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Abstract

Problems with the VAX implementation of the Monte-Carlo event generators for two
photon processes DIAG36N and DIAG36ZN are described. After studying the reason for
the overflows and underflows occurring, some methods are explained to cure them and
have a version running on VAX. Differences in the results of the QED and electroweak
versions of the programs (DIAG36N and DIAG36ZN, respectively) are shown.

1 Introduction

The set of programs DIAG36N, DIAG36ZN (both specially designed for no-tagging config-
urations) has been written by P.H. Daverveldt and include the calculations made by F.A.
Berends, P.H. Daverveldt and R. Kleiss [1]. These programs are able to compute the cross
section for the process

ete” — fififofe
where f; and f, are any charged fermion (leptons or quarks at the parton level) using a
calculation which includes all the Feynman diagrams describing the process at the tree level.
DIAG36N takes into account only the QED diagrams whereas DIAG36ZN takes also into
account the diagrams with Z° exchange. Therefore, they give a reliable cross section for

processes such as

+ +

ee — e e_u"',u_

and

ete™ — eteete™

which have a huge total cross section, in fact around 200 nb and 107 nb respectively when
the beam energy is about 50 GeV. Moreover, at LEP energies they may be an important
background to other reactions of interest.

Originally these programs where adapted by their author to run on IBM computers and
due to differences in the way double precission variables are defined in VAX and IBM Fortran
they cannot run directly on VAX.

Our goal is obtaining a single compatible program for VAX and IBM computers. The
problem is that standard double precission variables on VAX have less exponent range that
on IBM in spite that actually they have one digit more in the mantissa (so that in fact, on
VAX, better precission is reachable); for this reason often the program crashes giving errors



of underflow and overflow. However, as we know that the needed precision for the calculation
lies well inside the range of the VAX variables, then it must be possible, writing in the proper
way the intermediate operations, to fix the problem.

There is an important difference between standard double precission VAX variables and
IBM ones : while the last ones allow the exponent to be bigger, in absolute value, than
60, for VAX the magnitude cannot be smaller than approximately 0.29x1073% or bigger than
approximately 1.7x10% for the D-floating implementation. The number of digits that preceed
the exponent is 16 in D-floating, while IBM computers have less significant digits.

Since VAX computers have two implementations for double precission variables, D-floating
and G-floating, one can think naively that the problem will dissapear using the G-floating
implementation in the FORTRAN compiler instead of the standard D-floating one. In fact, the
G-floating implementation has less significant digits and more exponent range. Nevertheless,
in many steps of the programs it is very important not to lose precision on the number
of significant digits (due to important cancellations ocurring in the calculations) so that
the direct use of the G-floating implementation doesn’t solve the problem either. Another
inconvenient in the G-floating implementation is that it increases the computing time by a
very considerable amount.

Therefore, the solution is to rearrange the arithmetic operations according to the double D-
floating precission variables on VAX . The processes mentioned above are the most important
and problematic ones because we are working close to the limit of VAX variables accuracy
and exponent.

The main reason of all this kind of problems is that the denominator of some propagators
can be extremely small (the difference from zero coming only from terms of the order O(m?2/s))
because the outgoing particles go at very small angle. For instance, in the reaction

etem — eteutu-
the electron and positron tend to go at very small angle, and this region dominates clearly
the total cross section. That implies problems in the DIAG2, DIAG4, DIAM subroutines.

(see appendix 1).

2 Modifications

The programs modified are DIAG36N, DIAG36ZN. The subroutines and functions which have

been modified necessarily are the following : DIAG2, DIAG4, MCA, MCB, DIAM, GETRID
and GRAAF.

The different methods used to solve the problem are :

a) Exchanging the order of variables in a statement.
It is possible that the intermediate steps of some multiplication and division expressions
overcome the exponent range of VAX D-floating double precission variables while the final

result does not. Exchanging the order of the variables we obtain a new expression that doesn’t
lead to any under-overflow.

