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Measurement of the Z — bb
forward — backward asymmetry
and of the y mixing parameter

from high p, leptons

D. Abbaneo, C. Bozzi, F. Ligabue, R. Tenchini and A. Vemnturi

Abstract

The Z — bb forward-backward asymmetry and the y mixing pa-
rameter have been measured starting form a sample of about 430,000
hadronic Z decays collected in 1990 and 1991. Z — bb events have been
tagged through the detection of high—p, leptons (electrons or myuons)
in the event. The forward-backward asymmetry is determined by fit-
ting the cos @ angular distribution of the candidate bb events. After
correcting for wash—out effects like B®B° mixing, we get, for events
at the Z peak, Arpp(d) = (7.94 1.6 + 0.8)%. The mixing para.xneter
has been measured by counting the number of same sign and op posite
sign dileptons an correcting for non-primary b contamination. VVe get
X = (11.2+ 1.5+ 0.8)%.
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1 Introduction

We have measured the bb forward backward asymmetry and the x mixing
parameter from about 430 000 hadronic events collected in 1990 and 1991.
The bb asymmetry is determined from high p, leptons as described in paper
[1] and previous notes [2, 3]. The raw asymmetry of a high b purity ¢g
sample is found by fitting the cos# angular distribution with a likelihood
function. The bb asymmetry is then extracted taking into account effects
which wash out the asvmmetry (like, for instance, bb mixing) and background
contamination. The high p; dilepton sample has been used to measure the
mixing parameter by counting the number of same sign and opposite sign
dileptons an correcting for non-primary b contamination. This note contains
a detailed description of the two analysis (sections 3 and 4). Since lepton
tagging is a fundamental tool for both, there is a rather long discussion on
muon identification, including an Appendix on muon background, which has
been source of joy and pain for some of us. Electron identification is just
mentioned and is fully described in other notes [19, 3].

2 Selection of a High Purity b Sample

The set of cuts described below leads to the selection of a sample of hadronic
events, in which one of the jets contains a high p and p, candidate electron or
muon. This sample includes events from various kind of processes, both from
actual b semileptonic decays and from ‘background’ processes. The cuts are
optimized in order to achieve the best possible fraction of events where the
lepton comes from a direct semileptonic decay of a beauty hadron B — (7.X
(which we call a primary b). We call such fraction the purity of our sample.

In the following the details of the event selection are described. The first
step is a general selection of hadronic events among the data recorded by
ALEPH.

2.1 Hadronic event selection

Hadronic events are selected using charged track information alone: at least 5
tracks must be reconstructed by the TPC in the event; they must be “good”
tracks according to the following definition:
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e the track must form an angle greater than 18.2° with the beam axis:
this ensures that at least 6 pad rows in the TPC are traversed

e the number of TPC three-dimensional points used in the fit for the
track helix must be at least 4. This eliminates most unphysical fake
tracks and badly fitted ones

o the track must pass through a cylinder centred around the fitted average
beam position, with a radius of 2 cm and a length of 10 cm. This cut
rejects badly fitted tracks or particles originating from a vertex different
from the interaction point, as well as cosmic background.

Moreover, a cut on the total visible energy is applied in order to remove
~7 events and beam-gas interactions: the sum of momenta of all the re-
constructed charged tracks must be greater than 10% of the centre-of-mass
energy. The total efficiency of this selection is 94.8% [8] and is independent
of flavour whithin 1%; according to Monte Carlo predictions, the background
contaminations from two—photon events and Z — 777~ are less than 0.3%.
The precise knowledge of the absolute efficiency of this selection method is
not relevant for our purposes, since we are not dealing with absolute measure-
ments. However, a poor knowledge of the relative efficiency among various
flavours would reflect into a bad evaluation of the flavour composition of our
final selected sample, which would turn into a systematic error on final val-
ues. We have no indication so far that this might be the case, and in any
case a variation of a few percent of this relative efficiency in the case of b
would lead to a negligible contribution to the systematic error as compared
to other sources.

We have analysed data collected by ALEPH in 1990 and 1991. We decided
to discard 1989 data because the negligible improvement in statistics could
not justify the special effort of dealing with data where the apparatus was
not at its best performance level. For instance, muon identification was not
available in the endcaps, and so only electrons could have been used for 1989
data.

Our data sample consists of 434 064 Z° — ¢ events, about one third of
which were recorded in 1990.

We have restricted our analysis to the runs which fulfil the Heavy Flavours
group data quality requirements, where the whole detector was in a reason-
able shape for both muon and electron identification.
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2.2 Muon Identification

Muons are identified in ALEPH making use of the tracking capabilities of the
Hadron Calorimeter, together with the Muon Chamber information. Basi-
cally, muon identification in HCAL consists in extrapolating a TPC track
through the calorimeter, and counting how many HCAL digital hits fall in
the neighbourhood of the extrapolated track. This allows the discrimination
of particles which penetrate through the whole depth of the calorimeter.

Each track with momenta greater than 1.5 GeV/c is extrapolated (as if
it were a muon) through the HCAL material taking into account a detailed
magnetic field map and estimated energy losses. A “road” is opened around
the extrapolated track, whose width is 3 times the standard deviation on the
estimated extrapolation error due to multiple scattering'. An HCAL plane
is said to be ezpected to fire if the extrapolated tracks intersects it within an
active region; the plane is said to have fired if a digital hit lies within the
multiple scattering road; the number of adjacent firing tubes the hit is made
of must not be greater than 3 [4].

HCAL plane efficiency Originally, plane inefficienciesin the Monte Carlo
are only ascribed to the geometrical acceptance of a tube (which causes a
10% inefficiency due to plastic walls) and to dead regions between tubes such
as spacers or iron walls. The true plane inefliciency is actually higher than
that, mainly because the effect of the hardware threshold, which is necessary
in order to suppress noise, is not fully simulated in Monte Carlo. A further,
less important, source of hardware ineffeciency is due to dead tubes and
faults in the digital readout electronics. The plane efficiency is mapped in a
detailed way in the Monte Carlo using Z — u*u~ events in data. Clearly,
for this purpose the sample of Z — ut i~ events has to be selected through
an algorithm which doesn’t make use of the HCAL information.

A very pure sample of Z — ptpu~ events is selected by taking events
with two good tracks, which must be back-to-back (i.e. they must lie one
in each thrust hemisphere); one of the two tracks must carry more than
80%, and the other more than 50% of the beam energy; moreover the total
energy measured by the wires in the Electromagnetic Calorimeter must not
exceed 10% of the centre-of-mass energy. The Monte Carlo predicts for such

L An offset of 3 cm is added to the “road” width to take into account possible misalign-
ment of the tubes inside HCAL



a selection a sample purity of over 99%, where most of the contaminating
events are 717~ events where both tau’s have decayed to a muon (which, for
our purposes, are exactly as useful as Z — u*tu~ events).

Such events are used to evaluate the efficiency of HCAL double planes,
for each of the 24 modules (6 in each endcap and 12 supermodules in the
barrel?). The efficiency is computed by counting how many times a plane that
is crossed by an extrapolated track actually fires. The statistical precision
which has been obtained on the average plane efficiency is of about 1% for the
barrel and 2% for the endcaps. This definition includes the effect of plastic
walls, spacers and other dead zones, which means that perfectly efficient
tubes would not yield a 100% efficiency. In the Monte Carlo, tubes are
described as having an efficiency of 87%. due to the effect of plastic walls.
Adding other dead spaces yields an average global efficiency of 80%.

Shown in fig. 1 are the plane efficiencies, for 1991, 1990 and Monte Carlo
data. Efficiencies in data are lower than in Monte Carlo: it turns out that
real planes show a global 93% efficiency for firing in addition to the 80%
overall geometrical efficiency present in the Monte Carlo and the endcaps
are systematically lower than the barrel because of the different (and un-
favourable) digital readout configuration. This information from real data
is used to implement plane efficiencies inside the reconstruction code. The
procedure consists in a random deletion of simulated hits in Monte Carlo
events, the deletion in a certain plane occurring with a probability equal
to the measured inefficiency. In this way we make sure that the observed
behaviour of the detector in real data is correctly reproduced [5].

HCAL selection Muons are identified with cuts consistent with a track
which penetrates through the whole depth of HCAL without showering. It
is a nice feature of muons that such cuts can be independent of momentum,
since a muon above 3 GeV/c penetrates up to the Muon Chambers: in addi-
tion, test—-beam data show that — as we expect — there are no differences
in the tube firing efficiency for muons from 5 to 50 GeV/c.

The cuts used to define a penetrating track are

[ ] NfiT/Nea:p Z 0.4

2In the most recent Monte Carlo productions the efficiencies are evaluated for each of
the 24 modules of the barrel
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Figure 1: Average HCAL plane firing efficiencies for endcaps and barrel
modules in 1991 (solid line), 1990 (dashed line) and Monte Carlo (dotted
line).



o Ny > 10
[} N10 >4

where Nz, Nyir and Nyg are, respectively, the number of expected planes,
the number of actually firing planes, and the number of firing planes within
the last ten expected associated to the track.

These cuts are suitable for isolated muons like Z — ptpu~ events or
77 events. On the other hand, for muon identification in the study of Z°
decays into Heavy Flavour final states, some extra requirements are added
to this standard ALEPH identification algorithm because in this case muons
are hidden inside jets, which requires a better rejection power against hadron
background.

Hit Multiplicity The digital pattern created by a hadron shower in the
HCAL looks quite different from that created by a muon. This is easily seen
“by eye”, if one looks at the graphical event display both in Z° events (Monte
Carlo and data) and in test-beam data.

This feature allows to develop rough but fast methods which are of great
help in rejecting hadron showers. The one used in the ALEPH standard muon
identification algorithm is based on a variable called X .. This variable is
computed by counting all the HCAL digital hits within a cone of “radius”
from 20 cm to 30 cm around the extrapolated track in the last eleven planes
and dividing by the number of firing planes; in this way X, represents the
average hit multiplicity per fired plane, which gives a measure on the lateral
size of the digital pattern linked to the track.

The cut applied for muon identification is

Xm’ult < 1.5

which removes about 1% of the prompt muons in the Monte Carlo.
In fig. 2 the distributions for Ny;,/Nerp, N1o and X, are shown for

muons coming from Z — ptp~ events and from pions produced in 7 decays®
(both from 1991 data).

3See the Appendix for the pions selection algorithm
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Muon Chamber association The installation of the full Muon Detector,
composed of two layers of chambers, was completed between the 1990 and
1991 running periods. During 1990 data-taking only the first layer of Muon
Chambers was operational.

In a single layer of chambers a charged particle traversing the Hadron
Calorimeter can generate up to two three-dimensional hits* in the Muon
Detector, one for each tube plane inside a chamber (actually this is not
strictly true, since there exist small angular regions of overlap where a track
can traverse two chambers, both belonging to the first layer).

A track is defined to have hit the Muon Chambers if at least one of
the two tube planes has yielded a two-dimensional hit (i.e. a cluster has
been recostructed from both the X and the Y strips of the same plane)
whose distance from the extrapolated track is less than 4 times the estimated
multiple scattering standard deviation® [4].

The efficiency of the Muon Chambers has been measured with a proce-
dure similar to what was used for the HCAL double planes, and again the
results are inserted in the reconstruction program to account for the mea-
sured efficiencies through random hit deletion in Monte Carlo events. The
efficiencies of the Muon Chambers for 1991 data are shown in fig. 3.

We found that the request of Muon Chamber association as a further
cut for muon identification is very powerful for background rejection: from
Monte Carlo it turns out that while about 85% of the muons which have
been identified in HCAL are associated to a firing Muon Chamber, in the
case of misidentified hadrons such a fraction reduces to 20%.

The reason for this is mainly twofold: first, requiring a hit in the Muon
Chambers ensures that the particle has actually traversed the whole depth
of the calorimeter, which may not always be the case for a track identified
by the above HCAL cuts, as explained above; secondly, the Muon Chamber
association requires a two dimensional matching between the track and a hit
in the detector: this condition is less likely to be satisfied when the hit is due
to a secondary particle produced inside a hadronic shower and leaking out
of the calorimeter. Moreover, we recall that between the last active plane of
the calorimeter and the Muon Chambers there is an additional 10 cm thick

“Hits on each muon chamber are actually two—dimensional, but the third coordinate is
given by the known position of the chamber itself
5The hit is associated in any case if the distance is less then 5 cm
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Figure 3: Efficiencies of the two Muon Chamber layers in 1991 (OR of the
two planes of tubes).

iron slab, which acts as an additional muon filter.

These considerations make it easy to predict the effect of requiring a fired
Muon Chamber: by reducing the hadron contamination inside the lepton
sample, this will increase the primary b purity and correspondingly decrease
the background from misidentified hadrons. The other sample components
will stay to first approximation the same, since they don’t depend on the
performance of muon identification.

