ALEPH 91-142
MINIV 91-05

G. Litjens et al.
15.10.91

The Sirocco Readout Program

G.Liitjens, H. Seywerd and S. Walther
15 October 1991

Abstract

We describe the programs used in the Sirocco for the readout and calibration of
VDET. The readout program performs pedestal and common mode subtraction and
cluster finding on the ADC data from a module, and formats the cluster information
into output banks. The calibration program calculates pedestals and noises for all
channels and puts them into a form where they may be uploaded for later use. These
programs were written in Motorola DSP 56001 assembly language and familiarity with
the processor is assumed here.

1 Introduction

This note provides detailed documentation for the programs used for reading out the
ALEPH silicon vertex detector with the Sirocco module. It is organized as follows. In
the introduction we present a brief description of the hardware of the Sirocco module,
and a description of the interface between the hardware and the DSP processor. In the
following sections we describe the two DSP programs: the event readout program used in
datataking, and the program used to calibrate the detector. First a general description of
the algorithms are given, then the structure of the assembly language routines are described
in detail. In the appendix the data structures used in the DSP are described.

In the first run of the ALEPH vertex detector the readout system was based upon
modified Time Projection Digitizers. These modules have little processing capability, and a
limited digitization precision. It was decided [1] that they be upgraded to Sirocco modules,
which were developed originally for the silicon vertex detector of the DELPHI experiment.
Each of these modules [2] has two identical functional units consisting of a 10 bit flash ADC,
a Motorola DSP 56001 digital signal processor [3], memory, and a Fastbus interface. The
DSP is a Harvard architecture processor with separate instruction and two data memories
and paths. In addition there is a front panel connector for ECL signals that trigger the
FADC conversion sequence and provides an account number which is used for buffer control
and event synchronization. A block diagram of the Sirocco is shown in figure 1.

The sequence for processing one event starts upon the receipt of a trigger on one of the
lines of the the front panel bus. This starts the digitization of the analogue input with the
bucket clock signal supplied from the front panel connector. The two lowest bits of the
account number present on the connector direct the digitized data to be placed in one of

Bus Switch

Y:Bus

controt

Front Panel
A T

DSP P:Mem [um—

FASTBUS

X:Bus

X:Mem
and
CEB

Figure 1: Block diagram of one of the two identical functional units of a Sirocco module.
The major parts and the data paths between them are shown. Arrows indicate input from
the front panel connectors. The bus switches allow control over the busses to be given to
the processor, to the front end control logic, or to external Fastbus masters.

four Front End Buffers (FEB) which may be accessed by the DSP over its Y memory bus.
These raw data are also directly accessible from Fastbus. A DSP program can poll a flag
register (PCD) to test for the arrival of an event, and then process the data in the buffer.
Event numbers (“Account numbers”) are stored for every trigger in the Front End Queue
(FEQ), a 16 word deep FIFO. They are used to identify events and establish the order in
which they are processed.

The DSP also has access to a second data memory on the X bus, this is a 32 bit wide
memory, accessible to Fastbus, called the Crate End Buffer (CEB). A special register allows
transfers of the upper eight bits of a thirty-two bit word to be made from the twenty-four
bit DSP data paths. A DSP program can use part of this memory to store processed data
for readout from Fastbus. Parts of it may also be used for the storage of constants and as
scratch memory. There is another FIFO, 16 x 2 words deep, writable from the DSP and
readable from Fastbus, which is used to transfer the start and end addresses of processed
events.

Bit Field Function

0-13 Corrected ADC data (multiplied by four, two bit offset)
14 ADC Overflow if set

15 Data Invalid if set

Table 1: Structure of halfword of the VPLH bank.

2 The Readout Program

The readout program processes the input raw ADC data and produces two types of output
banks, one containing start address and sizes of hit clusters, the other the corrected pulse
heights of the channels associated with hits.

