Limit on the $B_s \to K_s^0 \rho^0$ Branching Ratio

P. Colas, M.-C. Lemaire and A. Roussarie DAPNIA/SPP, CE Saclay 91191 Gif-sur-Yvette Cedex, France

September 17, 1993

Abstract

From a sample of 1.14 million Z^0 hadronic decays recorded in 1990, 1991 and 1992 by the ALEPH detector, the decay mode $B_s \to K_s^0 \rho^0$ is studied. An upper limit of 7.8 10^{-4} at the 90% confidence level is obtained for the branching ratio.

The $B_s \to K_s^0 \rho^0$ decay mode is interesting for measuring the γ angle of the unitarity triangle [1]. While its rate is expected to be small as this decay implies $V_{b\to n}$ transition and is color suppressed, no experimental limit has yet been obtained. This work is the first attempt in this direction.

1 Selection of the $B_s \to K_s^0 \rho^0$ decay mode

The analysis has been carried out on 1.14 million events collected by the ALEPH detector at LEP in 1990, 1991 and 1992 and available in the nano-DST form(version 111). The Monte Carlo sample consists of 1008 events of the $B_s \to K_s^0 \rho^0$ decay mode especially generated for the present analysis.

- 1. K_s^0 are reconstructed using the YRMIST package.
 - The K_s^0 are identified by means of their $\pi^+\pi^-$ decay products. The analysis is performed using the informations of the YRFT bank written by the YRMIST package at the nano-DST creation. To reduce the background the following selection cuts are applied to the K_s^0 candidates:
 - a cut on the invariant mass M is done requiring $|M M_{K^0}|$ to be less than 40 MeV/c²;
 - a rough agreement with the mass hypothesis is set by requiring the pull on the the mass $|M M_{K^0}|/\sigma(M_0)$ to be less than 5;
 - the angle θ^* between the decay particles and the K^0_s direction in the K^0 center of mass system has to satisfy $|\cos(\theta^*)| < 0.95$;
 - the proper time t/τ_{K^0} is calculated with $c\tau_{K^0}=2.675cm$. It has to be larger than 0.10;
 - if a track pair gave two candidates of the same mass hypothesis but at different vertex position, the candidate with the larger χ^2 is rejected. If two candidates share a track, the candidate with the smallest χ^2 is kept;
 - when there is a kinematic ambiguity of the K_s^0 candidate with $\Lambda, \bar{\Lambda}, \gamma$, the K_s^0 candidate is rejected;
 - \bullet the momentum of the K^0_s has to be greater than 2 GeV/c.
- 2. $B_s \to K_s^0 \rho^0$ selection
 - two charged tracks each with momenta greater than 1 GeV/c are associated to form a ρ .
 - the ρ candidate is required to have a reconstructed mass within 150 MeV of the known value (770 MeV).
 - $P(\rho) > 6GeV/c$
 - ullet the ho and the K^0_s are combined to form a B_s

- $X_E(B_s) = E(B_s)/E_{(beam)} > 0.5$
- the angle $\theta^*(K_s^0)$ between the K_s^0 and the B_s in the rest frame of the B_s has to satisfy $|\cos\theta^*(K_s^0)| < 0.8$
- the angle $\theta^*(\pi/\rho)$ between one of the pion and the ρ vector meson helicity axis in the rest frame of the ρ vector particle has to verify $|\cos\theta^*(\pi/\rho)| > 0.4$
- the probability function $P_{(uds)}$ for the event calculated by QIPB-TAG is required to be less than 0.01. This selection has 70% efficiency and 77% purity on $Z \to b\bar{b}$, it eliminates 98% of $Z \to \bar{u}u, \bar{d}d, \bar{s}s$ and 82% of $Z \to \bar{c}c$ events [2].

The $K_s^0 \rho^0$ invariant mass spectrum is shown in fig.1.