For instance in the subroutine MCB the expression:
EBOB1 =8D0+« FF+ DD« EDF/[(EE + SDELT A)*

(EDF — DF — SDELTA) + (EDF + DF + SDELT A)]



is substituted by:
EBOB1=8D0x FF/(EE+ SDELTA)* DD

J/(EDF — DF — SDELTA)+« EDF/(EDF + DF + SDELTA)
That is, for calculational purposes, the following mathematical expression:

8FrDpEpFr

FBOB1 =
[(Eg + Sperra)(Epr — DF — Sperta)(Epr + DF + SpELTA))

is replaced by:

8FF .DD EDF

FBOB1 =
{(EE + SDELTA)}{ (Epr — DF — SDELTA)}{(EDF + Dr + SDELTA)}

Obviously the order followed to do this operation is different and that allows to avoid under-
overflows.

b) Change of variables.

In this case we suppress certain variables used in the programs just for intermediate
calculations and define instead new ones free of under-overflow.

For instance in the subroutine MCB the calculation of WEIGHT(2) is performed originally
in the following way:

XMBP1=512.D0/(T2+« W2+« DD3 +«+ DD4 + W EAlx

WEA2+ WEA3 + WEA4 « WEA5 « W EAG)
WEIGHT(2) = XME(2)/[(XMBP1 + XMBP2) + WAP(2)]

and, instead, the following way can be used to avoid the under-overflow problem:
XMBD1N = 512.D0/DD3/DD4/W2

XMBD1D = WEAL+ WEA2 « WEA5 + T2
XMBPLE = WEA4 « WEA6
WEIGHT(2) = (XMB1+T1+1.D — 15+ XMB2+T2%1.D — 15+ X M B3+ W2)/W AP(2)
/(XMBP1IN + XMBP2D + XMBP1D « XMBP2N «* XM BP1E x WEA2)
«+XMBP1D « XMBP2D/T1/T2/W2+ X MBP1E «+ WEA2

In this new expression there is also a substitution for the value of XME(2) and a similar trick
for XMBP2 and, in addition, contains some factors of rescaling (commented below).

c) Rescaling.
In some cases it has been necessary to multiply and to divide in the proper places for a

given scale factor to preserve the exponent range in intermediate operations.
For instance:

DELTAA =2+ DSQRT((4+Y + W2/(XKH + 2+ XKV)+ 2+ XKV x VK —

— 92+ XKV+DEPA)+1.D10)%+2+ 4+ X KV« DEPAx(X K H+2+ X KV )*1.D20%V K )/1.D10



That is, matematically speaking, the operation performed reads:

U (2% + 2Xkv Vi — 2Xkv Dppa)10'°) + 4Xkv Dppa(Xkn + 2X v )1020Vi )3
1010

For this rescaling, in some of the subroutines, it has been useful to define a new variable
used as an scale factor (SCAL) which takes different values according to the kind of process.

d) Alternative method to compute the scalar product.

The programs had already two different methods to compute the propagators in subroutine
GRAAF but it isn’t enough to handle the required accuracy in some cases.

Thus we introduce a third method that is valid when the two others give problems. Our
method allows to obtain more precission for the variables since it works with a complement
to one. The modification consists in computing the scalar product in the following way:

Let P = (Po, P1, P2, P5) and Q = (Qo,Q1,Q2,Q3), then:
(P+Q)? = P2+ Q% +2(Qo(Po — 1/Qo) — P1Q1 — P2Q2 — Q3(P3 — 1/Q3))

The four-momentum P, and @, can be any of the ingoing or outgoing particle four-momentum
which are rescaled to the energy beam. For this reason the 0 and 3 components can be very
close to 1 and, in this case, this way of rewriting the scalar product gives the largest precission.

e) Additional changes.

In addition to the methods to avoid under-overflow problems explained above, it has been
necessary the modification of the subroutine GETRID to fix an existing bug in DIAG36ZN.

The subroutine GETRID determines which of the supressed spin configurations will be
omitted during the summation of the exact matrix element squared over all the possible spin
configurations. And it also selects for a given event which diagrams are likely to give the
largest contribution. This speeds up the calculation of the final weight considerably.

For the selection of the more important diagrams, the program looks at the combination
of propagators appearing in each diagram, looks for the minimum of those combinations and
keeps in the calculation all the diagrams whose propagators are larger than the minimum by
a factor chosen by the user with the variable PROC (whose default is 10°).

In GETRID (not in the actual calculation of the matrix elements), the propagator for the
79 diagram is written as

WEZ =WE - AMZ?2

where AM Z2 is M% and WE is the ¢ in the Z propagator. When we are sitting on top of
the ZO resonance it gives 0, and then only the diagrams where this propagator appears will
be taken into account. This a very bad approximation, since, even on top of the Z peak, for
most of the process, the QED diagrams still dominate.