2.1 The Event Processing Algorithm

The ADC data are stored in the Front End Buffer in a form where the ¢ and z pulseheights
of a wafer are interleaved. This is due to the hardware multiplexing performed by the
readout electronics sequencer. The data are demultiplexed according to a downloaded table
which indicates from which line driver in z and in ¢ the data originated. Each ADC word
is multiplied by a factor four to preserve precision in further calculations. The data are
checked and invalidated if it is in overflow or originated from a vetoed channel. Pedestals
from a previous calibration run are subtracted from the data words. These data are then
supplied to the common mode noise calculation routine. For each block of 256 channels
(read by one line driver) the contents of all valid channels are histogram. A peak finding
routine searches for the most frequent channel and uses the corresponding histogram bin
as the common mode noise value for the data block. This value is subtracted from all
channels, and saved as part of the output bank. The final pulse heights are determined
from the data as follows:

PH,' = 4ADO, - Pedi - OMblocka

where ADC is the raw data, Ped the pedestal for the channel and C Mgjock is the common
mode noise for the line driver. The corrected data are supplied to a clustering routine.
This searches for a valid channel above a single hit threshold and forms a cluster. The
cluster consists of a fixed number of channels above and below the hit channel. If there
are several channels above threshold within the range of a cluster, the cluster is expanded.
BOS format output banks are formed, VHLS containing a list of clusters with the start
strip address, and length, and VPLH containing the ADC data and validation flags, the
structure of the data words in VPLH is given in table 1. The BOS banks are numbered
as the readout modules.

After the data from one event is processed the remaining time until the arrival of the
next event is used to correct the pedestals, for possible drifts. A correction factor for each

channel is calculated according to the formula:

Ci — Ped; — 4C’han,-,

K

where Ped; is the old pedestal, Chan; is the channel content, and « is a constant greater
than one, which is selected to moderate fluctuations (currently set at 32). Data in overflow
is not used, and sanity checks are made to require the correction factor to be “reasonable”.
This correction factor is then subtracted from Ped;. This way, if the pedestal in the
detector shifts, the pedestal value will converge to the new value exponentially.

2.2 The Program

In the following sections a detailed description of the program is given.

2.2.1 Initialization

After the program is downloaded into Sirocco memory, and the DSP is reset program
execution is directed through the block of exception vectors in the routine Interrupt_Vector
to the routine Main. The exception vectors also dispatch all other exceptions to the routine
FATAL so that a controlled crash of the DSP can be performed. Main then calls the
routines Boot, and Clean_Regs.

The boot routine performs some hardware setups on the Sirocco and DSP. It sets the
number of memory wait cycles by writing to the DSP BCR register, and the Sirocco front
panel lights are switched off. The DSP memory configuration is set up by copying the first
512 words of program memory from the Fastbus accessible, to the DSP internal (on chip)
memory, and setting the OMR register such that the internal DSP memories are used.
The routine Clean_Regs initializes Sirocco address registers to zero.

After this initialization the program waits for the hex ($) value $AFFE, to be loaded
to the location X:BootWaitFlag. This allows the externally controlled Sirocco registers
to be reset before the DSP program begins processing. After $AFFE is written, the
buffer management system is initialized, by calls to FEBInit, and CEBInit, which set
up the initial pointers for reading from and writing to the Front End (Input) and Crate
End (Output) buffers, respectively. Two further initialization routines are then called
Load_P _Data, which initializes constants in the internal program memory, and UP Init,
which sets values for the pointers used by the pedestal updating program.

Upon completion of the initialization, a jump is made into the event processing loop,
Event_Loop, which never returns.

2.2.2 Event Processing

The event processing loop waits for new events in the Front End Buffer and when one
arrives, does the data reduction and writes banks to the Crate End Buffer.

Upon entry to the routine Event _Loop the program waits for an event through polling
the carry flag after calls to the routine FEBOpen. FEBOpen checks the PCD register
which contains a flag set when a new event is present in the FEB. Upon receipt of an event

4

the routine gets the start address and the account number of the event from the FEQ, this
is stored to the location X:Accnt, and is used to set up the rO register to point to the first
word of the event in the FEB (i.e. Y memory).