2 Specific Monte Carlo generation

To get Monte Carlo events for the specific $B_s \to K_s^0 \rho^0$ decay mode, the following operations are done:

- 1. the parameter PARJ 2 is set to 1.0 (instead of 0.3) in order to suppress the production of u or d quark.
- 2. the parameter PARJ 1 is set to 0.0 (instead of 0.1) to completely suppress diquark-antidiquak production: no b baryon is produced.
- 3. $V_{b\to u}$ transitions are required to occur with 100% branching fraction. With these prescriptions only B_s are obtained.
- 4. Most frequent decays of the B_s consist of complex final states as often the $\bar{u}u$ quarks couple to a string which fragments in many bodies. We filter the events where this decay consist only of a $\rho^0 K^0$ final state produced by: $\bar{u}u \to cluster \to \rho^0$ and $d\bar{s} \to K^0$. It selects about $3.4\ 10^{-3}$ of the generated events.

The ρ and K^0 being generated independently, no angular momentum correlation is taken into account, i.e. the ρ is generated unpolarized. Thus, the distribution $\cos\theta^*(\pi/\rho)$ obtained directly from the Monte Carlo is flat in contrast to the $\cos^2\theta^*$ distribution expected for the signal. A Monte Carlo filter is performed to get the correct behaviour of this distribution. These events are processed through GALEPH and JULIA and a nano-DST is produced with 1008 events.

From these Monte Carlo events, we evaluate a detection efficiency of $\epsilon = (7.7 \pm 1.1)\%$ and a B_s mass resolution of $\sigma = 44.4~MeV/c^2$. The detection efficiency results from the following contributions: 0.28 from the reconstruction, 0.76 from the momentum cuts, 0.86 from the X_E cut, 0.83 from the angle cuts, 0.69 from the cut on the ρ mass and 0.74 from the P_{uds} QIPBTAG probability. The B_s mass resolution has been derived from the

difference between the MC truth mass and the MC reconstructed mass which is displayed in fig.2.

3 Limit on the $B_s \to K_s^0 \rho^0$ branching ratio

From the mass distribution displayed in fig.1, we obtained the 90% confidence level upper limit in the following way. In the $\pm 90 MeV/c^2$ mass region aroud the B_s mass:5.37 GeV [3], there are 2 events. This mass range has been chosen as corresponding to about $\pm 2 \sigma$ where σ is the expected B_s mass resolution. In this mass range one expects 4.2 background events as it can be estimated from the number of events seen between 5 and 6 GeV/c^2 We set an upper limit on the branching ratio $B(B_s \to K_s^0 \rho^0)$ from the following calculation:

$$B(B_s \to K_s \rho^0) < \frac{3.2 \cdot \epsilon_H}{2.0 \cdot N_Z \cdot (\Gamma_{b\bar{b}}/\Gamma_Z) \cdot f_s \cdot Br(K_s \to \pi_1 \pi_2) \cdot \epsilon}$$

where 3.2 is the upper limit on signal at 90% C.L., $f_s = 0.15$, $\Gamma_{b\bar{b}}/\Gamma_Z = 0.22$, $Br(K_s \to \pi\pi) = 0.686$ and the hadronic Z decay efficiency $\epsilon_H = 0.974$, thus $B(B_s \to K_s \rho^0) < 7.8 \ 10^{-4}$.

This value is three orders of magnitude greater than the expected value, about 10^{-6} [4], however it is the first experimental limit.

4 Acknowledgements

The authors like to thank B. Bloch and B. Marx for their contribution in the Monte Carlo production.

References

- [1] Y. Nir and H.R. Quinn, B Decays edited by S. Sheldone, p362.
- [2] D. Brown and M. Frank, Aleph-note 92-135
- [3] First Measurement of the B_s Meson Mass, the ALEPH Collaboration, Phys. Lett. B311 (1993) 425.
- [4] I. Dunietz, B Decays edited by S. Sheldone, p 393.

Figure 1: The $K_s^0 \rho$ invariant mass plot in $30 MeV/c^2$ bins.

Figure 2: Difference between the MC truth and the MC reconstructed masses