To correct for this, we have taken into account the full Z propagator

1
@ — Mi+iMzlz

and, therefore, where we find in the program :

WEZ =WE - AMZ?2




it is changed to
WEZ = DSQRT(WE — AMZ2)x+2+ AMGZ)

After this modification, we do not find any problem even when running the program at the
pole.

3 Results

We present the results which were obtained by the use of the programs mentioned before.
First of all, the total cross sections are presented for four-lepton production processes and we
have reproduced the results published in the doctoral thesis of P.H. Daverveldt [2].

In table 1 the total cross sections for the production of ete~ete™ ,ete utu™, ptp ptu~
and ptp~ 77~ final states are listed for beam energies equal to 50 GeV (where the mass of
70 is taken to be 88.615 GeV — the result obtained from sin? 6y = 0.23 using the tree level
relations between the parameters of the Standard Model) and equal to 46 and 50 GeV (where
the mass of Z° is 92 GeV). The first case has been computed just in order to cross-check the
results obtained with the modified program with the ones obtained by P.H. Daverveldt [2].

The table is divided into two parts. In the first part all lowest order QED diagrams
are calculated. In the second one the lowest order cross section as predicted by the elec-
troweak theory is calculated. The total cross section for ete~ete™ (and to a lesser extent for
ete~putp™) is very large, due to the fact that these final states are predominantly produced
by multiperipheral scattering. This implies that the vast majority of the eTe~ete™ events
will be invisible, all the particles being produced at very small angles with respect to the
beams.

We can see that in the ete~ete™ and ete~putp~ processes the corrections due to Z° are
quite negligible. On the contrary, for the process p*p~p*p~ and pTp~7+7~ the corrections
due to Z9 are by far much more significative. For these processes, when we are sitting on top of
79 peak the effect is larger than some GeV above (see table 1) and this can be understood just
taking into account the contribution of the so-called annihilation diagrams, which dominate
and tend to reproduce the Z° line shape. (See ref. [1] for a definition of the annihilation
diagrams).

For every Monte-Carlo event we determine the number of tracks coming out at an angle
(with respect to the et e~ beams) larger than some . In table 2 and table 3 we give the visible
cross sections for the four-lepton production processes : efe~ete™, ete putpu™ , ptpu~ptu~
and ptpu~ 777~ where we apply a value of 25 degrees for §y. The table 2 takes into account all
lowest order QED amplitudes whereas the table 3 does the complete electroweak calculation.

Looking at these tables we can observe the following:

a) ete™ — eteete

In spite that the total cross section doesn’t exhibit any difference as commented above,
we can see that the visible cross section is slightly sensitive to the effect of the Z° peak. The
effect is only visible when we are sitting just on top of the Z° resonance and seems to be
a little bit more significative in the case where two electrons are tagged than in the case in
which just one electron is seen.

The size of the effect logically will depend strongly on the angular cut applied since there
is a strong correlation between minimum angle and Q2. Low angle (correlated with low Q?)

corresponds to QED dominance whereas large angle (high Q?) tends to select EW effects.
b) ete™ —s ete putpu~



Unlike the previous case, this process don’t show any difference in the total cross section
nor in the visible cross sections in the tables we have computed. Nevertheless if very strong
detection cuts are applied (very small regions of the available phase space are selected) then
the EW effects might be enhanced in such a way that they become really important. This is
the case in which a strong muon invariant mass cut is applied for instance.

c) ete” — ptp~ptpu~

For this process the visible cross sections, like the total ones, in QED and EW are sizabily
different for all kind of observed final states. The case in which this difference is more relevant
(and also the one with larger cross section) is when four p’s are observed : then the EW cross
section is almost a factor 80 larger than the QED one.

The case in which two muons are detected has a very tiny cross section so that actually
this is a harmless background for most of the interesting processes. Anyway it is clear that
there is about a factor 20 difference between the EW and the QED calculations.

d) ete” — prpu vt

Like in the previous process, in this case the visible cross sections and the total ones in
QED and EW are clearly different. This is specially true when the four particle produced are
detected. In this case not just the total cross section is the larger one but also the difference
between the EW and the QED calculations becomes the larger one (about a factor 70 for the
angular cut we are using)

4 Conclusions

The use of some computational tricks to avoid the problem of underflows and overflows after
a careful study of the programs, has enabled us to prepare a computer version of the two-
photon Monte Carlo programs by P.H.Daverveldt able to run on VAX as well as on IBM and
more stable numerically speaking than the previous ones in any case.