After an event has been received, the program updates the status information, and
loads constants into the program memory data area (subroutine Load P_Data), and calls
the ProcessData routine. In ProcessData a slot in the output Crate End Buffer is booked
by a call to OutBook, this sets up the r1, nl, and m1 address registers to point to the
next free location in the CEB. These registers are set up to provide a circular buffer.
The area used for the temporary storage of the common mode is cleared. In order to
provide raw data for offline checking from every DSP, the low part of the account number
is compared with the DSP number in X:VdspNDSP, and if they are equal the Front
End Buffer is copied to the Crate End Buffer as the VFEB bank (routine Make VFEB).
After this preliminary processing index registers are prepared for the data processing.
The raw event is processed as eight sections of 256 data words each corresponding to the
t1,t2, b1, P2, 21, 22, 23, 24 blocks. The t; and ¢, blocks, corresponding to the test inputs of
the multiplexer module, are not processed. The r7 register is used to count through these
blocks, and is initialized to 2 to point to ¢;. The pointer to the temporary list in the X
memory of pulse heights produced by the clustering, r6, is initialized to the value TempPH.
The hit list bank is opened in the CEB by a call to BOSHead, with the bank name, VHLS
loaded in the a2, and al registers. The loop over the data blocks is started. For each
iteration of the loop index registers are set up. The input data start address in the FEB is
calculated from the demultiplexing parameters in the X:VdspFEBmodSa block and stored
in r0. Similarly the base address of the corresponding pedestal block is calculated and
stored in r4. The cluster finding threshold for the block is copied from X:VdspThreshold
to P:PmemThresh.

Pedestal subtraction and data checking is performed in the routine Ped_Corr, this
is followed by the common mode subtraction in the routine Calc_.CM. For each block
the calculated common mode is stored to scratch storage by SaveTempCM. Clustering is
performed by the routines Cluster and OutClust, which also fill the VHLS bank in the
CEB. This completes the loop over the data blocks.

After the block loop the VHLS bank is closed by a call to BOSClose. The VPLH bank
is created in the output buffer by the routine Make_VPLH. The common mode values are
written to the CEB in the VOCM bank, by the routine Make_VOCM, and the trailer bank
by Make_VTRA. Finally the event is finished by closing the output buffer, OutClose (which
also asserts a service request), and the FEB, by a call to FEBClose, making it available
for a new event. If pedestal updating has been enabled (this is done by externally writing
the hex value $BABE to X:PUPEnableFlag) the routine UP_Main is called.

ProcessData returns and the program waits for the next event.

2.2.3 Pedestal Subtraction

The routine Ped_Corr expects the first data word to be pointed to by r0, and the first
pedestal by r4. The data are copied from the FEB, anded (yO contains the mask), to
retain only the lower ten bits of the data word, and copied to the internal DSP memory.

The data are demultiplexed after this operation. The next phase loops over all the data
loading each word to the a register multiplying it by four (by two right shifts). It is tested
for overflow (the overflow test value is kept in x0), and the bit 14 is set if it is in overflow.
The pedestal is fetched to b, and tested against the flag bits 14 and 15 in x1 to see if the
channel is valid. If the channel is bad a flag bit is set in the data word. The data offset
contained in y1, is added to the data (this assures that the data will always be positive),
and pedestal subtracted from it. The data word is then written back to the internal DSP
Y memory, r2 is used as the index register for internal data.

2.2.4 Common Mode Calculation and Subtraction

This is steered by the routine Calc_CM. It expects that the pedestal corrected data are
stored in the Y: data memory. A histogram method is used to find the CM. The histogram
starting point, bin width, and number of bins are specified by the VDSP bank. The number
of bins is copied to r2, which is used as the loop limit value in all further subroutines.

Make_Hist sets up the histogram. It first clears the internal X memory where the
histogram will be constructed. A loop over the data are performed. Each data word is
fetched to a and tested against x0 to see if the invalid channel bit is set. Data from invalid
channels are not used in the histogram. The value of the lower edge of the first bin kept
in y1, is subtracted from the data word. If this drives the data negative the first bin,
corresponding to underflows is incremented. To determine the bin number corresponding
to a data word, it is divided by the number of bins. To make this operation fast, the bin
width is required to be a power of two, and the division is accomplished by right shifts of
the data word, this shift value is in y0. The shifted data word is loaded to r4 which is
used as the index register pointing to the bin. The previous bin content is loaded to b,
incremented, and written back to memory.