For the 1991 data, in order to be consistent with the 1990 analysis, we
kept the requirement of at least one associated hit in the Muon Chambers,
either in the first or in the second layer. The addition of the outer layer then
simply causes an increase in the muon detection efficiency.

Shadowing Due to the high track multiplicity inside a jet, and due to the
fact that the HCAL tracking is only in one projection, the multiple scattering
“roads” opened around different tracks can overlap, and the same hit can be
associated to more than one track. When two tracks happen to have common
hits, they are said to be shadowing each other. The shadowing ambiguity
becomes annoying when two shadowing tracks get both identified as muons
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p1< 1.25 GeV/c | p1> 1.25 GeV/c
prompt muons (%) 23+ 1 20+ 1
hadrons (%) 50 +3 28+ 7

Table 1: Fraction of shadowed prompt muons and fakes.

p1< 1.25 GeV/c | p1> 1.25 GeV/c
prompt muons (%) 0.4+£0.2 < 0.1
hadrons (%) 2242 15+5

Table 2: Fraction of prompt muons and fakes rejected by the shadowing
algorithm.

and one has to perform a choice between the two candidates. The best handle
to solve the ambiguity comes from the Muon Chambers which, providing
three dimensional hits, in most cases leave no room for doubt as to which
of the two tracks is the true muon. In case both tracks share exactly the
same Muon Chamber hits, the one with the minimum hit-to-track distance
is chosen®. In table 1 the fraction of identified prompt muons and fakes
(hadrons misidentified as muons) which have at least four HCAL hits in the
last ten planes in common with other tracks are given in function of p,. The
fraction of prompt muons which have been lost because of the inefficiencies
of the algorithm treating the shadowing and the fraction of fakes which have
been rejected is given in table 2.

Efficiency of the identification cuts To summarize, here are the cuts
which are used in our analysis to define a muon [5]:

o N.up > 10

61t is also possible to profit from the HCAL information making use of a sort of x2 test:
the track is chosen for which the sum of ‘residuals’ (i.e. the distance from each hit to the
extrapolated track) is smaller; however since we always require at least one muon chamber
hit, this, in our case, does not help significantly in solving the ambiguity, therefore it is
not used.

11



o Niir > 04

exp

o Nig>4

o X,ut< 1.5

e association of the track to at least one plane of the Muon Chambers
e best muon candidate in case of shadowing ambiguity

In addition, we apply tighter cuts with respect to those defining a “good
track” for the hadronic selection, described in section 2.1, in order to ensure
a good tracking quality:

o at least 5 reconstructed TPC points
e | cosf |<0.95

o Dy <bHmm

where Dy is the minimum approach distance between the track and the fitted
beam centroid, in the @ — y plane.

Fig. 4a shows the total efficiency of these selection cuts as a function of
cos 8, for Monte Carlo Z — ptu~ events and real data; fig. 4b shows the
efficiency of the HCAL cuts only.

The dips in the distribution of HCAL efliciency correspond to the barrel-
endcap overlap regions, where the complicated geometry of the calorimeter
causes a decrease in the resulting identification efficiency. In these regions
the discrepancy between real data and Monte Carlo is due to a not perfect
description of the position of the edges of the tubes in the barrel. In the
barrel region (| cosf |< 0.6) the efficiency, from real data, is not flat and
in disagreement with the Monte Carlo. This is also true at low angle for
the endcaps (| cos# |> 0.88). For the barrel this discrepancy is related to
readout inefficiencies in picking up the signals, and depends on the distance
from the readout electronic cards. In the endcaps the discrepancy is not
fully understood but there are several indications that one of the reasons is
an incomplete description of the their geometry in the Monte Carlo. In the
distribution of the total efficiency the two additional dips in the barrel are
due to the missing Muon Chambers in the regions of ALEPH “feet”. In this

12
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case the disagreement between real data and Monte Carlo is also due to the
effect of the Muon Chamber efficiency simulation which does not take into
account possible efficiency variations within a single chamber. Among these
sources of discrepancies, the dependence of the efficiency on the position in
the barrel and the improvement in the description of the overlap geometry
have been simulated in the most recent Monte Carlo productions, but not
in the Monte Carlo sample we have used for this analysis. For completeness
in fig. 5 the effects of these modification are shown. In our analysis we have
weighted the Monte Carlo events as a function of cos 8, in order to correct
for the discrepancies described above.

We have verified that the muon identification efficiency is independent
of momentum by selecting muons produced in 7 decays. The selection is
based on single-prong 7 decays (not accompained by neutrals) which behave
as minimum ionizing particles in the ECAL. A cut on the energy release
in the HCAL towers reduces the pion contamination to a negligible level for
momenta greater than 12 GeV/c (see fig. 6) [6]. In this range data and Monte
Carlo are flat and in good agreement as can be seen in fig. 7. It is possible to
explore the region at low momentum by using the Muon Chambers to check
the HCAL identification criteria and vice versa. Since the two subdetectors
are independent” this is a correct procedure to check the simulation of the
response of the active part of these subdetectors to a muon. However in
this way we do not strictly check our global identification criteria since by
selecting the muon with Muon Chambers or HCAL we reject muons which
do not penetrate up to the last planes of HCAL and to the Muon Chambers
because of interactions with the detector. Therefore the simulation of these
interactions are not fully checked with this method; on the other hand it
is true that for muons they are “theoretically” well under control. Figg. 8
and 9 show, respectively, the effect of the additional requirement of at least
one Muon Chamber hit and of our four HCAL cuts in our selection of muons
from 7. The distributions are now flat in the whole 3 to 40 GeV/c range,
and the agreement between data and Monte Carlo is good.

The jet environment can modify the efficiency of muon identification basi-
cally in two ways. As was discussed above and shown in table 2, a fraction of
muons is lost because the identification is assigned to a nearby track (shadow-

“This is not completely true since part of the inactive zone of HCAL and Muon Cham-
bers are overlapped

14
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ing). This fraction, as calculated with the Monte Carlo, is very small (0.4%
at low p,) and even assuming an uncertainty of 100% on the simulation
of hadronic showers (which is a rather pessimistic assumption, see the Ap-
pendix) this effect is much lower than 1%. Another way nearby hadrons can
affect the efficiency is by modifying the value of N/ Negp, N1o, Ximuiz- The
behaviour of X,,,i; for pions is well simulated in Monte Carlo while discrep-
ancies are seen in the Ny;;/Ney, and Nyg distributions (see the Appendix).
We have studied the effect of Ny;./Ne,, and Nyg cuts by selecting tracks in
hadronic events having hits in both muon chamber layers. This sample con-
sists of muons with a purity of about 75%. The standard cut on Ny /Negp
leaves (95.4 +0.4)% tracks in data and (94.9 +0.5)% tracks in Monte Carlo.
The additional standard requirements on Nyg and X, selects (87.14+0.5)%
tracks in data and (88.240.6)% tracks in Monte Carlo®. Before drawing any
conclusion out of these figures we should consider the effect due to the hadron
contamination on our sample, which consists basically of pions (mostly de-
cays) which have hit both muon chamber layers. This requirement induces a
bias on the Ny;./Neyp and Nyg distributions of these hadrons, which can be
studied using the sample of pions from taus described in the Appendix. The
resulting distributions are very similar to the true muon ones, therefore we
conclude that the figures given above can be used for the evaluation of an
upper limit on the difference in efficiency between data and Monte Carlo of

about 2%.

Hadron misidentification In hadronic Z decays prompt muons are pro-
duced about one hundred times less frequently than hadrons (mostly pions),
hence the muon identification algorithm has been tuned not only to iden-
tify muons with high efficiency, but also to give a very good hadron rejection
power. A hadron can fake a muon by decaying to a muon itself before exiting
the ALEPH Coil. This is, as far as the Hadron Calorimeter and the Muon
Chambers are concerned, undistinguishable from a prompt muon. Since the
lifetime and semileptonic branching ratio of pions and kaons are well known
and correctly simulated by the Monte Carlo this kind of background can
be easily corrected for using the Monte Carlo simulation. Hadrons can fake
muons also by not interacting in ALEPH (this is called sail-through) or by

8The same requirements for dimuons yields (93.6 + 0.2)% for data and (94.1 +0.2)%
to be compared with (93.8 4 0.5)% for true muons in hadronic Monte Carlo events

16
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0<py1<1.25| p1>1.25
3<p<h 83.6+1.0 |[864+1.8
5<p<10| 84.6+1.0 |84.6%+1.0
p> 10 85.1+1.8 |87.0+£0.8
total 84.24+ 0.7 | 8.0+£0.6

Table 3: Muon identification efficiency (%) versus p and p,in 1991 Monte
Carlo.

0<p1_< 1.25 pL> 1.25
J<p<d | 0.16£0.01 < 0.04
5<p<10| 0.21+0.02 | 0.25 £ 0.06
p> 10 0.15£0.05 | 0.19 £0.06
total 0.18+0.01 | 0.18 £0.03

Table 4: Hadron misidentification probability (%) versus p and p;in 1991
Monte Carlo.

interacting in such a way that they are recognized as a muon by the algo-
rithm (this is called a punch-through). The capability of the Monte Carlo
to simulate the various backgrounds has been checked with data and is de-
scribed in detail in the Appendix. The muon identification efficiency and the
hadron rejection power of the algorithm is given (versus p, ) in table 3 and
4 for Monte Carlo ¢q events.

2.3 Electron identification

Electrons are identified by means of two independent measurements: the
energy deposition in the Electromagnetic calorimeter, and the ionization loss
(dE/dz) of the charged track in the TPC. This is described in detail in other
notes ([3, 19]).

The cuts used for electron identification are summarized here:

o Rpr>—-1.6
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o —1.8< Ry, <3.0
L4 Nwires > 50
e R >-25

Moreover the track is discarded if it is compatible with coming from a
photon conversion, i.e. if it satisfies the pair-rejection cuts:

e Dyy <1lcm
e D, <1lcm

o My < 20 MeV

where D,, and D, are the minimum distances in the r and z coordinates
between the candidate track and any oppositely charged track in the event,
while M, is their invariant mass.

In addition, the same track quality cuts as for muons are applied.

2.4 Jet clustering and p, definition

In this section we describe a definition of the transverse momentum p, , which
permits to reach a satisfactory purity in our b candidate sample, without
losing too much in statistics.

We recall that our goal is to obtain a definition of p; which is as close as
possible to the true transverse momentum of the lepton relative to the flight
direction of the decaying heavy-flavoured hadron. The proper tuning of the
jet clustering algorithm has already been discussed in [2, 3]. The same kind
of studies have been performed on the new data, as far as the choice of the
Energy Flow algorithm and of the y., parameter are concerned, leading to
the same results.

We remind that two main strategies have been developed in ALEPH for
the Energy Flow, the Mask Algorithm [9] and the Calorimetric Objects Algo-
rithm [10, 11]. As far as our analysis is concerned, the two algorithms have
proven to be essentially equivalent; we have chosen the Calobject algorithm
as implemented in [11].

The clustering algorithm we use is the JADE Scaled Minimum Invariant
Mass algorithm, which is generally used inside ALEPH to reconstruct jets in
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hadronic events. We have fixed the value of M, rather than that of y.u, in
order to make the definition independent of the centre-of-mass energy, to a
value of 6 GeV/c?. Thus our y., value is:

M, (6 GeV)
Yout = -
Yeut \/g \/g
When defining the py of the lepton with respect to jet axis the question

arises whether or not the lepton is to be included in the computation of the
jet direction. The two p, definitions can be written as follows:

inel | Pz X Pjet |
prm S

* | Pjet |

ezcl l Pe X (pjet - Pc) |

* l Pjet — Pe |

Clearly the two definitions are related by the following formula:

exel _ _incl | Pjet | _ ancl rexcl
P =P1 ] =D fincl
| Pjet — e |

The p, cut is basically aimed to rejecting physical backgrounds (b — ¢ — ¢
and ¢ — (), since the background due to misidentified hadrons is only weakly
related to p, .

The main feature of the p5*¢! definition with respect to the other is that
it allows a better rejection of b — ¢ — ( background, since in this case we
have a lepton which is, on average, less energetic than in the b — ¢ case,
while the jet is of the same kind. On the other hand, charm jets have, on
average, a lower particle multiplicity than beauty jets, which can sometimes
cause F£%¢ to have a high value, leading to a higher charm contamination.

For this reason the choice of the p; definition is strongly dependent on
the algorithm chosen for the calculation of the jet direction; in particular the
use of an Energy Flow algorithm greatly improves the determination of the
jet direction for charm events.