The programs, called DIAG36N and DIAG36ZN, are available on request from ALE-
MANYQ@QEBOUAB51 and GAITANQEBOUABS1 and allow directly the calculation of the
cross section of any leptonic two photon process using a complete tree level QED calculation
(DIAG36N) or a complete tree level EW one (DIAG36ZN).

These programs have been checked producing about 3 x 10° events for each channel
without any kind of problems on VAX and IBM computers. Furthermore, we have also
checked, running the program on an IBM, that the results are exactly the same as those
obtained with the original version, after solving the problem with the Z propagator in the
routine GETRID.

A study of the results obtained running the programs near the Z° peak shows that the
use of the EW versions (obviously slower) is extremely necessary when final states without
electrons are to be produced whereas can be safely avoided for most of the detection con-
figurations when the final state contains electrons using the QED versions, which are much
faster. In this last case, the study of very restricted regions of phase space characterized by
high momentum transfer should be taken with caution since depending on the cuts, the size
of EW corrections becomes important.



Appendix

In this section we will outline the program structure. A flow chart of the program is shown
in fig. 1.

The whole procedure used to generate events consists of three steps. During the first step
the initialization is performed. Partly this is done by the user, who has to specify various
input parameters such as the process desired, the beam energy, the masses and charges of the
particles involved, the a; and §; parameters, the cuts which must be applied to the events
and finally the number of rejection algorithms used in the program.

A rejection algorithm can be used twice. First it is used to obtain events distributed
according to the sum of the matrix elements squared of all the contributing subgroups of
Feynman graphs. (At this stage the interference between different subgroups is not included).
Later on it is used to obtain unweighted events reproducing the complete matrix element
squared distribution.

The arbitrary input parameters a; and (; enable the user to tune the ‘strengths’ of the
four subgenerators in order to obtain the best possible efficiency of the program.

For example, if the user suspects that the cuts applied to the events favor the annihilation
group and that the other diagrams can be treated as only corrections, he or she may use only
the annihilation subgenerator for the event generation by setting a,,, as and a, equal to 0.
Of course, as the contributions from the other diagrams grow bigger, the fluctuations in the
weight of the events will increase accordingly.

The rest of the initialization is performed by the subroutine START. There, among others,
the approximate total cross sections of the groups are determined. The next step consists of
the event generation and the weight calculation. Finally, FINISH calculates the mean weights,
exact cross sections and event statistics.

Basic subroutines in the programs and their function

Name Description

MCA Event generator for the multiperipherical diagrams.

MCB Event generator for the bremsstrahlung diagrams.

MCC Event generator for the conversion diagrams.

MCD Event generator for the annihilation diagrams.

START This routine performs the necessary initialization.

FINISH This routine calculates the exact cross section.

DIAM This routine determines the complet matrix element
squared.

DIAG2 This routine determines the matrix element squared

of a gauge invariant subset of two Feynman diagrams.



DIAG4 This routine calculates the interference between
the subsets of Feynman diagrams which contribute to
the bremsstrahlung and annihilation subgroup.

SPINOX This performs the initialization for DIAM.
GROUP This routine defines the various groups of diagrams.
PERMUT  This labels the four-momenta in each group.

CHOICE This routine selects the Feynman diagrams which
contribute to the process chosen. It also puts in the
charge factors when we produce quarks in the final
state.

GRAAF This routine calculates the amplitude of a diagrams
for a given four-momentum and spin configuration.

77 This function represents the contraction between two
corrents which are used to built the amplitude in
GRAAF.

GETRID This routine helps to speed up the calculations of
DIAM.

RNF100 Multiple random number generator which shuffling
which generates most variables.

RNDM Simple multiplicative random number generator.

HISTO1 This routine fills histograms. The entry HISTO2
prints the histograms.

CHANGE  This routine interchange two four-momenta.