Peak finding in the histogram is done by Find_CM_Peak. As a first approximation a
loop is made over the histogram to find the bin with the largest number of entries. For
each iteration of the loop the bin content is loaded to b. If it is larger than the value in a,
it is copied to a and the bin number stored in r3. At the end of the loop this leaves the
number of the bin containing the most entries in r3, and its content in a. To get a better
approximation of the peak this first value is refined. The width of the peak around the
first approximation of the peak value is determined. Then the true peak value is taken as
the point half way between the two half maxima of the first approximation. To determine
the FWHM two loops are made, one from the peak channel toward the bottom of the
histogram, the second from the peak towards the top. In each loop the value of the bin
is loaded to x0, and compared with half the peak bin content stored in a. After the first
loop the address of the lower half height is stored in x1, and after the second the address
of the second half height in y1. The difference of these is taken in a, and stored to xO0.
The content of a is then divided by two, the lower half height bin from x1 is added to
this to get the bin number of the center of the distribution. This is then multiplied by
the bin width in y0. The lower edge of the histogram is added to this, giving the peak
in the correct units. The FWHM is then calculated by multiplying the number of bins
stored in x0, by the bin width in y0. The peak is returned in b, and the FWHM in a. In

this routine, consideration must be taken that index registers are not changed solely due
to pipelining effects in the DSP.

The CM is subtracted from the data by the routine Sub_CM. This loops over the data,
indexed by r0, loading it to a, subtracting the CM in b, and returning the data to memory.

2.2.5 Clustering

The cluster finder and bank forming routines are divided into two parts, the routine Cluster
which depends only on DSP internal memory, and the routine OutClust which requires
access to both the internal and external memories for the production of the output banks.
Dividing the processing into two parts like this allows processing to continue inside the
DSP even if the bus switches exclude DSP access to the external memories. This situation
arises if a new event is triggered or if a Fastbus access is made.

The cluster finding algorithm is executed in internal DSP-memory (Subroutine Cluster).
It accesses the pedestal and common mode corrected raw data which are provided in blocks
of 256 channels in the internal DSP Y-memory. A threshold, copied from P:PmemThresh
into the yO register, is applied to the data from single channels, indexed by r0, after
they are copied into the a register. Channels marked “invalid” as defined by the constant
ValidData stored in y1, are not used for opening a cluster nor for expanding an existing
cluster.

If the channel content exceeds the threshold a cluster is opened by storing the address of
the hit minus an offset (ClustSize = 7) in the internal DSP X-memory, indexed by r4. The
cluster end address (= hit address + ClustSize), kept in x1, is saved in P:PmemCIEA. If
no new hit is observed before the end address is reached, the cluster is closed by storing the
end address next to the start address in X-memory, otherwise the end address is updated
in x1. Clusters spanning the boundaries of a 256 channel block are treated as follows:
If a hit is found near the beginning of a block, the start address will be negative and be
used to point into a save area (X:XmemSvTop), where the last ClustSize channels of the
previous block (should there have been one) are stored. If a hit is found near the end of a
block, the cluster is closed at the end of the current block and a new cluster is set up for
the remaining channels in the next block.

After clustering each block of 256 channels an editing routine (OutClust) is executed.
It must be called immediately after the routine Cluster. It first checks the cluster pointer in
r4 against the value zero loaded in the a register, to handle the case of no cluster existing.
It then loops over the clusters to construct the bank entries for VHLS. The special case of
a cluster overlapping the block boundary is checked and specially handled. The bank entry
is obtained by or-ing the start strip number with the appropriate HCODE as fetched from
the VDSP bank, one of six values in X:VdspFEBmodLb. In the normal case with a fully
contained cluster the width is determined by subtracting the start from the end address,
where the start address is fetched into y1, and the end address into b. The start address
in a is or-ed with the HCODE in x1. The a register must be then shifted left to load the
leftmost six bits into a2. a is then or-ed with the word count in b, and complete word
transferred back to a where it is written to the VHLS bank by a call to OutWrite. The
case where the cluster spans a block is handled in a similar although more complicated

fashion. Pulse heights from clusters spanning into the next block must be stored into a
temporary buffer for later processing.

For every cluster the channel contents are copied from internal Y-memory (or from
the save area) into the temporary pulse height (TempPH) area. Finally the last ClustSize
channels are moved to the save area to prepare handling of overlapping clusters for the
processing of the next block.