We have studied the efficiency of the selection vs. the purity for the two
p, definitions, using the Energy Flow algorithm. For the single lepton sample
we get fig. 10 where the efficiency is defined as the number of detected b — ¢
decays divided by the total number of Z° — bb decays. We get, as expected,
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a much lower b — ¢ — £ contamination, while, in the central region, the
¢ — [ contamination is a little bit higher. The resulting signal (b — ¥)
purity is higher with the ps* definition. (Our selected cut will correspond
to an efficiency of about 15%).

For the dilepton sample where b — ¢ — ( is the only relevant background,
the pe® definition is clearly better. For example, if we assume that with
our final p; cut we have a probability of selecting a & — ¢ of 70%, and a
probability of selecting either a b — ¢ — ¢ or a ¢ — £ around 7%, requiring
two leptons, we get a charm contamination of & 0.5 %, while the b — ¢ — {
will contribute basically through (b — () (b — ¢ — {) events by ~ 10%.

Fig. 11 shows the (b — ) (b — ¢ — () and (¢ — () (¢ — {) fractions for
various cuts in the dilepton sample, and the corresponding signal purity. Here
the efficiency is defined as the number of detected (b — €) (b — () decays
divided by the total number of Z° — bb decays. Similar results are shown in
[18].

From now on we shall use the pi® definition °; the exact value of the
cut has been decided after a separate study for the asymmetry and for the
mixing analyses, aimed at finding the cut value which minimizes the final
statistical error. It was found that a cut at p; > 1.25 is satisfactory for both
analyses. Details about the study on the py cut will be given below.

2.5 Summary of Selection Cuts
To summarize, here are the steps of our b selection procedure (see also [7]):
e hadronic events are selected through the cuts described in section 2.1

e cach hadronic event is split up into jets according to the Scaled Mini-
mum Mass algorithm, making use of Energy Flow objects, and requiring
Mj.; = 6 GeV/c?. The event must contain at least two jets

o events where the lepton carries more than 90% of the jet momentum,
or where the jet containing the lepton is made by less than 3 “objects”

°In our previous analysis we used [1, 2] pi"®! for the asymmetry, with a mixing value

obtained using charged tracks and p¢*® [21]. This was done in order to have the lowest
possible contamination from ¢ — £. Since then the Energy Flow algorithm has improved
and as we can see in fig. 10 the two definitions are equivalent as far as the charm con-
tamination is concerned, for the cut we have chosen. This allows the use of the same p
definition for mixing and asymmetry.

SV
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are discarded. The purpose of this is the rejection of those events where
the jet clustering algorithm makes a jet containing one energetic lepton
together with some very soft fragmentation products

e the event is kept if at least one lepton (electron or muon) is detected
whose momentum, p, and transverse momentum with respect to the
jet it belongs to, py, satisfy the following conditions:

p > 3GeV/c (1)
pL > 1.25GeV/c (2)

3 Measuring the Asymmetry

3.1 Fit of the Raw Asymmetry

Given our sample of candidate Z° — bb events, our purpose is the determi-
nation of the angular distribution of the lepton’s parent quark. The quark’s
direction is approximated by the thrust axis of the event,which is recon-
structed starting from Energy Flow objects. The direction and the charge of
the lepton can be used to tell which of the two possible orientations of the
thrust axis represents the emission direction of the b quark. The procedure
is the following:

e the vector momentum of the jet which includes the negative lepton is
computed, by taking into account all the tracks and the Energy Flow
objects the jet is made of, including the lepton

e the orientation of the global thrust axis is chosen so that it makes an
angle less than 90° with the jet momentum. The thrust axis direction
is described by the polar angle 6

e the thrust axis orientation determined with the above criterion is re-
versed if the lepton charge is positive (which — in the ideal case —
means that the jet originated from the decay of a b ). This can be
expressed by

cos ) = _Q - €08 Oyprust (3)

where @) is the lepton charge.
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By this procedure we uniquely define cosf for each event, so we can
proceed to measure the angular distribution.

Fig. 12 shows the distributions for the 1990 and 1991 samples separately,
as well as for the electrons and muons; the angular distribution of the total
sample is shown in fig. 13.

In each of these plots, the first and the last bin show the effect of the
lower acceptance at small polar angles.

The asymmetry value is extracted via a fit to the angular distribution:

do

dcos 0 -

C(1 + cos® 0 + %A"F”g cos 6) (4)

where the factor 8/3 comes in to let the definition of App match with the
traditional one N N
Np— Np
Arp = Nr T Ny (5)
The fit procedure used is the Maxzimum likelihood method, which is unbinned,
i.e. the full information on cos 8 is used for each event.

Another advantage of this fitting procedure is that one can disregard
the effect of any multiplying constant in the probability density expression.
Indeed, such a scaling factor becomes an additive constant which doesn’t
affect the result of the minimization procedure. Actually, this is true for
any correction function which is not dependent on the parameters, such as
an acceptance function €(z): since no contribution to the partial derivative
0l/0a comes from such a piece in the log-likelihood sum, it doesn’t affect
the minimization (i.e. the fit) result.

3.2 Effect of acceptance weights

Due to its geometrical structure, which is far from being spherically sym-
metric, the ALEPH detector’s response is not exactly uniform along the polar
angle range. This obviously reflects into an angular non—uniformity for all
kinds of event selection and particle identification. Such effects are generally
small but they need to be investigated.

The most straightforward way of correcting for non-uniformities is to
determine a correction function from Monte Carlo: if the simulation program
predicts an efficiency function €(6), then f(0) = 1/¢(0) is the correction
function one looks for. It is convenient to define such a function as a set of
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Observed angular distributions
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Figure 12: Observed angular distributions separately shown for the total
1990 and 1991 samples, as well as for the total electron and muon samples,
at the peak energy.
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90+91 angular distribution
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Figure 13: Observed angular distribution for the total 1990 + 1991 sample.
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weights, to be applied each to a bin of the angular range. This is only done
for practical purposes since, as was stressed above, our fitting procedure does
not require binned data.

For each cos # bin 7, one can write

nt}rue

W, = (6)

rec
n;

where ni™ and n7* are respectively the number of Monte Carlo Z° — bb
events where the direction of the thrust axis is contained in the ¢-th cosé
bin, and the number of reconstructed events in the same bin.

Such a correction function is in general forward-backward asymmetric,
as was seen before. Anyway, if we look at our specific case, where events are
naturally symmetrized by the charge-flavour correlation procedure, we see
that our acceptance correction function is eventually symmetrical, indepen-
dently of the value of the asymmetry itself, as long as the selection efficiency
is the same for positive and negative tracks.

To show this, let’s consider the simplified case of two bins (forward-
backward direction).

Suppose the apparatus has an asymmetrical acceptance, described by the
two efficiencies e and cp. Since we reverse the sign of cos @ for events with
positive leptons, we get

]V;:ec = GFZVE + 6BN§
Ng© = egNg +epNF
Knowing that
1+ A 1-A
Np = N__i__FE, Ng=N—_FB
2 2
one has
i 1+ A
Niee y(eﬂ\" +egN*t)
R 1—-A
Ngt = ———2(egN~ + exN")
If

Nt = f* Ny, N7 =f N
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we have

Tec 1+A —
Nt = N2 (erf™ +enf*)
1 - Ar
Ng© = NP (enl ™+ erf?)

P4

We see that if f* = f~, which is a reasonable assumption as long as
there are no serious problems with the tracking detector, the two acceptance
factors (those between brackets) are exactly equal.

Due to limited available Monte Carlo statistics, fluctuations can create a
fake asymmetry, when computing the weights according to eq. 6.

We note, however. that if we sum the angular distributions for positive
and negative tracks without reversing the direction for the positive case, the
two samples being on average equal, we expect exactly a 1+cos? 8 distribution
for the data. Therefore if we define
nr 4 nt%?

Wi=c 1'+ cos? 0);

where
3
C=- ]Vi JV.,'

is the normalization factor, we get a set of ‘naturally’ symmetrized weights
where whe have cancelled out the effects due to the asymmetric angular dis-
tribution of data themselves. This definition also has the advantage of being
less sensitive to fluctuations, the denominator being a function and not a
stochastic object. With this procedure we still have weights which are in
principle asymmetric, but whose asymmetry is only due to the apparatus
acceptance, as it is implemented in the simulation code. To go back to the
previous example, our weights are now the equivalent of e¢r and eg. How-
ever, as we said above, an asymmetry can also be created by the statistical
fluctuations between the positive and negative track samples in our Monte
Carlo data.

We can then decide to have symmetrical weights in practice and not only
in principle, symmetrizing them by hand and defining:

n?'rue + nt_'rlye

TeEC Tec
n;" +n’%

W, =W_; =
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where 7 and —i are symmetrical bins with respect to 6 = 7/2.

We have used both the symmetrized and the unsymmetrized set of weights
in the evaluation of the raw asymmetry, and we saw no appreciable difference
in the result, as was to be expected from the arguments above.

It turns out that in order to work properly, these weights have to be
normalized. and the normalization condition is that they conserve the total
number of events, t.e.

Z VVz = Nbins

This condition fixes the value of the constant C.
The way such weights enter the likelihood funcion is the following:

£ =TI I filcos )" (7)

1 k€

where the second product is extended to all the events contained in bin 2.

To explain why it must be so let’s suppose the data are binned. In that
case the effect of weights is to change the measured population of the i-th
bin by the corresponding computed factor. Thus the likelihood function must
change to

TT f(cos 0,74 =TT f(cos 0:)" " = [T T] f(cos 0)™ (8)

1 k€

where the last expression is equal to eq. 7. One can easily see that eq. 7 still
holds for unbinned data, if one substitutes the discrete weights W; with a
continuous correction function. The use of discrete values is however a good
approximation.

It is now clear why it’s important to have the weights normalized to give
unit average. Changing such a normalization would artificially change the
total number of events, and therefore cause the evaluation of the statistical
error to be inadequate.

The acceptance weights have been calculated from our Monte Carlo sam-
ple, choosing a bin size of 0.05 in cos 0: their values are plotted in fig. 14. The
value at the edge of the angular range (| cos 0 |> 0.95) is high due to losses
at small angles. This small-angle range has been excluded from the fit. As
one can see, apart from this edge effect, the weights are fairly constant and
they can be expected to have little effect on the asymmetry measurement.
Indeed, we explicitly verified that the central value of the fit remains the
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same within a small fraction of the statistical error. This is also true for the
muon and elecron samples separately.

In addition to the set of weights determined from Monte Carlo alone, we
have also employed lepton identification correction factors, determined from
the comparison of real data angular distributions to Monte Carlo (see lepton
identification sections). Such weights are a function of cos # for muons, while
they are given as a function of cosf, p and p, for electrons. These weights
have been applied to the events according to the direction and the momentum
of the detected lepton. Again, no effect can be seen on the result of the fit.

The main effect of acceptance weights is therefore the “esthetical” im-
provement of the angular distribution plot of fig. 16.
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Figure 14: Acceptance weights for the total lepton sample in 1990 and 1991,
determined from Monte Carlo.

3.3 Results of the fit

The hadronic events we used for the fit are the full statistics collected in 1990
and 1991 consisting in about 148200 Z° — ¢ for 1990 and 285800 Z° — ¢g
for 1991.



Fig. 15 shows the number of events which pass our Z° — bb selection
cuts, at the various beam energies, both in 1990 and 1991.
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Figure 15: Distribution of selected events at the various centre-of-mass en-
ergies, for both years.

The minimization of the log-likelihood function is performed using the
MINUIT standard program [27].

The results of the fit, separately computed for the electron and muon
sample, as well as for the total sample, are shown in table 5.

The fitted curve is shown in fig. 16, for the total sample, at the peak
energy.

Table 6 shows the results of the fits at the seven energy points, for the
total sample.

3.4 Extraction of App(d)

The reason why the observable forward-backward asymmetry A%g differs
from the ‘true’ b asymmetry App(b) is twofold:

1. the sample is contaminated by various background sources, that is, a
fraction of the selected events was not due to Z° — bb decays



90+91 angular distribution
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Figure 16: Observed angular distribution for the total 1990 + 1991 sample,
with the fitted curve superimposed.
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Tagging lepton Year Raw asymmetry (%)
e 1990 + 1991 4.3+1.4
I 1990 + 1991 4.8+1.1
e+ p 1990 6.8+1.5
e+ p 1991 3.6 £1.0
Total sample 4.5+0.9

Table 5: Values of the fitted raw asymmetry at the peak, separately for the

1990, 1991 and total sample, and for the electron and muon samples. The
errors are statistical only.

Energy Point | Fitted Asymmetry (%)
Peak - 3 GeV 3.9+6.3

Peak - 2 GeV —-0.9+4.7

Peak - 1 GeV 2.8 £3.3

Peak 4.5+0.9

Peak +1 GeV 4.1+2.9

Peak +2 GeV 7.1 +3.8

Peak + 3 GeV 8.5 +4.5

Table 6: Values of the fitted raw asymmetry at seven energy points for the
total sample. The errors are statistical only.