DOT This routine calculates the dot product between two
four-momenta.
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TABLE 1

TOTAL CROSS SECTION

CONTRIBUTIONS OF ALL LOWEST ORDER QED
DIAGRAMS IN NANOBARNS

( FINALSTATE | 46 Gev 50 Gev A
ceee 0.1438(9) 10 - 0.1472(8) 10 °
eelit 197.3(2) 204.2(2)

L 0.2035(5) 10 0.1805(5) 10"
LT 0.1768(5) 10 *  0.1591(4) 10"
- y

CONTRIBUTIONS OF ALL LOWEST ORDER ELECTROWEAK
DIAGRAMS IN NANOBARNS

“INAL STATE Mz = 92 GeV Mz - 88 GeV )
46 GeV 50 GeV 50 GeV
eeee 0.143(1) 10 ° 0.144(2) 10 ° 0.142(2) 10 °
eellt 198.5(8) 204.4(8) 204.3(7)
LLULLLL 0.70(1) 10 > 0.111(2) 10 ~° 0.88(1) 10
LUTT 0.652(7) 10 °  0.112(2) 10 0.91(1) 10°°
\_ _J




table 2

[
46 Gev 50 Gev
tracks
visible QED QED
cross section (nb) cross section (nb)
e+e- —> e+e-e+e-
6 6
e 2.48(8) 10 2.40(6) 10
6 6
ee 1.07(5) 10 1.10(4) 10
e+e- —> e+e- u+u—
e 0.60(3) 0.57(3)
i 53.1(3) 54.6(3)
1y 24.6(2) 25.1(2)
e+e-—> U+u—[+u—
-6 -6
m 3.35(4) 10 3.00(2)10
-6 -6
m 3.17(3)10 2.65(2) 10
-6 -6
LLLLLL 1.66(2) 10 1.37(2) 10
-6 -6
LU 6.51(5) 10 5.37(4)10




table 2 (cont)

[
tracks 46 Gev 50 Gev
visible
QED QED
cross section (nb) cross section (nb)

L

TT

HT

HuT

T

UL TT

e+e- —> U+U— T+ T-

0.61(1) 10°° 0.57(1)10°°
2.39(2)10 ° 2.17(2)10°°
0.50(1) 10 ° 0.46(1)10 " ®
227(2) 10°° 2.06(2)10°°
0.64(1) 10°° 0.55(1)10"°
0.88(1) 10°° 0.80(1)10° 8
1.12(1) 107 1.01(1)10°®
6.67(5) 10™° 5.9(4)10 °




table 3

-
Electroweak cross section (nb)
tracks Mz = 92 GeV Mz = 88 GeV
visible
46 GeV 50 GeV 50 GeV
e+e- —> e+e-e+e-
6 6 6
e 2.7(1) 10 2.5(1) 10 2.4(2) 10
6 6 6
ee 1.22(7) 10 1.1(1) 10 1.1(1) 10
e+e- —> e+e- [+
e 0.6(1) 0.6(1) 0.58(8)
H 53(1) 55(1) 55.6(8)
HE 24.1(6) 25.0(6) 24 6(5)
e+€- —> U+U—[+—
n 2.1(2) 10°° 0.58(5) 10°° 0.56(4) 10°
m 0.59(3) 10~ * 3.22(7) 10°* 0.271(5) 16"
HHu 0.76(3) 10 ~* 1.30(4) 10°* 0.105(3) 16*
ias 5.10(9) 10" 0.509(9) 10°* 0.361(7) 10"




table 3 (cont)
ftracks Electroweak cross section (nb) W
visible
Mz = 92 GeV Mz = 88 GeV
46 GeV 50 GeV 50 GeV
e+e- —> UHU- T+ T-
- -6 -6
. 12(1) 10 ° 1.6(2) 10 1.6(2) 10
-6 -6 -6
T 10(1) 10 4.0(5) 10 3.5(4) 10
m 35(2) 10 ~° 5.1(3) 10°° 3.5(2) 10°°
11 25(2) 10 ~° 27.2(7) 10 24.5(5) 10°
wt 6.7(9) 10 ° 0.8(1) 10°° 1.0(2) 107°
e 31(2) 10 ~° 3.6(2) 10 3.5(2) 10 °
-6 _ _
o 55(2) 10 11.1(4) 10 ° 8.3(3) 10°
by Tt 460(7) 10 ~ 53(1) 10 ~° 39.6(7) 10
N\ J




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