2.2.6 Pedestal Updating

To compensate for pedestal drifts over time, the data are used to update the pedestals in
the Siroccos. Updating is performed after an event is processed and written to the CEB,
and is broken off should a new event arrive. The pedestal is updated by a fraction of the
difference between the old pedestal and the current channel content. Each time updating
is broken off the break off point is stored, and the next time the update routines are called,
the updating is resumed at this point. This ensures that not only the first few channels
are updated, when events arrive in quick succession.

As part of the initialization the routine UP_init is called. This loads initial values to
the update index block. This block is then used to store the addresses where the pedestal
update is broken off for each event, and to restore them when the updating begins again.

Updating is performed by the routine UP_Main, called from ProcessData, this is done
only when enabled externally, (eg. after VDET high voltage has ramped up).

UP_Main first restores the stored pointers by calling UP_Restore_Pntrs. This loads r2
with the number of blocks remaining to be looped over, r3 with the number of channels
remaining to be looped over, r7 with the number of the first block to be processed, and r6,
n6, and m6 with the first channel to be processed, the channel increment value (8), and
m6 with 2047 to make the r6 register index a circular buffer used to determine where in
the Front End Buffer processing is going on. After return, the block loop is started. With
each iteration of the block loop data and pedestal addresses for that block are recalculated.
The pedestal is indexed by r4, after being loaded with a value determined from the block
number in r7 and the channel number in r6. Furthermore the data start address is
determined from the contents of r6, and the stored value of X:FEBstart, containing the
starting address of the event. After the addresses are set up, the loop over the data within
a block is performed. For each new data word the Front End Buffer is tested for a new
event by a call to FEBTest, the loops are broken off if there is a new event. If a channel is
to be updated, the data word is fetched to a where it is first masked by the yO0, to extract
the 10 bit ADC value, then multiplied by four by a double right shift, and tested, by the
value in xO0, to see if it is in overflow. The pedestal is fetched to y1. If the data are valid
the routine UP _calculate_new_peds is called to change the pedestal value. The difference
between the old pedestal and the data word is taken in a, and this is divided by 32 by
shifting it left four times. Several checks are then performed on this value. If its absolute
value is too large (greater than the value MaxChange in y0), the pedestal is updated by
the the value of MaxChange. In this case the code checks the sign of the change and sets
it to the correct value. This procedure prevents the pedestal from being changed by a very
large one event aberration in pulse height, such as that from a true hit. If the channel has

Bit Field Function

0-11 Pedestal

13 Not used

14 Data Invalid as flagged in Database.

15 Data Invalid as can be flagged from pedestal program

Table 2: Structure of word in the VOPD bank.

no invalidity bits set it is then updated by adding the correction factor to it in b. The
updated pedestal is then returned to memory.

After all channels have been processed, or if a new event arrives and the loops are
broken off, the routine UP_Save_Pntrs is called to save the counter registers to the update
pointer save block. This allows the updating to be resumed after the next event, at the
point where it was broken off.

3 The Calibration Program

The calibration program is used to produce a pedestal and an rms noise value for each
channel on a module. The pedestal can then be used in the event processing. The noise
values may be used to test for defective channels. A pedestal run is made using the Sirocco
hardware in the same way as the event readout. Events are triggered externally (usually
about two-hundred of them), after each event is processed the DSP program writes a short
trailer bank in the CEB, and signals a service request, allowing the event builder program
to synchronize the system. After enough events have been collected, the event builder sets
a flag in the DSP memory, signaling the DSP to calculate the the pedestals and noises.
Finally when the processing is complete, the DSP sets another service request to inform
the event builder that the data may be read out.

3.1 The Algorithm

The calculation of the pedestal is done by summing the pulse heights for each channel
from all the events and dividing the sum by the number of events taken:

1 N
Pedi = YV— Z 4ADCij,

i=1

where i indexes the channels, and j the events. The ADC content is multiplied by four to
preserve accuracy in further operations. The structure of the final pedestal word is give in
table 2.