2. for a certain fraction of the detected Z° — bb events the correlation
between the lepton charge and the quark flavour is not the expected
one, either because of BB mixing or because of the contamination
from b — ¢ — £ (“cascade”) events, where the charge is anticorrelated
with the quark flavour.

To see how the latter effect works, suppose we have a pure sample of
b — ( events, for a fraction y of which, the charge of the tagged lepton has
the wrong sign with respect to the expected one, due to the fact that the B
meson has turned to a B (or wvice versa). This causes the cosine of the polar
angle 0 to be taken with the wrong sign. This implies

Ng‘zeas — It;ue . (1 . \) + \/ . g-ue

meas __ true A / true
Nge* = Ng*-(1=x)+x - Ng
AS a reslllt Nmea,s ATTTLE!IS
meas _ *'F — B
FB = armeas Tmeas
N + Nj

The fraction {rom “cascade” events simply contributes in the same way
but with a reversed sign. We note, however, that some of the “cascade” events
are actually events where the virtual 1/ emitted by the b quark decays to a
¢s couple, followed by the semileptonic decay of the ¢ quark. These events
have the “right” charge-flavour correlation.

We can now write down the relation between the observed and the true
b asymmetry given the fractional composition of the sample and the mixing
parameter x.

= (1 - 2047y

Aobs - (1 - QX)(nright - nwrong)AF'B(b) - 77c—>lAF'B(c) + nbkgAbkg (9)

where

Nright = Mot + Mporat + Moozt

Nwrong = NMpoc—t

and 7; is the fractional contribution of process ¢ to the final sample compo-
sition. Ay, is the “residual” asymmetry due to the background processes.
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Sample fraction (%)

Event type 1990 1991

e I € ©
b—( 82.24+0.6 | 73.1+0.7|824+04|728£0.3
b— 71— 1.24+02 | 1.3£02 | 1.2£0.1 | 1.1+0.1
b—c—t( 6.14+04 | 6.2+04 | 6.1+£02 | 6.2£0.2
b—¢c—( 04401 | 034+0.1 ] 03+01 | 04£0.1
c—/ 53404 | 5.7+£03 | 53+£02 | 6.0£0.2
K,m—pu — 7.6 £04 — 8.0£0.2
v —ete” 1.0+ 0.2 — 1.5£0.1 —
misid. hadron || 1.0£0.2 | 3.7£03 | 0.9£0.1 | 3.5+0.1

Table 7: Sample composition for the various data selections.

The minus sign in front of the charm contribution takes into account
the fact that leptons from direct charm decay have the ‘wrong’ charge with
respect to our convention.

We see from eq. 9 that it is possible to solve for Arp(b), as long as we
possess reliable predictions on all the quantities entering the equation.

The composition fractions n; are determined through Monte Carlo simu-
lation.

The events have been selected using the cuts described in section 2.5 and
the resulting sample compositions for the two years and for the two lepton
species are shown in table 7.

We are left with the non—b asymmetries Apg(c) and Ajry: we take the
latter from our Monte Carlo sample, considering those kind of backgrounds
which are not intrinsically symmetric, which is the case for instance for elec-
trons coming from a converted photon, or for leptons coming from the decay
of a J/¢. The Monte Carlo predicts that such background is basically due
to decays and misidentified hadrons. A residual asymmetry in these events
is due to the leading particle effect, which induces a correlation between the
selected particle’s charge and the charge of the parent quark.

In order to reduce the disadvantages due to poor statistics, we decided
to study the background asymmetry by selecting a Monte Carlo background
sample where the lepton identification cuts have been released. The flavour
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composition of the sample thus selected is very similar to that of the de-
cays and misidentified hadron part of our Monte Carlo “lepton” sample. In
both samples one can see that the kinematical cuts enhance the b flavour
component. The predicted asymmetries for each flavour, from the “hadron”
sample, have then been reweighted according to the flavour composition of
the “lepton” sample. We get

Abkg = (14 £0.7)%

As to the charm asymmetry, we decided to rely on the Standard Model
only as far as the ratio between charm and beauty asymmetries is concerned.
The reason for this is that the ratio

_ App(b)
K=
AFB(C)
is well predicted by the Standard Model with almost no dependence on the

top mass.
So, if we put

A[B(l)) = I‘JAFB(C)

we can solve eq. 9 to get

A% — fokgMokg Avkg
(1 — QX’)(nright - nzvrong) - %770-'1

Arp(b) = (10)

The results are summarized for various subsamples in table 8.

3.5 Evaluation of the systematic errors

The possible sources of systematic errors in the measurement of Arp(b) can
be divided into two categories: those which directly affect the observed angu-
lar distribution, and hence the value of the raw asymmetry, and those which
affect the quantities appearing in eq. 10, thus causing a bad evaluation of
what we call the true asymmetry.

The first category includes acceptance effects, which turn out to be very
small, and errors in the determination of the quark axis direction, due to the
choice of a particular clustering algorithm and jet definition.

The second category turns out to be the more relevant one, at least to
our level of understanding.
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sample Arg(b)(peak) (%)
e (1990+1991) 7.9+£3.0
1 (1990+1991) 8.8+23
e+p (1990) 12.1£29
e+p (1991) 6.2 +£2.0
total sample 79+£1.6

Table 8: Values of the extracted App(b) at the Z peak separated by tagging
lepton as well as by vear. The errors are statistical only.

Energy Point K

Peak -3 GeV | -0.18
Peak -2 GeV | -0.67
Peak -1 GeV | 10.0
Peak 1.3
Peak +1 GeV | 1.1
Peak +2 GeV | 0.91
Peak +3 GeV | 0.83

Table 9: Values of the ratio & at the various energy points, from Expostar.

Eq. 10 contains the sample fractions, which we take from Monte Carlo,
the ratio k between App(b) and Arp(c), and the mixing parameter X, which
we measure directly from data.

The values for & used at the various energy points are taken from Expostar
[13], and are listed in table 9.

The sample fractions have been determined on the basis of a finite sample
of Monte Carlo data, and thus have a statistical error. They also suffer from
systematics due to their implicit dependence on various physical parameters
such as the semileptonic branching ratios of heavy quarks and fragmentation
parameters.

Knowing what values have been used in the Monte Carlo, we can study
the effect on the sample composition, and consequently on the extracted
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asymmetry, induced by a shift in each of these parameters. We can then cor-
rect the raw Monte Carlo prediction for the sample composition, by shifting
each parameter to the chosen value; then, in order to obtain an estimate for
the systematic error due to the poor knowledge of that particular parameter,
we can determine the effect on our final result induced by a variation of the
parameter by plus or minus one sigma.

Since the sample composition fractions are all correlated (their sum is
unity), a variation of each physical parameter will affect all of the sample
fractions. For instance, supposing

BR(b — £) — (1 + ¢)BR(b — {)
then one will have that, to first order
Nb—»e e (1 + 6)17\/71,_*[

where N; is the number of selected events belonging to the i-th species. Now
we can easily see that every fraction 7; will be affected by such a variation,
since Ny_, is contained at least in the denominator:

N,
TN

The sources of systematics we have considered, that is to say the param-
eters we have varied, are the following:

e the semileptonic branching ratio of the b and ¢ quarks

BR(b — (), BR(c — ¢)

e the “cascade” branching ratio
BR(b — c— ()

which we take as an independent quantity, with respect to the branch-
ing ratio product BR(b — ¢) - BR(¢ — ¢). To explain this choice,
we note that the production composition of charmed mesons in the
b — ¢ — ( events is not necessarily the same as for ¢ — ¢ production.
The lepton spectrum will then be different for the two event species,
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and therefore a small change of the average ¢ — ¢ branching ratio
would not have te same effect on the number of selected primary ¢ and
cascade events. The two processes are indeed correlated to a certain
extent, and therefore we decided to treat them as completely corre-
lated when computing the error propagation, in order to stay on the
conservative side

e the branching fraction BR(b - W — ¢ — ()
e the branching fraction BR(b — 7 — ()
e the value of I',

e the fragmentation parameters ¢, and ¢, of the heavy quarks, as they
appear in the Peterson parameterizing function. For the fragmentation
of the b quark, we have also studied the effect of the use of a different
fragmentation model, namely the Kartvelishvili model. [29]

The semileptonic decays of the B hadrons are generated in the Monte
Carlo according to the Altarelli model [24]. However, the data from lower
energy experiments (CLEO, ARGUS) can also easily be fitted to a different
model by Isgur, Scora, Grinstein and Wise with the total D** fraction of
b — ( set to 32% (we will refer to it as the ISGW model) which predicts a
softer lepton spectrum [25]. An incorrect description of the lepton spectrum
can of course affect our results, by changing the sample composition resulting
from the p, p; cuts.

Therefore, we have considered, as a further source of systematics, a possi-
ble model dependence of our results, changing the spectrum shape from the
Altarelli to the ISGW model.

To extract the value of Apg(b) using the ISGW model for the lepton
spectrum, for consistency reasons we have to make use not only of the slightly
different sample composition that we get having softened the spectrum, but
also of the different results for the 6 — ¢ and b — ¢ — ( branching ratios
which are found when this model is assumed, as well as the slightly different
result for the mixing parameter (see sect. 4.4) .

We find that the central value of the extracted asymmetry decreases by
0.05 (expressed in percent), leaving the result practically unchanged:

Absow = (7.9+£1.84+0.8)% (11)
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MC (%) | Altarelli (%) ISGW (%)
.y 104 |[114+03+£03]11.8+£03+03
boc—l| 99 |87+£03+06 | 7.5+02+0.6

Table 10: Fitted values for the b — ( and b — ¢ — { branching ratios,
compared to the Monte Carlo values.

The values of the branching ratios 6 — ¢ and b — ¢ — ( have been taken
from the ALEPH fit results [19], separately for the Altarelli and the ISGW
models. The values we have used, together with the Monte Carlo values, are
listed in table 10.

For the b — ( branching ratio, we have also taken into account the con-
tribution due to the uncertainty on the fraction of events coming from b — u
transitions [22], which has been varied by 50%.

The b — 7 — ( branching ratio has been taken from the latest ALEPH
measurement [26].

The branching fraction BR(b — W — ¢ — () has been varied by about
70 % (where we have summed in quadrature a 50 % variation accounting
for the uncertainty on the branching ratio. with a further 50 % variation
acconting for model inadequacy).

As to the ¢ — ( branching ratio, we decided to keep the Monte Carlo
value [23] and vary it by £15%.

The T, has been conservatively set to 5%, without shifting the Monte
Carlo value, which is equal to the Standard Model prediction.

The variation of the sample fractions have been calculated assuming that
changing one of the above branching ratios would only affect the number
of detected events for the corresponding species, leaving the other species
unaffected.

The effect of a change in the lepton spectrum, either due to changing
the decay model, or the heavy quark fragmentation parameters, has been
estimated using the following technique: since a variation of the fragmenta-
tion parameter ¢ translates into a change of shape for the distribution of the
fragmentation variable z, for each Monte Carlo event the value of z which
was used to generate the event is extracted, and the event is given a weight
which accounts for the new z spectrum, resulting from a shift in e. This
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‘trick’ is very useful for this kind of studies because it allows to vary un-
derlying parameters such as ¢ using in fact one single Monte Carlo sample,
without having to undergo a time-consuming full generation every time the
parameter is changed.
The value of ¢, has been taken from the fit to ALEPH data [19], which
yields
ey = (4.6 £0.5+0.8) x 1072

while the value used in the Monte Carlo is g, = 0.006
The value of ¢, has been taken from the D* analysis [20]:

c.= (4T £2) x 107°

while the value in the Monte Carlo is . = 0.052.

Another error comes in from the uncertainty on Apgg, which is equal to
the statistical error on the Monte Carlo determination of such background
term.

The error on the amount of background comes from the estimates of the
discrepancies between data and Monte Carlo concerning the simulation of
misidentified hadrons.

We have let the relative amount of electrons and muons float by +3% in
order to allow for an overall uncertainty in the lepton identification efficien-
cies (apart from the angular and momentum dependences dealt with by the
correction factors mentioned above).

The amount of events where the parent quark came from a hard gluon
(which is a very small fraction) was varied by 100%.

The error caused by the uncertainty on the mixing parameter x turns out
to be one of the most relevant contributions to the total systematic error.

The results on the contributions from the listed sources are summarized
in table 11, for muons and electrons at the peak. The various contributions
are added in quadrature to give an estimate on the total systematic error.

