{FB}^c .

The fraction of D*+'s in each sample has been deduced from the mass difference spectrum (see §2), and the relative abundance of charm and beauty in the D* signal is taken from the ALEPH Monte Carlo together with previously fitted values of ε_c and $\frac{P_{b\to D^{*\pm}}}{P_{c\to D^{*\pm}}}[1]$. This abundance, depending mostly on the X_E cut, is found to be the same in each of the 3 samples and equal to $(79\pm3)\%$. The proportion F_i^q of each kind of event in the samples are deduced from these fraction numbers.

Background asymmetries A_{FB}^{back} are computed from D⁰ side band samples, and an average value $A_{FB}^{back} = (1.45 \pm 0.91)\%$ is used in the fit. The ALEPH measurement: $A_{FB}^{b} = (8.46 \pm 0.72)\%$ [3] was used to fix the b quark asymmetry in the analysis. This asymmetry is diluted, on one hand by the $B^{0} - \bar{B}^{0}$ mixing, and by b decays producing a D*- through the W on the other hand. The effective b asymmetry can be expressed as the true b asymmetry corrected by two dilution factors depending on parameters χ_{mix} and $\chi_{D^{*-}}$:

$$A_{FB}^{b,eff} = A_{FB}^{b} \times (1 - 2\chi_{mix}) \times (1 - 2\chi_{D^{*-}}).$$

A value $\chi_{mix} = 0.152 \pm 0.036$ is deduced in the same way as in Ref. [1], with updated values of χ_d from CLEO and ARGUS[4], and ALEPH b mixing value [3].

The decay $b \to cW, W \to \bar{c}s$ has a rate of about 14%, and produces three types of final states :

$$(i) \quad b \to (c\bar{c})X;$$

$$(ii) \qquad b o D_s^{(*)} X;$$

$$(iii)$$
 $b \rightarrow D^{(*)}X;$

where the X states do not contain the \bar{c} from the decay $W \to \bar{c}s$. Decay of type (iii) only produces D* states of wrong charge sign. Assuming a proportion of 50% in charged

Background normalization	0.0020
Background asymmetry	0.0065
b,c relative contribution	0.0010
b asymmetry	0.0010
χ_{mix}	0.0020
χ _{D*} -	0.0010
\sum_{syst}	0.0073

Table 1: Sources of systematic errors on the measured asymmetry.

states and 75% of in vector states, charged D*'s are produced in a fraction of 37.5% in the decay (iii). Using recent CLEO and ARGUS measurements for decays (i) and (ii) [5], an estimate of $\chi_{D^{*-}} = 0.035$ is obtained and assumed with a relative uncertainty of 100%.

The simultaneous fit yields:

$$A^c_{FB} = (7.12 \pm 2.11 (ext{stat.}) \pm 0.73 (ext{syst.}))\%$$

The contributions to systematics are listed in table 1.

Figure 4 shows the combined angular distribution after background subtraction and acceptance correction, with the result of the fit.

The MIZA program [2] is used to calculate all the corrections needed to extract the pole asymmetry and the effective electroweak mixing angle $\sin^2 \theta_{\rm W}^{\rm eff}$ from this measurement. Table 2 summarizes the various corrections derived using MIZA, giving:

$$A_{FB}^{0,c}=(8.1\pm2.3)\% \ {
m and} \ sin^2 heta_W^{eff}=0.2300\pm0.0052.$$

	correction
$\sqrt(s) eq M_Z$	- 0.0028
QED initial state	+ 0.0090
QED final state	+ 0.0001
QCD final state	+ 0.0020
γ exchange	- 0.0007
and interference	

Table 2: Corrections to the measured c-quark asymmetry.

References

- [1] D. Buskulic et al. (ALEPH Collab.), Z. Phys. C. 62 (1994) 1.
- [2] M. Martinez et al., Z. Phys. C 49 (1991) 645.
- [3] ALEPH Collab., ' $B^0 \bar{B}^0$ mixing and $b\bar{b}$ asymmetry from high p_{\perp} leptons. Update with 1990-1993 data', Contributed paper to the 1994 La Thuile and Moriond Winter Conferences.
- [4] J. Bartelt et al. (CLEO Collab.), Phys. Rev. Lett. 71 (1993) 1680. H. Albrecht et al. (ARGUS Collab.), Z. Phys. C 55 (1992) 357.
- [5] H. Albrecht et al. (ARGUS Collab.), Z. Phys. C 54 (1992) 1.
 - D. Bortolletto et al. (CLEO Collab.), Phys Rev. D 45 (1992) 21
 - H. Albrecht et al. (ARGUS Collab.), Phys. Lett. B 277 (1992) 209.
 - Y. Kubota et al. (CLEO Collab.), Proceedings of the Geneva Lepton Photon Conference on High Energy Physics (1991)
 - T.E. Browder, K. Honscheid and S.Playfer 'A review of hadronic and rare B Decays' CLNS 93/1261

Figure Captions

- Fig. 1. Mass-difference distribution, for $X_E(K\pi\pi_s) > 0.5$. The $K\pi$ mass is required to be between 1.8345 and 1.8945 GeV/ c^2 . The background, estimated from the side-band, is shown. The arrows indicate the selection cuts.
- Fig. 2. Mass-difference distribution, for $X_E(K\pi\pi\pi\pi_s) > 0.5$. The $K\pi\pi\pi$ mass is required to be between 1.8345 and 1.8945 GeV/ c^2 and all D⁰ candidates are kept. The background, estimated from the side-band, is shown, in addition to the contribution from partially reconstructed D*+ $\to \pi_s^+ K^- \pi^+ \pi^+ \pi^-$ estimated by Monte-Carlo. The arrows indicate the selection cuts.
- Fig. 3. Mass-difference distribution, for $X_E(K\pi(\pi^0)\pi_s) > 0.5$. The $K\pi$ mass is required to be between 1.5 and 1.7 GeV/ c^2 . The background, estimated from the sideband, is shown. The signal shape predicted by Monte-Carlo is added demonstrating that the background size is correctly estimated by the upper side-band normalization. The arrows indicate the selection cuts.
- Fig. 4. Distribution of the signed cosine angle of the thrust axis. The distribution is corrected for acceptance, background and beauty contribution subtracted. A function (solid line) corresponding to the measured charm asymmetry is superimposed.

Fig. 1

Fig. 2

Fig. 3

Fig. 4