The calculation of the rms is a bit more complicated. The quantity calculated is not
simply the rms, but really the common mode noise subtracted rms. The desired quantity
is the true noise of the channel without the component that swings from event to event

affecting all channels equally. The common mode should have no effect on the pedestal
because in the course of 200 events it is averaged out. The common mode noise for each
event is calculated according to:

1 Mgood
OMJ = Z 4ADO{j6igood.
Mgood i=1

Here M is the block of channels over which the CM noise is calculated, this is done on a line
driver sized block basis of 256 channels. Channels not in the bonding maps, or otherwise
labeled as unusable are not used in the calculation, as indicated by the §-function. The
variance for each channel is then calculated as

N N 2
var; = %Z ((4ADC{_,’ - CMJ) - %Z(‘lADO{k - CMk))

j=t k=1

The variance is calculated for each channel using the ADC value for each event but first
subtracting that event’s common mode noise contribution.

It should be noted that there are several complications in the implementation of these
formulae. The DSP is designed for floating point arithmetic, this is manifested in the way
numbers are normalized after arithmetic operations. The program here works only with
integers, requiring care after multiply and and divide operations. The second limitation
is that the DSP has only only 24 bit wide data paths, this gives insufficient precision for
the large values of sums of squares to be calculated in the equations above. This implies
that the sums be transferred to and from memory as upper and lower half words of a 48
bit full data word.

3.2 The Program

The program is divided into three parts, initialization: performed after downloading
and booting the DSP, event processing: controlled by the routine Ped_Loop, and post-
processing: the routine Ped_calculations that produces the final numbers after all events
are collected. The main routine is PEDnn.asm (nn is the version number).

3.2.1 Initialization

The processor initialization for the pedestal program is identical to that for the readout
program. The program is loaded and copied into internal memory, and the hardware set
to use that memory. Data transfer between the front and crate end buffers and the DSP is
done by the FEB and CEB handler packages. The main program (section Main) is called
after the boot sequence, and the FEB and CEB initializations. It then calls the routine
Ped_before loop before jumping into the event handling routine Ped Loop.

Ped_before loop clears the event counter X:Number, and clears the memory areas used
for scratch storage by calling the routine MEMORYclear.

10

Block Name Content
Ped Block_r2 Sum of CM subtracted data.
Ped Block_r3 Sum of squares CM subtracted data. (high word).
Ped Block_r3n3 Sum of squares CM subtracted data. (low word).
Ped Block._r4 Not currently used.
Ped Block._r) Not currently used.
Ped Block_r6 Sum of all data per channel.
Ped Block_r7 Number of entries in each channel.
Result_noise_r2n2 (VONS) | Final result of the noise calculation.
Result_ped_r4n4 (VOPD) | Pedestal (or’ed with status bits).

Table 3: Data blocks for the pedestal program. The sums are all sums over all events for
a channel.

3.2.2 Event Processing

The control routine for event processing is Ped_Loop. It is similar in structure to the
event loop processing routine of the datataking program. The event loop begins with a
reset of the run flag, and of the Crate End Buffer wait flag. The routine enters the wait
event loop, this differs from the wait event loop for the event readout program in that,
on each iteration two conditions are checked: The FEB is tested for the presence of an
event indicated by having the carry flag set after a call to FEBOpen. A jump is made
to ProcessEvent if a new event has arrived. In addition the location X:PedDoneFlag is
compared against the hex number $FEED, in the b register to see if the event builder is
indicating that all events have been triggered. If the last triggered has been received the
post-processing is performed by the routine Ped_calculations, after which a trailer bank is
created by a call to Make_VPTR, and a service request is sent by calling OutClose.

After the receipt of a trigger, the run flag is set by clearing the RunFlag bit in the regis-
ter X:PCD, the status block is updated, by incrementing the event number, X:EventNum,
and the event size is set to zero by clearing X:EVsize. Space in the CEB for for the trailer
is opened by a call to OutBook. The routine Ped_eventloop is called, this is the routine
that does all the work. After the event is processed, Make_VPTR is called to create the
trailer, and a service request is sent by a call to QutClose. The routine then returns to
waiting for the next event.

The trailer bank routine Make_VPTR creates a three word trailer in the CEB for each
event. This consists of the event size, the internal event count and the account number
from the FEQ.

The event processing routine Ped_eventloop begins by initializing the index registers
to point to the blocks of memory used for accumulating the running sums. The blocks are
described in tables 3 and 4. The contents of r0, which has been set to the start of the
event in the FEB, by FEBOpen, is copied to X:Pointersav. The number of events is then
incremented and stored in X:Number.