3.6 Conclusions

We have measured the forward-backward asymmetry of Z° — bb events at
seven energy points, and the results are listed in table 12. Fig. 17 show the
measured values as a function of the centre-of-mass energy, together with the
theoretical prediction by the Standard Model, for a particular value of mip.
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Source Variation | AA%g(%)
Monte Carlo statistics lo 0.04
['(bb)/T(had) 5% 0.09
x = 0.110 +0.017 0.40
BR(b — 0) lo 0.07
BR(b— ¢ — () lo 0.05
BR(b— W — ¢s) 50% < 0.01
(b — W — ©s) model 50% < 0.01
BR(b— 1 — 1Y) lo 0.01
BR(b — u) 50% 0.03
I'(cé) /T (had)-BR(c — ¢) 15% 0.18
quarks from hard gluons | 100 % 0.04
Ep lo 0.02
lepton ID efliciency 3% <0.01
~ conversions 2% <0.01
b fragmentation model 0.03
Ee lo 0.10
Ag%Ckgmund lo 0.20
Bkg uncertainty lo 0.03
TOTAL 0.76

Table 11: Estimated contributions of the various sources to the systematic
error on Apg(b)at the Z peak.
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Figure 17: Extracted App(b) as a function of energy. The plotted errors are
statistical only. The superimposed curve is the Standard Model prediction
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Energy Point | Extracted Asymmetry (%)
Peak - 3 GeV 42472405

Peak - 2 GeV -1.7+73£0.3
Peak - 1 GeV 454+59+05

Peak 7.9+£1.6 0.8

Peak +1 GeV 7.3+£5.74+0.7

Peak +2 GeV 131 +£76+1.1

Peak + 3 GeV 15.94+9.1+£1.3

Table 12: Values of the extracted asymmetry at seven energy points for the
total sample.

P; cut (GeV) | A%g(%)
0.75 7.8+2.2
1.00 8.5+1.8
1.25 79+£1.6
1.50 7.44+1.7
1.75 79+138
2.00 7.8+2.0

Table 13: Values of the extracted asymmetry for the total sample, at various
pe cuts. The errors are statistical only.

We have also studied the stability of our result at the peak, with respect
to the py cut. Table 13 lists the results for 6 differents cut in p, (using
the Altarelli model). Fig. 18 shows a plot of such values: the errors are the
statistical errors on the difference between the value at a certain p; cut and
the chosen value, which is meant to take into account the correlation of the
samples at the various cuts.
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Figure 18: Extracted values of App(b) at various p; cuts. The errors are
relative to the difference with respect to the value for the chosen cut.

4 Measuring the Mixing

Starting from the same sample we have used for the asymmetry we have
selected events with two high p; leptons back to back, which, in most cases,
will come from the decay of the two beauty hadrons. The fraction of dileptons
with the same charge contains information on B°B° mixing. We recall that,
defining x; as the integrated probability that the beauty hadron of type ¢
mixes before decaying (v; = P(H? — H?)), we measure Y = faXa + fsXs
where f; and f, are the fractions of B} and B? in the beauty hadron sample
(since barions and charged B mesons don’t mix).

4.1 The selected sample

The lepton identification cuts have been discussed previously (section 2.5).
The angle between the two leptons has to be greater than 90 degrees, to
select leptons coming from hadrons in opposite hemispheres. The leptons in
the event are ordered according to their p, ; if the first lepton and the second
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one are on the same side, the first and the third are considered, and so on, till
a pair which fulfils all the conditions is found, or there are no more leptons
in the event. In extracting the mixing. we have to take into account all the
possible combinations, on the two sides, of the following channels:

b—{
b—os1—/{
b—c— !
b—-W —s¢c—o¢(
c—{

fake

It’s easily seen that the b — ¢ — ( component gives the wrong information
about the quark charge, and therefore, when it’s coupled with one of the other
channels with a lepton coming from a b quark, it gives a background which
tends to cancel the signal.

The ¢ — ¢ component can only be coupled with itself, giving opposite
charge dileptons. or, less frequently, with a fake lepton.

The fake component can be coupled with all the others; the main contri-
bution is (b — () (fake). This component does not give exactly 50% same
charge and 50% opposite charge dileptons. since even in fakes some memory
of the original quark charge is kept. This is due to the fact that also the
misidentified particle fulfils the kinematic cuts. We will try to measure from
data the fraction of these pairs which has the same charge.

Our method is to select a pure sample of (b — ¢) (b — () through a p,
cut, then to count the number of same charge, opposite side lepton pairs in
data, and finally to extract the value of mixing taking the composition of the
sample from Monte Carlo °.

We remark here that we cannot be sure that the beauty-hadron mixture
is exactly the same for b — ¢ and b — ¢ — (. In fact the selection is based
on leptons; since the semileptonic branching ratios of charmed hadrons are
different, in b — ¢ — € we prefer certain kinds of charmed hadrons, and
therefore certain kinds of beauty hadrons. So f; and f; could be different for

101, addition to the Monte Carlo with standard mixture of flavours, we have largely used
here bb MC events, which help to evaluate the relative abundancies of classes in which there
is a lepton coming from a b, which, in total, represent about 99% of the sample at the
chosen cut.



b— ¢ and b — ¢ — {, and therefore could be different y. However this effect
is negligible at the present level of statistical precision [17].

4.2 The background charge correlation

We have measured the background charge correlation from data, requiring
two tracks in opposite hemispheres which fulfil the kinematic cuts, asking no
lepton identification. With the selected pairs we have computed

Nsame charge
= — =048 £0.01
£ Npairs

background

In order to check if there is some systematic effect on this number, we have
tried to remove the requirement of no lepton identification, and to introduce
some very loose cuts on the variables used in lepton identification (to select
lepton—like tracks). The parameter ¢ is found to be quite stable with respect
to these selection criteria. Also the p, dependence, in the range considered,
is found to be negligible.

4.3 The mixing from high p, leptons

We now proceed counting the same charge and opposite charge pairs in data
and extracting the value of mixing. In doing this we have in mind that

e pairs with both leptons coming from a b quark contribute to the fraction
of same charge dileptons with 2y(1 — ) if both leptons have the right
or the wrong information about the quark charge; they contribute with
x*+ (1 — x)?* if one has the right information and the other the wrong
one

e pairs with both leptons from a ¢ quark give no contribution to the
fraction of same charge dileptons

e pairs with a fake lepton contribute to the fraction of same charge dilep-
tons with £ (see above).

Correction factors have been applied to the Monte Carlo in order to use
the b semileptonic branching ratios (table 10) which are obtained fitting the
ALEPH data [19] with the Altarelli model for the b decay, which is the one
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used in our Monte Carlo. Later on we will investigate the dependence of our
measurement on the decay model assumed for the b quark.

We have also applied correction factors to take into account the small
known discrepancies in the simulation of electron and muon efficiencies and
of their background !!; these correction factors have, however, a tiny effect
on the final result.

We have performed the calculation for different p, cuts, in order to choose
the cut which allows the most precise measurement, and we have explored a
large range as a check of our understanding of systematics.

In figg. 19 and 20 are shown the momentum and transverse momentum
spectra of the selected leptons in data and Monte Carlo. The plots are
normalized to the same number of entries (since we don’t care about absolute
efficiencies) and show that the simulation fits data very well. In tables 14 and
15, the Monte Carlo sample fractional compositions are quoted for different
cuts (we show only the most crowded classes, and put together the others);
in tables 16, 17 the numbers of pairs and of same charge pairs selected in
data and the resulting mixing values with the statistical error are shown.

Defining

Nsame charge
R — g

T
AY .
4\ pairs data

we have that the statistical error on the mixing is given by the statistical
error on R, which is larger for hard cuts, increased by the factor which links
R to x, which is smaller for high purities, 7.e. for hard cuts. Therefore the
statistical error has a minimum in the region between p; > 1 and p; > 1.25
GeV/c. The highest of the two cuts is chosen since the higher is the purity,
the lower is the systematic error.

The results with all the statistics (1990 + 1991) are shown in table 20.

We are now interested in seeing if the discrepancies between different
measurements are compatible with being statistical fluctuations. In order
to do that we have to take into account the fact that each sample includes
all the samples obtained with harder cuts, so that each value is correlated
with all the others. We keep the value obtained with the chosen cut as the
reference point, and calculate the errors on the difference between the other

UFor muon efficiency see section 2.2. For muon background see appendix A
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Table 14: Monte Carlo composition for various cuts. 1990 sample, Altarelli

model.

Monte Carlo composition: dileptons from b
ppcut b—( b— ¢ h—( b— ¢ b— X —/
b—( |bos1T—=o(l|boc—l|boc—ol|b>X oL
0.75 || 55.1+1.3 | 2.7+0.4 20.14+1.0 1.740.3 3.5+0.5
1.00 || 66.2+1.5 | 1.94+0.4 17.1£1.2 1.1+£0.3 2.240.5
1.25 || 74.9+£1.7 | 1.940.5 13.6+1.4 | 0.6£0.3 0.6+0.3
1.50 || 79.7£2.1 | 1.0£0.5 11.4+41.7 | 0.3£0.3 0.3£0.3
1.75 || 82.2+£2.6 | 1.440.8 9.2£2.0 0.54+0.5 0.54+0.5
2.00 || 83.543.4| 1.6+1.2 T.7£2.4 0.8£0.8 < 0.8
Monte Carlo composition: other channels
preut || ¢ — (L b—( | b—>X >/ X
c— ! fake fake X
0.75 || 1.940.5 | 9.0+£0.7 | 2.4+£0.4 | 3.1£0.6
1.00 || 0.7+0.4 | 8.2+£0.9 | 1.3£0.4 1.9£0.6
1.25 |} 0.3+£0.3 | 7.1+£1.0 | 0.8+£0.4 | 0.4£0.3
1.50 <04 |6.7+£1.3] 0.7£0.4 < 0.4
1.75 <05 | 6.3£1.7 < 0.5 < 0.5
2.00 < 0.8 |6.4+2.2 < 0.8 <0.8
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Table 15: Monte Carlo composition for various cuts. 1991 sample, Altarelli

model.

Monte Carlo composition: dileptons from b
pycut b—( b—( b—( b— ¢ b— X o/
b=l |bosT1—=(l|boc—o(|boc—l|b—>X—=!
0.75 || 56.4£0.8 | 2.6%0.3 19.04£0.6 | 2.0+0.2 3.31+0.3
1.00 || 67.940.9 | 2.1£0.3 15.5+0.7 1.3£0.2 1.8+£0.3
1.25 || 76.0+1.1 | 1.84£0.3 12.240.8 | 0.7£0.2 0.840.2
1.50 || 81.7+1.2 | 1.7£0.4 9.240.9 0.440.2 0.340.2
1.75 || 84.841.5 | 1.7£0.5 7.5%1.1 0.240.2 <0.2
2.00 || 88.0%£1.7 1.940.7 5.7+1.2 0.3+0.3 < 0.3
Monte Carlo composition: other channels
pieut | ¢—( b—l |b— X = X
c— L fake fake X
0.75 | 2.2+0.3 | 8.94+0.5 | 2.1£0.2 | 3.3£0.3
1.00 || 1.54+0.3 | 7.4+0.5 | 1.240.2 | 2.0£0.3
1.25 || 0.7£0.2 | 6.3£0.6 | 0.8+£0.2 | 0.9£0.3
1.50 || 0.3+0.2 | 5.240.7 | 0.4+0.2 | 0.9£0.4
1.75 <0.2 |4.2+08| 0.3£0.3 1.440.6
2.00 <0.3 |3.6£1.0 <0.3 0.440.4
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Lepton pairs

Mixing value

picut || selected | same charge || x £ Ax (stat.)
pairs pairs
0.75 574 197 0.109 £ 0.027
1.0 400 118 0.085 + 0.023
1.25 255 72 0.105 £+ 0.026
1.5 157 43 0.111 £ 0.031
1.75 100 27 0.118 £ 0.037
2.0 51 14 0.127 £ 0.052

Table 16: Lepton pairs in data and extracted mixing value for various cuts.

1990 sample.

Lepton pairs

Mixing value

pycut || selected | same charge || v £ Ax (stat.)
pairs pairs
0.75 1179 417 0.132 + 0.019
1.0 766 241 0.119 £+ 0.018
1.25 495 140 0.112 £+ 0.018
1.5 304 7 0.103 + 0.020
1.75 174 37 0.081 £ 0.023
2.0 91 22 0.114 + 0.034

Table 17: Lepton pairs in data and extracted mixing value for various cuts.

1991 sample.

55




points and that one, taking into account the correlation. What comes out is
plotted in fig. 21, which shows the good stability of our measurement.

4.4 The b decay model

In order to study to which extent our result is dependent on the decay model
assumed for the b quark, we have applied correction factors to our Monte
Carlo in order to use the ISGW model.

In this case we have used for the b semileptonic branching ratios the values
fitted from ALEPH data [19] using this softer spectrum for the semileptonic
b decay (see table 10). We have calculated again the sample compositions
for different cuts, which are shown in tables 18 and 19.

A comparison between the b — ¢ and b — ¢ — { spectra predicted by the
two models (with the normalization given by the different branching ratios
from the ALEPH fit) is presented in fig. 22.

We show in table 20 the comparison of the results obtained with the two
models, using the full statistics (1990 + 1991). It can be easily seen that the
difference between the two models goes down at high p, .

The stability plots of our mixing measurement using [ISGW model are
shown in fig. 23.

4.5 The systematic errors

Almost all sources of systematic errors for the mixing measurement are the
same as in the asymmetry case.

In particular for the mixing it holds a fortior: that the effects related to
the acceptance have little influence, since no angular or momentum distribu-
tion is involved. Therefore we concentrate on the effects of the uncertainty
in the underlying physical parameters of the Monte Carlo.

The procedures for the calculation are exactly the same as for the asym-
metry. We remark that with the dilepton sample the charm component is
almost absent, therefore the largest systematics come from the parameters
affecting the relative abundancies of the different b — X channels.

The only systematic error which is included here and not in the case of the
asymmetry is the uncertainty in the background charge correlation, whose
measurement has been described previously.

The results are shown in table 21.
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Table 18: Monte Carlo composition for various cuts. 1990 sample, [SGW

model.

Monte Carlo composition: dileptons from b
pycut b—( b—/{ b—( b— Y b— X — !
b=l |boT1—=l|b—oc—(|boc—(|boX !
0.75 || 56.5+1.3 | 2.840.4 19.0£1.0 1.84+0.3 3.1+£0.5
1.00 | 67.2+1.5 | 2.0£0.5 16.14+1.2 1.14+0.3 2.1+0.5
1.25 || 75.5+1.8 | 2.2£0.6 12.84+1.4 0.6+0.3 0.6+0.3
1.50 || 80.04+2.2 | 1.2£0.6 10.941.7 0.2+0.2 0.34+0.3
1.75 || 82.1+£2.8 | 1.7£0.9 8.942.1 0.4+0.4 0.54+0.5
2.00 | 83.0+£3.7| 2.2+1.4 7.242.6 0.8+0.8 <08
Monte Carlo composition: other channels
pieut || e—( b= | b—=X ot X
c— 1 fake fake X
0.75 || 1.6+£0.5 | 9.0+0.7 | 2.3£0.4 | 3.0£0.6
1.00 | 0.74+0.4 | 8.3+0.9 1.3£0.4 1.9£0.6
1.25 || 0.3+0.3 | 7.2£1.1 0.840.4 | 0.4£0.4
1.50 <03 |68£14| 0.7£0.5 < 0.3
1.75 <0.5 |64£1.38 < 0.5 < 0.5
2.00 < 0.8 |6.8£25 <0.8 <0.8
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Monte Carlo composition: dileptons from b

pycut b—( b—( b—( b—( b— X —/
b—(l |bsT—=Ll|b—oc—{l|boc—ol|boX o/
0.75 || 57.6+£0.8 | 2.6%£0.3 18.0+0.6 2.040.2 3.0£0.3
1.00 || 68.6+0.9 | 2.14+0.3 14.6£0.7 1.3£0.2 1.6+0.3
1.25 || 76.1+£1.1 | 1.940.3 11.740.8 0.740.2 0.7£0.2
1.50 || 81.4+1.3 | 1.9£0.5 8.940.9 0.540.2 0.3+0.2
1.75 || 84.4+1.6 | 1.940.6 7.3+1.1 0.2+0.2 <0.3
2.00 || 86.9£2.0 | 2.3£0.9 5.8+1.4 0.440.3 <0.4

Monte Carlo composition: other channels
preut || e—{ b—( |b—> X —{ X

c— L fake fake X

0.75 || 1.9£0.3 | 9.1£0.5 | 2.0+0.2 3.3+0.3
1.00 || 1.3+0.3 | 7.6£0.5 | 1.240.2 2.0+0.3
1.25 | 0.6+0.2 | 6.6+0.6 | 0.8£0.2 0.9£0.3
1.50 || 0.3+£0.2 | 5.5+0.8 | 0.4%£0.2 1.0+£0.4
1.75 <0.3 | 44409 | 0.3£0.3 1.54+0.6
2.00 <04 | 42412 <04 0.4+0.4

Table 19: Monte Carlo composition for various cuts. 1991 sample, ISGW
model.
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prcut || Mixing with statistical error
Altarelli model | ISGW model
0.75 0.125 4+ 0.016 | 0.137 £ 0.015
1.00 0.106 £ 0.014 | 0.114 + 0.014
1.25 0.110 £ 0.015 | 0.114 £+ 0.015
1.50 0.105 £ 0.017 | 0.108 £ 0.017
1.75 0.091 £+ 0.019 | 0.093 £ 0.019
2.00 0.118 £ 0.028 | 0.118 4 0.028

Table 20: Comparison between Altarelli and ISGW decay model with full
statistics.

4.6 The different lepton channels

We have tried to evaluate mixing using separately the two kind of leptons,
and the combinations of an electron on one side and a muon on the other, in
order to check whether any systematics related to the lepton identification
could be found.

The results are summarized in table 22 for different p; cuts. We don’t
further divide the samples into the two years of data taking in order to have
reasonable statistics.

For each cut the three results are obtained from completely independent
data and Monte Carlo samples, so they can be simply compared taking into
account the statistical error. No clear discrepancy is found.

Again we are interested in seeing if some systematic effects related with
the p; cut can be put into evidence, for any of the three different subsamples.
With the procedure described in section 4.4 we get the plots of fig. 24,which
show the good stability of each measurement.

In order to get more informations about the stability of our measurement
with respect to changing the p; cut or the lepton sample used, we can com-
pare in one plot the final mixing value obtained with the full statistics and the
cut p; > 1.25, with the values computed with different p; cuts and different
lepton subsamples. Again, we use the errors on the difference between the
considered value and the value obtained with the full statistic and the chosen
cut, taking into account the correlation between the two measurements. The
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Source Variation Ay
Monte Carlo statistics lo 0.0052
['(bb)/T (had) 5 % < 0.0001
BR(b — 0) lo 0.0022
BR(b — ¢ — () lo 0.0053
BR(b— W — ¢ — () 50 % 0.0002
b— W — ¢ — { model 50 % 0.0002
['(ce)/T(had)*BR(c — () 15 % 0.0001
BR(b— 1 — () lo 0.0002
lepton 1D efficiency 3% < 0.0001
b lo 0.0001
¢ lo < 0.0001
b fragmentation 2 models | 0.0002
v conversions 2 % < 0.0001
electron background 10 % < 0.0001
muon background 20 % 0.0005
quarks from hard gluons 100 % 0.0007
BR(b — u) 50 % 0.0009
Background charge correlation lo 0.0006
TOTAL 0.0078

Table 21: Estimated contributions of the various sources to the systematic
error on x.
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Figure 24: Stabiltity plots for the three different subsamples.
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result of this study is shown in fig. 25. The measurement seems to be very
robust, since almost all the values are within one sigma from the final value.
The fact that, for instance, all the values from electrons are above the line
indicating the final value is not so surprising since they are all correlated,
so we expect that if a fluctuation occurs in the electron subsample, it will
influence the measurement at different p; cuts.

o 03 [
C -
= E
S 025 :_ O 4 — usample
- A e—u sample
02 - 0 e-—e sample
- o)
., ; )
. C v [ L 4; . | | T
~- SR g
005 [ E{‘J
o) E 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 Il ! l 1 1 1 I | Il 1 | 1 1 1 I 1 1 | l

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
Pt cut (GeV/c)

Figure 25: Compatibility of measurements obtained with different subsam-
ples and different p; cuts. The dots corresponding to the e—e and to the p—p
samples are a little bit shifted from the correct value of the p; cut in order
to make the plot easier to be read.

4.7 Mixing and asymmetry using CLEO results

As can be seen from table 10, the values of the BR(b — ¢) and BR(b — ¢ — {)
obtained from the fit of the ALEPH spectra [19] are rather different from the
Monte Carlo values based on the CLEO spectra within the Altarelli model.

If we repeat our asymmetry and mixing measurements using the latest
values from CLEO [28], we get the results shown in table 23.
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ppcut Mixing with statistical error
e—e = e—pu

0.75 || 0.131 £ 0.034 | 0.118 £ 0.030 | 0.118 £ 0.022
1.00 || 0.135 + 0.034 | 0.092 £+ 0.025 | 0.102 £ 0.021
1.25 || 0.146 + 0.038 | 0.088 £ 0.025 | 0.110 £ 0.023
1.50 | 0.126 + 0.042 | 0.103 £ 0.029 | 0.094 £+ 0.025
1.75 || 0.171 4+ 0.063 | 0.090 % 0.032 | 0.067 £ 0.027
2.00 | 0.169 £ 0.080 | 0.043 £ 0.039 | 0.115 & 0.043

Table 22: Comparison hetween different lepton channels with full statistics.

ISGW model
0.080 4+ 0.017 £ 0.008
0.100 £ 0.015 + 0.009

Altarelli model
0.080 £ 0.016 + 0.008
0.099 4+ 0.015 4+ 0.009

Asymmetry
Mixing

Table 23: Asymmetry and mixing using CLEO branching ratios.
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4.8 Conclusions

In conclusion our analysis of the dilepton sample gives

x = 0.112 £ 0.015(stat.) £ 0.008(syst.) £ 0.002(model)

A Muon background

Pion contamination is the dominant source of background to muons identi-
fied in hadronic events. A pion can fake a muon in the HCAL basically in
three ways: by decaying semileptonically to a muon, by not interacting in
the calorimeter (sail-through) and by showing an interaction pattern recog-
nized as a muon by the muon identification algorithm (this can occur easily
when one of the secondaries decays to a muon whose track lies in the mul-
tiple scattering cone of the primary hadron). We will try to check if this
background is well simulated by our Monte Carlo selecting pure samples of
hadrons without using HCAL information in suitable physical channels, and
performing on them the standard muon identification cuts.

In single-prong 7 decays it is possible to select a very pure sample of
pions, using the p* channel, as is done in [14]. This yields a very simple and
clean analysis; the limitation of this method is the statistics of the sample.

Another useful channel is three-prong 7 decays (see [15]). In this case
we also get a pure sample of hadrons, after having carefully rejected single-
prong decays with a photon converting into an electron pair, which simulate
the three—prong pattern.

To get a good statistics it is necessary to use hadronic events. The obvious
channel is K° decaying to 77~ (see [15]), which is however not as clean as
the previous ones.

Since we aim to study the behaviour of hadronic showers we have avoided
geometrical effects by restricting our search to the Barrel (| cos 6 |< 0.6). We
have performed these studies on 1991 data and Monte Carlo, (Galeph version
250 for 77~ events, versions 242, 250, 251 for ¢q events; Julia version 258)
on 1990 data and the new version of 1990 Monte Carlo (Galeph version 252,
which uses Geant 3.15, Julia version 260).
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Particle ID | Number | Fraction (%)
Mismatch 3 0.04 £ 0.03
T—e 31 0.46 £+ 0.08
Had. — p 19 0.28 £+ 0.06
Hadrons 6734 99.22 + 0.11
Total 6787

Table 24: Composition of the one-prong sample from 1991 Monte Carlo.

A.1 Event selection

The selection of 7+ 7~ events is done with the programme SELTAU [16] which
gives an efficiency of about 75 %. Our Monte Carlo samples are composed of
50000 7+ 7~ events in both years of which SELTAU accepts respectively 36089
in 1991, and 36519 in 1990. In data we starts with class 15 events (leptons)
which fulfil EW group data quality requirements, respectively 64356 in 1991
and 34277 in 1990, of which SELTAU recognises as 77~ 10770 and 5609.

For the single-prong channel, we search for p* decays in the following
way. The event is divided into two hemispheres using the thrust axis, and
charged tracks that are isolated within their hemisphere are retained. In
order to reject T decays to electrons and muons, we tag events with a recon-
structed 7° in the ECAL. This is basically a p* sample, even if we do not
perform any cut on the large p resonance. Photons (taken from EGPC bank)
which lie in a cone of 37 degrees around the track are selected and paired
in order to calculate the pair invariant mass. We choose the pair which has
the invariant mass Mjy closest to the 7% mass and we select events with
0.05 < My, < 0.2 GeV/c2

This yields a very high purity hadron sample. In the barrel we select 1925
and 6787 tracks with P > 3GeV /cin 1991 data and Monte Carlo respectively,
1141 and 7072 in 1990. In tables 24 and 25 the compositions estimated from
Monte Carlo for 1991 and 1990 samples respectively are shown, where we have
flagged as mismatch the tracks in which the association of the reconstructed
track to the generated particle was not successful. The class decays contains
only g from hadrons which decay within the TPC volume: this is is done
because in this way the amount of decays depends basically only on the
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Particle ID | Number | Fraction (%)
Mismatch 3 0.04 £ 0.02
T—e 30 0.42 + 0.08
Had. — p 20 0.28 £+ 0.06
Hadrons 7019 99.24 + 0.10
Total 7072

Table 25: Composition of the one-prong sample from 1990 Monte Carlo.

hadron lifetime (since the amount of material inside the TPC volume is
very small), while the rate of decays in the calorimeters depends also on the
simulation of the material, and is therefore less reliable. No 7 — u decay is
selected. The probability that a track coming from a p*p~ contaminates our
sample has been computed with the Monte Carlo and it is totally negligible
(of the order of 107°).