The routine Reset_r0_r5_pointer is then called. This routine sets up the pointers for the

11

demultiplexing of the eight different data blocks (%1,%2, 1, @2, 21,22, 23, 24). The location
X:VdspTablePointer is which contains the block number (0-7) is cleared, and the location
of the t; block is extracted from the X:VdspFEBmodSa, and added to the event start
address in FEB to give the pointer to the start of the first block in r0. The r5 pointer
is initialized, and the demultiplexing step constant (equal to 8) is loaded to n0, and n5,
before returning to Ped_eventloop.

Ped_eventloop loops over the 8 data blocks, for each block the routine Reset_r0_r5_toBlockBeg
is called. This calculates the start point for the block in the FEB, and loads it to the r0
index register. The routine Update_good_ch_rn is called, this performs a loop over the
pedestal bank and counts the number of valid channels, i.e. those that do not have a flag
set. This is stored to the location X:Good_ch_rn_save.

Next a loop over the channels in the block is performed to calculate the mean pulse
height for this block for this event. Each data word indexed by the sum of r0 and n0 is
fetched from the FEB. The data are masked with x0 to extract the ADC part of the word
into b. This value is then added to the content of X:Sumplace fetched to a, and the sum
is returned to X:Sumplace. Various manipulations are also made with the r5 block which
does not concern us here. The number of channels is loaded to x0, the sum of channels
from X:Sumplace to a0, and the routine DividI called to return the mean of the block to
a0. This is then copied to X:Mean.

The common mode of the block is calculated by the routine Calculate_common mode.
The routine loops simultaneously over the data and the downloaded old pedestals in the
pedestal bank. The old pedestal indexed by r4 and n4 is loaded to al, where it is checked
against the dead channel flag mask. If the dead channel flag has been set, the channel is not
used. Otherwise the data word is masked to extract the ADC value, and this is summed
in the b register. After the data have been summed, b is transferred to a, the number of
good channels in the block loaded from X:Good_ch_rn_save to x0, and the Dividl routine
called. The common mode is then copied to X:Common mode.

After these manipulations the main channel processing loop is performed, the point-
ers are reset by a call to Reset_r0.r5_toBlockbeg. The raw data word is fetched to al,
and masked to get the ADC content in a. This is added to the running sum of ADC
counts for each channel as indexed by r6. The common mode is restored to x0, from
X:Common_mode and subtracted from the ADC value. The result is copied to a, x0, and
y0. x0 and yO are multiplied to get the square of the common mode subtracted pulse
height into a, and the result is copied to the x0, x1 register pair. The common mode
subtracted pulse height is again calculated from its constituents, to a, and copied to yO.
Leaving in x0 and x1 the square, and in y0 the value of the CM subtracted pulse height.
The old channel by channel sum of the squares is loaded from the X memory indexed by
r3, and r3+n3, to a0 and al. The newly calculated square is copied to b0 b1 added, and
then copied back to the X memory. The CM subtracted value sum is copied from X:(r2)
to b, and the value for this channel added to it before being loaded back to the memory.
The number of entries for this channel is incremented in the block of memory indexed by
r7.

At the end of loop the pointers to all of these memory blocks are incremented as
necessary, and outside of this loop the pointers updated for the next block by a call

12

to Setup_r0_r5_tonext_block. This completes the event processing, and the subroutine
returns.

3.2.3 Post-Processing

Post event collection processing is performed by the routine Ped_calculations. The sums
assembled during event by event processing are used to determine the final pedestal and
noise quantities. The routine begins by initializing the index registers as for event pro-
cessing. A loop is made over all the data blocks, and then through the channels in each
block.

The first calculation determines the pedestal. The sum of all the ADC counts for all
the events in each channel is fetched from X:(r6) to a0, and shifted left twice in order to
multiply by four. The number of collected events is copied from X:Number to x0, and
a division performed to get the pedestal. The old pedestal copied from X:(r4) to b and
checked for the presence of the dead channel flag. If this is set, then the flag is then set in
the newly calculated pedestal word. The completed pedestal word is then returned to the
X memory.

The pedestal value also in x1 is then checked against the value X:Null_cut_rn. If it is
less than this value, the sick channel flag is also set in the pedestal word, by the routine
Set_dead_channel. This routine copies the word pointed to by X:(r4+n4) and sets the bit
specified by Set_dead_ch_mask before restoring the word back to memory.