For the three-prong 7 decays, we require 3 good charged tracks in the
hemisphere, with a momentum greater than 1.5 GeV/c. This selects 7 decays
into three charged pions, with a few percent contamination of one-prong
events with a photon converting in an ete™ pair, which simulates a three-
prong pattern. In order to reduce this contamination we require that none
of the three tracks be identified as an electron (according to the standard
electron identification described in section 2.3), and that none of the pairs
built with the three tracks be compatible with being a photon conversion. In
this way we select respectively 2497 and 8309 tracks in 1991 data and Monte
Carlo, 1244 and 8838 in 1990. In tables 26 and 27 are shown respectively the
composition of 1991 and 1990 Monte Carlo samples found with this selection.
Neither muons nor electrons from direct 7 decay are selected.

For the K° decays in hadronic events, we start by requiring the standard
hadronic event selection 2.1. Then we use V%s from the YVOV bank, asking
the VO to be a good particle, with the same cuts as for charged particles,
with additional requirements P(V°) > 2 GeV/c and x*(V°) < 6. The V°
has to be compatible with the K° mass hypotesis (within 10 MeV) and not
with the v and A°. Even if the V° algorithm works efficiently, we get in
this way some prompt muons in the combinatorial background: they are a
small fraction of the initial sample, but become important when we apply the
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Particle ID | Number | Fraction (%)
Mismatch 4 0.05 & 0.02
v —ete” 45 0.54 &+ 0.08
Had. — p 36 0.43 £ 0.07
Hadrons 8224 | 98.98 £ 0.11
Total 8309

Table 26: Composition of the three-prong sample from 1991 Monte Carlo.

Particle ID | Number | Fraction (%)
Mismatch 4 0.05 £+ 0.02
v —ete” 36 0.41 £+ 0.07
Had. — p 31 0.35 &+ 0.06
Hadrons 8767 | 99.20 + 0.09
Total 8838

Table 27: Composition of the three-prong sample from 1990 Monte Carlo.



muon identification cuts (see tables 28 and 29). As these prompt muons are
mainly in heavy flavour events, we lower the fraction of heavy flavour events
in our sample using their property to lose, on average, more energy through
neutrinos. If we cut on the top of the peak of the Energy Flow reconstructed
energy, keeping only the events on the right of the peak, we fairly reduce this
contamination, even if we lose about half statistics. (We remark here that
the Energy Flow peak is shifted in Monte Carlo with respect to data, so our
cuts will be E > 90.54 GeV for data, E > 91.63 GeV for 1991 Monte Carlo,
E > 91.96 GeV for 1990 Monte Carlo). The Monte Carlo compositions for
various cuts are listed in table 28 for 1991 and table 29 for 1990. The analysis
is done with the cut on the reconstructed energy. Selected tracks are 12402
in data and 30023 in Monte Carlo 1991, 6415 in data and 9950 in Monte
Carlo 1990.

A.2 Results

With the samples selected we have checked the behaviour of HCAL with
respect to the variables commonly used to reject hadrons.

One prong selection (barrel only)

3 - S E
s - i ‘S 200
& - # S E |
1o 1 1980 175 - §, 1991
1 1o -
C : C
- Le: 150 = |
80— ' 5
C fl 125 &
60 F ' -
T 100 |
40 75 F
» £
- 50 pP- *
20 - 4
C 25
O_IIIIIIIIIIIIIIIII)I o:llillllllllllllllll
o] 10 20 30 40 0 10 20 30 40
Momentum (GeV/c) Momentum (GeV/c)

Figure 26: Momentum spectra of the selected tracks in data (dots) and Monte
Carlo (histogram).
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Cuts

none 11.0or.13.0r.14 13.0r.14
Mismatch | n 16 0 0
% | 0.03 + 0.01 0 0
Electrons | n 688 0 0
% | 1.18 £+ 0.04 0 0
Prompt ¢ | n 123 112 109
% | 0.21 4+ 0.02 179 £ 1.5 239+ 20
Had. — p | n 245 160 147
% | 0.42 £ 0.03 25.6 £ 1.7 |32.2 £ 2.2
Hadrons | n 57088 352 200
% | 98.16 4 0.06 5.4 £ 2.0 |43.9 £ 2.3
Total 58160 624 456
Cuts

E > 91.63 E > 91.63 E > 91.63
11.07.13.0r.14 13.0r.14

Mismatch | n 12 0 0
% | 0.04 £+ 0.01 0 0
Electrons | n 329 0 0
% | 1.10 &+ 0.06 0 0
Prompt ¢ | n 31 27 26
% | 0.10 £ 0.02 9.3 £ 1.7 12.7 £ 2.3
Had. — p | n 126 82 75
% | 0.42 + 0.04 284 + 2.7 | 368 £34
Hadrons | n 29525 180 103
% | 98.34 + 0.07 623 +£29 |50.5£3.5
Total 30023 289 204

Table 28: Composition of the K° samples for various cuts from 1991 Monte

Carlo.
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Cuts

none 11.0r.13 13

Mismatch | n 5 0 0

% | 0.03 £ 0.01 0 0

Electrons | n 225 1 0

% | 1.23 £ 0.08 | 0.06 & 0.06 0

Prompt o | n 29 25 24
%1 0.16 £0.03 | 16.2 £ 3.0 | 25.5 £ 4.5

Had. — ¢ | n 70 37 29
%1 038 £0.05 | 24.0 £ 3.4 | 30.9 4.8

Hadrons | n 18021 91 41
% 198.21 +£0.10 | 59.1 £ 4.0 | 43.6 = 5.1

Total 18350 154 94

Cuts

E > 91.96 E>091.96 | E > 91.96

11.0r.13 13

Mismatch | n 4 0 0

% | 0.04 £ 0.02 0 0

Electrons | n 116 1 0

% | 1.17T £ 0.11 1.6 + 1.6 0

Prompt ¢ | n 9 7 7
% | 0.094+£0.03 | 11.1 £4.0 | 189 £6.4

Had. — p | n 30 14 13
%1 030+£005 | 222 +£52 351 +7.8

Hadrons | n 9791 41 17
% | 98.40 £ 0.13 | 65.1 £6.0 | 45.9 £+ 8.2

Total 9950 63 37

Table 29: Composition of the K° samples for various cuts from 1990 Monte

Carlo.




One prong selection (barrel only)
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Figure 27: On the left side the probability for a barrel plane to be fired is
shown vs. the plane number for data (dots) and Monte Carlo (histogram).
On the right side the ratio between data and Monte Carlo firing probabilities
is shown.
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Data Monte Carlo
Last - Fired n % n %
0 795 | 41.3 £ 1.1 | 2942 | 43.3 + 0.6
from 1 to 8 1027 | 53.3 £ 1.1 | 3617 | 53.3 £ 0.6
greater than 8 | 103 | 54 £ 0.5 | 228 | 3.34 £ 0.2

Table 30: Last plane - fired planes: comparison from data and Monte Carlo
1991; one-prong sample.

First we will discuss the results obtained with the one-prong selection.
1991 and 1990 will be treated together as there is no significantdifference at
the given level of statistical accuracy. In fig. 26 we show the momentum
spectra of the selected tracks from data and Monte Carlo, normalized to the
same number of tracks. The plots show a good agreement, therefore we will
normalize all the forthcoming plots to the number of tracks in the selected
momentum bin. Only tracks of momentum greater than 3 GeV/c will be
used. For each track we have looked for the hits in the hadron calorimeter
laying within the multiple scattering cone of the extrapolated track. The
probability for each Barrel plane to be fired by an incoming hadron is shown
in fig. 27 where we can see the comparison between the shower development
in data and in Monte Carlo. The ratio between data and Monte Carlo is
also shown. A clear abundance of "fired planes” is found in data. This is
in agreement with what was already known (see [5], [14], [15]) and has not
sensibly changed with GEANT version 3.15.

In fig. 28 are shown the distributions of the last fired plane for data and
Monte Carlo. (Last plane = 0 means that the particle left no signal in the
hadron calorimeter).

Up to now, no muon identification cuts have been applied. The identifi-
cation, in fact, doesn’t rely only on penetration criteria, but also uses other
characteristics of the shower. In order to clarify to which extent this differ-
ence affects the pion misidentification we have studied the standard variables
used in muon identification. Before doing that. it is interesting to look at the
difference between the number of the last fired plane and the number of fired
planes, to see how many times it occurs that a track with a far last plane
has few fired planes (these tracks are easily rejected).
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Data Monte Carlo
Last - Fired n % n %
0 469 | 41.1 £ 1.5 | 2987 | 42.2 £ 0.6
from1to8 |602]|52.8+1.5|3791|53.6 £ 0.6
greater than 8 | 70 | 6.1 £ 0.7 | 294 | 4.2 £ 0.2

Table 31: Last plane - fired planes: comparison from data and Monte Carlo
1990; one—prong sample.

One prong selection (barrel only)
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Figure 28: Last fired plane distributions in data (dots) and Monte Carlo
(histogram).
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One prong selection (barrel only)
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Figure 29: Nyir/Ney, distributions in data (dots) and Monte Carlo (his-
togram).

The results, shown in tables 30 and 31, clearly suggest that with a cut
based on a larger section of the shower (and not only on the last plane) the
difference between data and Monte Carlo should reduce. (In particular we
have in mind the cut on the number of fired planes in the last 10 expected).

In fig. 29 we show the distributions of Ny, /Nezp, where Ny, is the
number of planes fired and N.., is the number of planes expected to fire
according to HCAL geometry and efficiency.

In fig. 30 Ny (number of planes fired in last 10 expected) is shown.
Requiring the standard muon identification cuts on these variables, i.e. Nig
> 5 and Nyip/Neyp > 0.4, we get the figures shown in table 32 and 33.

It comes out that requiring the shower to be more continuous lowers the
difference between data and Monte Carlo. Let’s now see what can be found
by investigating the transversal shape of the shower.

Another variable used to discriminate hadrons from muons is X1, the
average hits multiplicity in the last ten planes (computed only considering
the fired planes, so that it is 0 if there is no hit in the last ten planes, greater
or equal to 1 if there are some). Clearly, due to the different average depth of
the shower found in data and Monte Carlo, the fraction of tracks for which
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Table 32: Ny /Neyp and Ny cuts: comparison from data and Monte Carlo

Nlo >5 Nfir/Ne:L‘p > 04
Data n 71 185
% | 3.69 £+ 0.43 9.61 + 0.67
Monte Carlo | n 143 422
% | 2.11 £ 0.17 6.22 + 0.29
Ratio 1.75 £ 0.25 1.55 £ 0.13

1991; one-prong sample.

Table 33: Ny /Neyp and Nyg cuts: comparison from data and Monte Carlo

Nig > 5 Nfi,-/Ne:,;p > 0.4
Data n 39 117
% | 3.42 £ 0.54 10.25 + 0.90
Monte Carlo | n 145 433
% | 2.05 £ 0.17 6.12 + 0.29
Ratio 1.67 + 0.30 1.67 £+ 0.17

1990; one—prong sample.

Table 34: X, mean: comparison from data and Monte Carlo for both

years.

< AX'mult >
1991 1990
Data 1.57 £ 0.04 | 1.58 £ 0.05
Monte Carlo | 1.57 4+ 0.02 | 1.62 £ 0.02
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One prong selection (barrel only)
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Figure 31: Comparison between X,,,;; distributions in data (dots) and Monte
Carlo (histogram). One-prong selection.

the X, information is available (i.e. X,,.t# 0) is different. However we are
interested in investigating the shape of the X,,,;; distribution for penetrating
tracks, so we normalize to the number of tracks having X,,.;:> 0, obtaining
the plot of fig. 31, which shows a reasonable agreement, while in previous
analyses (see [14]) a clear discrepancy was found. Looking at the means of
the distributions, we get the values of table 34.

We are now looking at the difference between data and Monte Carlo when
we require the full muon identification.