The noise is now calculated for the channel. The sum of the CM subtracted pulse
heights is fetched from the X-memory location pointed to by r2, to y0. The value is
squared, with the result appearing in the a register. The number of entries for this channel
is copied from X:(r7) to x0, and the the two numbers divided, with the result left in a.
The sum of the squares of the CM-subtracted pulse heights is loaded from X:(r3), and
X:(r3+n3) to b, and subtracted from a. This is then divided by one less than the number
of entries. Finally the square root of this value of is calculated. Notice that much magic
(some of it black) happens in the divide and square-root code. The rms value is then
copied back to X:(r2+n2).

After theses quantities have been calculated the code makes it possible to flag chan-
nels based on values outside preset limits. The noise is compared against the value in
X:Raw_nse_cut and the channel flagged if its noise is greater than this value.

The pointers are then set to deal with the next channel, and the loop is terminated.
Outside the channel loop, a call is made to Setup_r0.r5_to_next_block to set the pointers
for the next data block.

This completes the pedestal processing, and the completed blocks are available for
uploading. To inform the event builder that processing is complete, a trailer bank is
created and a service request set.

13

Appendix: Allocation of the X: Memory

Address Range

Function

$0000
$0100
$0200
$0800
$1000
$1800
$2000
$2800
$3000
$3800
$4000
$6000
$6100
$6161
$6100
$7700
$7100
$71a0
$7fb0
$71d0
$70

$71f6

$7ffe

ST

$00ff
$01ff
$07H
$offf
$17H
$14Ff
$274
$2fFf
$374
$3fFf
$51Ff
$60fF
$6160
$6eff
$76ff
$76fF
$7fof
$7faf
$7fct
$7fef
$75
$7fid

CM histogram, Clustering algorithms
Free

Temporary Pulse Heights
Ped_Block_r2 — PEDS only
Ped_Block_r3 — PEDS only
Ped_Block_r3n3 — PEDS only
Ped_Block_r4 — PEDS only
Ped_Block_r5 — PEDS only
Ped_Block_r6 — PEDS only
Ped_Block_r7 — PEDS only

CEB

Free

Fatalbank

Free

VONS (Result_noise_r2n2 for PEDS)
VOPD (Result_ped_r4n4 for PEDS)
Free

Xmem — See below

Free

VDSP - See below

DSPCONT - See below

DSPSTAT - See below

CEBWrite

CEBRead

Table 4: Allocated Blocks of the X:memory.

Address Range

Function

$7fa0
$7fal
$7{a8
$7faf

$7fa7
$7fae
$7fbe

XmemBosTop

XmemSvBot

XmemSvTop

XmemTempCM Common Mode storage

Table 5: XMEM Block.

14

Address Range

Function

$7£d0
$7id1
$7d2
$7£d3
$71d4
$7fdc
$7fed
$7fec
$7fed
$7fee
$7fef

$7fdb
$7fe3
$7feb

VdspVersion
VdspNDSP
VdspDACValue
VdspOverflow
VdspFEBmodLb
VdspFEBmodSa
VdspThreshold
VdspCMHistMin
VdspCMHistSize
VdspCMHistBinS
VdspCMHistBinB

Table 6: VDSP Block.

Address Range Function
$7110 PedDoneFlag
$71f1 Affe flag
$7f2 | $74I5 Free

Table 7: DSPCONT Block.

Address | Function
$71t6 NumClus
$7T NumStrip
$7H18 EventNum
$7H9 Accnt
$7ffa EVsize
$74b FEBStart
$7ffc TOPhit
$7fid Prstat

Table 8: DSPSTAT Block.

15

References

[1] H.G. Moser et al Upgrade of the Data Aquisition Hardware for the ALEPH Minivertez
Detector
ALEPH 90-159, MINIV 90-015 (October 1990).

[2] Nils Bingefors and Mike Burns Sirocco IV - Hardware and Software Manual
DELPHI 88-48 Track 48 (July 1988).

[3] Motorola Inc. DSP56000/DSP56001 Digital Signal Processor User’s Manual
DSP56000UM/AD (1990).

16

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