We show in tables 35 and 36 the number of tracks which have QMUIDO
flag 11.0r.13.0r.14, which includes all the cuts we have mentioned (with
Xmut< 1.5) and a cut on the number of fired planes in the last 3 expected:
Nos > 1. or a Muon Chamber hit. In the same tables, in the rows corre-
sponding to QMUIDO flag 13.0r.14, the hit in the Muon Chamber is always
requested. (Flag 14 corresponds to a track which has at least 1 hit in each
layer of the muon chambers; it is empty in 1990 when the second layer was
not yet implemented). In this case the statistical error is very large and it
seems difficult to draw any conclusion as far as differences between data and
Monte Carlo are concerned.
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QMUIDO flag

11.0r.13.0r.14 13.0r.14
Data n 24 15
%1 1.25+0.25 | 0.78 &+ 0.20
Monte Carlo | n 61 32
%1 0.90 +£0.11 | 0.47 & 0.08
Ratio 1.39 +£ 0.33 | 1.66 4+ 0.51

Table 35: QMUIDO flags: comparison from data and Monte Carlo 1991,
one-prong sample.

QMUIDO flag

11.0r.13 13

Data n 15 9
%1131 £0.34 | 0.79 £ 0.26

Monte Carlo | n 53 29
% 10.75£0.10 | 0.41 £+ 0.08
Ratio 1.75 £ 0.51 | 1.93 £ 0.74

Table 36: QMUIDO flags: comparison from data and Monte Carlo 1990;
one-prong sample.

Year Hadrons | T

QMUIDO flag

Had. — —
1991 | 1l.0r.13.0r.14 16 45 0
13.0r.14 16 16 0
1990 11.0r.13 15 37 1
13 12 16 1

Table 37: Monte Carlo samples composition after p identification for both
years; one-prong selection.
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In both years an increase of the ratio between data and Monte Carlo
is observed when we ask a muon chamber hit. On one hand this could be
due to the fact that this is a penetration cut, and, as we have seen, the
shower is more penetrating in data. On the other hand the muon chamber
hit has two coordinates (while an HCAL hit only one), so its association to
the track carries a more detailed information; for this reason we could expect
— since we have found that the shower in data is more spread — that the
requirement of a muon chamber hit would reduce the misidentification rate
in data more than in Monte Carlo. We can’t say, at present, whether the
observed enhancement of the ratio data/MC is a statistical or a physical
effect.

Three prongs selection (barrel only)
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Figure 32: Momentum spectra of the selected tracks in data (dots) and Monte
Carlo (histogram).

It’s interesting to see the composition of the Monte Carlo sample which is
left after muon identification cuts. In table 37 the number of selected tracks
is quoted for both 1991 and 1990 Monte Clarlo: it is clear that a very high
initial hadron purity is required to have a reasonable pure sample also after
w identification.

The two samples of Monte Carlo have been carefully checked using the
information on the true tracks, and we verified that the interaction cross
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Three prongs selection (barrel only)
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Figure 33: On the left side the probability for a barrel plane to be fired is
shown vs. the plane number for data (dots) and Monte Carlo (histogram).
On the right side the ratio between data and Monte Carlo firing probabilities
is shown.
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Three prongs selection (barrel only)
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Figure 34: Last fired plane distributions in data (dots) and Monte Carlo

(histogram).

Three prongs selection (barrel only)
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Figure 35: Nyi/Nesp distributions in data (dots) and Monte Carlo (his-
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Three prongs selection (barrel only)
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Figure 36: Number of fired planes in the last 10 planes expected to fire in
data (dots) and Monte Carlo (histogram).



Data Monte Carlo
Last - Fired n % n %
0 977 1 39.1 + 1.0 | 3486 | 41.9 + 0.5
from 1 to8 | 1345 | 53.9 + 1.0 | 4542 | 54.7 £ 0.5
greater than 8 | 175 | 7.0 £ 0.5 | 281 | 3.4 £ 0.2

Table 38: Last plane - fired planes: comparison from data and Monte Carlo
1991; three—prong sample.

Data Monte Carlo
Last - Fired n % n %
0 482 | 38.7 + 1.4 | 3441 | 38.9 £ 0.5

from1to8 |670|53.9 4+ 1.4]5051 | 57.2+0.5
greater than 8 | 92 | 7.4 £ 0.7 | 346 | 3.9 £ 0.2

Table 39: Last plane - fired planes: comparison from data and Monte Carlo
1990; three-prong sample.

section is the same. Nevertheless the the results of the two years cannot be
averaged when we are using also muon chamber hits, as in 1991 there is one
more layer.

These results are valid for pions with a momentum spectrum typical of
single-prong 7 decays. At present we don’t have enough statistics to be able
to give results in function of the track momentum.

We have repeated the same analysis on the three-prong sample. The
main differences between this sample and the previous one, are a greater
amount of decays (due to the softer spectrum) and the fact that now we
have three shower superimposed, instead of one isolated particle, since the
three m from the 7 decay are very collimated. This results in quite different
features, which are shown in figg. 32-36 and tables 38-43.

In particular the shower developments are very similar to the one-prong
ones in the first part of the calorimeter, while we find much less disagreement
in the last part (where decays are dominating).
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Nio>5 Nfir/Nea:p > 0.4
Data n 90 235
% | 3.60 + 0.37 9.41 + 0.58
Monte Carlo | n 176 533
% | 2.12 £ 0.16 6.41 + 0.27
Ratio 1.70 £ 0.22 1.47 £+ 0.11

Table 40: N,/ Newp and Nyg cuts: comparison from data and Monte Carlo
1991; three—prong sample.

Nig>5 IVﬁT/Nexp > 0.4
Data n 31 131
%1249 £ 044 | 10.53 £+ 0.87
Monte Carlo | n 193 560
% | 2.18 £ 0.16 6.34 + 0.26
Ratio 1.14 + 0.22 1.66 £+ 0.15

Table 41: Nyiy/Nerp and Nyg cuts: comparison from data and Monte Carlo
1990; three—prong sample.

QMUIDO flag
11.0r.13.0r.14 13.0r.14
Data n 24 19
%1 096 +£0.20 | 0.76 & 0.17
Monte Carlo | n 73 51
% | 0.88 +£0.10 |0.61 + 0.09
Ratio 1.09 £ 0.26 | 1.25 £+ 0.33

Table 42: QMUIDO flags: comparison from data and Monte Carlo 1991,
three-prong sample.



QMUIDO flag

11.0r.13 13

Data n 11 5
%1 0.88 £0.27 | 0.40 £ 0.18

Monte Carlo | n 72 41
% 1081 +£0.10 | 0.46 + 0.07
Ratio 1.09 + 0.36 | 0.87 £ 0.41

Table 43: QMUIDO flags: comparison from data and Monte Carlo 1990;

three—prong sample.

Year | QMUIDO flag | Had. — i | Hadrons
1991 | 11.0r.13.0r.14 26 47
13.0r.14 22 29
1990 11.0r.13 26 46
13 24 17

Table 44: Monte Carlo samples composition after u identification for both
years; three—prong selection.
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Data Monte Carlo
Last - Fired n % n %
0 5919 | 47.73 £+ 0.45 | 14709 | 48.99 + 0.29
from 1 to 8 5828 | 46.99 £ 0.45 | 14055 | 44.82 + 0.29
greater than 8 | 655 | 5.28 + 0.20 1259 | 4.19 £+ 0.12

Table 45: Last plane - fired planes: comparison from data and Monte Carlo
1991; K° sample.

Data Monte Carlo
Last - Fired n % n %
0 3114 | 48.54 £ 0.62 | 4776 | 48.00 £ 0.50

from 1 to 8 | 2920 | 45.52 £+ 0.62 | 4886 | 49.11 £ 0.50
greater than 8 | 381 | 5.94 £ 0.30 | 288 | 2.89 £ 0.17

Table 46: Last plane - fired planes: comparison from data and Monte Carlo
1990; K° sample.

The numbers given in the tables show similar features to the ones quoted
for the one-prong selection, but with a lower disagreement. In the case of
1990 we find even less efficiency in data than in Monte Carlo when require
one hit in the muon chambers.

In table 44 Monte Carlo compositions are shown for the samples obtained
with full g identification. In this case the decay fractions in the final samples
are larger than in the one-prong samples.

In figg. 37-41 and tables 45-50 we give the results for the K selec-
tion. The composition of this sample is very similar to the three-prong one,
the only difference being a higher amount of decaying with respect to non-
decaying hadrons (due to the softer spectrum) and the presence of some
prompt muons in the selection. The features of these samples are completely
consistent with the three-prong ones, the only clear difference being higher
statistics and therefore less fluctuations.

The Monte Carlo compositions have been already shown in the event
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Table 47: Nyi,/Newp and Nyg cuts: comparison from data and Monte Carlo

Nig>5 Nfir/Nea:p > 0.4
Data n 337 974
% | 2.72 £ 0.15 7.85 + 0.24
Monte Carlo | n 723 892
% | 2.41 £ 0.09 5.73 £ 0.13
Ratio 1.13 £+ 0.08 1.37 4+ 0.05

1991; K° sample.

Nig>5h ]Vf,‘r/Nezp > 0.4
Data n 145 477
% | 2.26 £ 0.19 7.44 £+ 0.33
Monte Carlo | n 179 580
% | 1.80 £ 0.13 5.83 &+ 0.23
Ratio 1.26 £+ 0.14 1.28 + 0.08

Table 48: Ny /Neyp and Nyg cuts: comparison from data and Monte Carlo
1990; K° sample.

QMUIDO flag
11.0r.13.0r.14 13.0r.14
Data n 125 81
% | 1.01 &£ 0.09 | 0.65 £ 0.07
Monte Carlo | n 289 204
% | 0.96 + 0.06 | 0.68 £ 0.05
Ratio 1.05 £ 0.10 | 0.96 £+ 0.15

Table 49: QMUIDO flags: comparison from data and Monte Carlo 1991; K°
sample.
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QMUIDO flag

11.0r.13 13

Data n 59 32
% | 0.92 &£ 0.12 | 0.50 + 0.09

Monte Carlo | n 63 37
% | 0.63 + 0.08 | 0.37 &+ 0.06
Ratio 1.46 £ 0.27 | 1.35 £+ 0.33

Table 50: QMUIDO flags: comparison from data and Monte Carlo 1990; K°

sample.

selection subsection. before and after u identification.

A.3 Conclusions

Now we will try to extract from the collected numbers, a correction factor
to apply for punch-throughs, which are clearly not well simulated. We are
dealing now only with the final p identification cut (QMUIDO flag 13.0r.14
in 1991, QMUIDO flag 13 in 1990) which is used in most analyses, all the
other part of this study being devoted to convince ourselves that we are not
seeing statistical fluctuations, and to investigate the features and the sources
of the discrepancies.

Summarizing what we have understood about the matter, we can say that
there are certainly some discrepancies between data and simulation as far as
hadronic showers are concerned, and these discrepancies are not only related
to the depth of the showers, but involve other features. So we cannot draw
any conclusion studying the number of hadrons which reach the last part of
the calorimeter, but we really have to study the effects of the identification
cuts in data and Monte Carlo. This obviously leads to a dramatic decrease
of the statistics, which is the main problem of this study.

Moreover, it seems that the discrepancy is not exactly the same when we
consider isolated showers or collimated hadrons, and so it should be again
different for the hadrons which contaminate our muon sample in the analysis,
since they are rather isolated (we apply a py cut), but still inside a jet in a
hadronic event.
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K® = w*n” selection (barrel only)
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Figure 37: Momentum spectra of the selected tracks in data (dots) and Monte
Carlo (histogram).

On the contrary, there seems to be no significant differences between the
two Monte Carlo samples (which use different versions of GEANT), and this
has been carefully checked comparing two samples of single pions, generated
with the two versions.

The aim of this study was to get a correction factor to apply to the back-
ground amount predicted by the Monte Carlo. Given the small statistics
available, we see no other way than merging the information from the three
samples of both years, even if this is not completely correct, as we have dis-
cussed previously. In doing that we keep the decay correction factor frozen
to 1, since the decav simulation relies basically on the lifetime and semilep-
tonic branching ratio of pions, which are well known. (This is true because
we have defined decays only the decays in the TPC volume, while decays
in the calorimeter are included in the hadron class). Taking into account
the sample composition after muon identification cuts, we get the ratio of
misidentification probability in data and Monte Carlo:

Ryunch—through = 1.16 £0.22 £ 0.05

where the first error is statistic and the second comes from the uncertainty
in the sample composition.



K® — m*n” selection (barrel only)
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Figure 38: On the left side the probability for a barrel plane to be fired is
shown vs. the plane number for data (dots) and Monte Carlo (histogram).
On the right side the ratio between data and Monte Carlo firing probabilities
is shown.
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K® — w*n” selection (barrel only)
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Figure 39: Last fired plane distributions in data (dots) and Monte Carlo
(histogram).
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Figure 40: Ny /Ny, distributions in data (dots) and Monte Carlo (his-
togram).



K® — =n*n” selection (barrel only)
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Figure 41: Number of fired planes in the last 10 planes expected to fire in
data (dots) and Monte Carlo (histogram).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

