ALEPH 87-3

COMPRO 87-2
U.Berthon, S.M.Fisher, H.Videau

17/12/86

A PROPOSAL FOR AN INTERACTIVE ANALYSIS ENVIRONMENT INCLUDING
GRAPHICS

The First Approach

This note shows the basic elements of a framework for interactive analysis and
graphics. It is an approach to a first implementation of the ideas that were discussed in the
group on graphics requirements [1]. Even though our intention is to provide all the
required facilities, they do not all appear in this paper.

We are presently testing the feasability of our proposal by writing a prototype. Some
thinking still has to be done, and not all the elements given below are described in their
final form. Nevertheless we considered that it was necessary to talk about our ideas now in
order to open the discussion. Critical remarks and additional propositions are welcome.

The ideal device would be a workstation, giving flexibility and ease of implementation
by its windowing and multiprocessing facilities. But we are aware of the fact that the
analysis will be done on a very large range of devices, including low level 2D
terminals.The proposed architecture is suited to either environment, though performance
will inevitably be superior on a workstation. On a workstation we will take advantage of
the native capabilities whereas on a simple terminal we must write additional software to
provide similar facilities.

Menus, though a friendly way of presenting choices to the user, are not discussed here.
We restrict ourselves, for the purpose of this note, to the basic elements of
communication.

The proposed framework relies on the data model adopted in Aleph. The different
modules shown have in common a unique data structure formulated according to this model.
To gain maximum benefit from the regular data structure, the data modelling should be
complete and consistent. Ad-hoc solutions may be provided if required, but bring with
them a loss of flexibility. For those who wish, a simple FORTRAN interface via common
blocks will be provided, this introduces of course much more rigidity.

Comments to the structure chart:

verall archi r

The architecture is essentially flat, a very simple steering interpreter calling many
different modules. The steering interpreter does nothing else than interpret commands,
coming directly or indirectly from the user, by a call to the corresponding module.

A structuring is introduced dynamically : the user will normally address the system by
a compound command (macro) triggering a complete set of basic actions. These macros are

interpreted and one basic command after the other is sent to the steering interpreter to be
executed.

mman |
A command is of the form

VERB/QUALIFIERS ERET1, ..., ERE;, ...
following the well-known syntax of the Vax DCL. It consists of 3 parts:

- a verb, describing the action to be taken and being in correspondance either to a
basic module or to a macro

- qualifiers specifying parameters for the command or macro

- objects in the data structure that are addressed in the form of Entity Relationship
Expressions (ERE).

We should like to have exactly the same syntax in case the verb specifies a compound
action and not a basic one. We are presently studying the problem of propagating the
qualifiers and/or objects to the basic actions.

Program m |

The program modules that are represented in the structure chart are of different
types:

1) standard modules, used to perform service functions like "get event" and "histo
viewer". They correspond to basic commands.

2) graphics modules for the display of objects, for identifying graphical quantities or
changing the aspect of a display (draw, pick, viewing server).

3) user or analysis modules, shown by "Pi". They may be modules taken from the
reconstruction program (like fit of a track), or analysis modules , or anything the user
would like to integrate in this framework. In order to make this integration possible, a
minimum number of basic rules have to be observed. A module, not primarily written for
this framework, can be integrated by adding a small dialogue part which verifies the
presence of the necessary information and possibly interacts with the user to get it (see
appendix 2). The constraints for a module to be integrated in this framework will be
formulated in a later paper. All of them may call the basic service packages (dialogue
handler, EARL ,window manager and histogramming package) described below.

4) service packages . They consist of a set of routines that can be called from any of the
basic modules (user or standard ones). Their objectives are to get and digest the commands
of the user (dialogue handler), to address objects in the data structure (EARL), do
histogramming (Histo package), create windows and communicate with them (window
manager). " Create Macros" and "Line 10" are secondary to these service packages.

service packages:

- the dialogue handler gets the user command, of the form given above, for the
moment not by a menu but by simple command line input. It splits it up into its 3 parts (
verb, qualifiers and EREi), and stores it together with these 3 parts such that the module
addressed by the verb can get it. It knows the macro definitions and , in case the verb is a
macro, cracks it up into its components of verbs addressing directly the basic modules,
and delivers only one basic verb at a time. It handles as well the interpretation of the
qualifiers and translates them into a table of parameters delivered to the module
concerned. Since it knows the basic verbs, it can distinguish whether the command was
addressing the specific module or asking for activation of one of the other basic modules.
This is signalled by a special status flag, and the module has in this case to give control
back to the steering.

- the window manager may reserve a window on the screen for graphics and for text
I/0, such that each process can have its 1/0 in one or several separate windows. These
windows may be moved and their size and background may be altered.

- EARL is an interpreter of an entity relationship expression ERE. It allows the user
to address objects in the data structure by their relations and/or to formulate conditions
(e.g. "all clusters associated to a certain track" or "all tracks with momentum greater
than something"). Its output is the access to the object(s) chosen by the ERE.

- the histogram package is presently under study, in collaboration with the online
group.

References:

[1] Graphics Requirements Group (Bowdery, Brandt, Cordier, Drevermann,
Fernandez, Knobloch, Mermikides, Rolandi, Schlatter, Videau)

Requirements for a Graphics and Interactive Programming Environment

ALEPH 87-1, NOTE 1

Appendices:

(1) Structure chart of the entire framework .

(2) Data flow diagram showing the environment for a process to be integrated into this
framework .

(3) Entity-Relationship diagrams .

(4) Tentative Data Description.

Process names

Process Address s
Enable flag Steering Interpreter .
Status flag A + + + *
—||.||_ Get Histo
Pi Draw Event Viewer
mﬁo:ﬁ%
Az..
Status
< Histo
Macros Dialogue Handler {=—{@gp-| Window EARL Package
Create Line Viewing Pick
Macros 10 server ¢
GRAPHICS Authors: U.Berthon, S.Fisher, H.Videau . .
Version: 1 Reviewers:
Status: en cours d'étude .
Programme structure USM 16 janvier 87 Date:

APPENDIX 1

Current Selectors

?ﬂ/’
Ei,Ri

Ei,R

Pdrameters

Local conditi ons and
constants

Local Information
(print,Display)

>

Data

— -
General Histograms

Bookkeeping

GRAPHICS

Authors: H. Videau
Version: préliminaire

Environment of an event process

tatus:
Date: 17 décembre 86

Reviewers: S.Fisher

Date: 22/01/87

Data flow diagram

APPENDIX 2

APPENDIX 3

Remarks to help understanding the graphics
Entity-Relationship diagrams.

CONTEXT

The context shows the distinction between the structure of the data as they appear in the

reconstruction programme, the purely graphical structure and the package used to handle the
drawing: GKS.

DATA STRUCTURE

The data structure expressed in the diagram does not follow exactly the structure defined
for the reconstruction which is still not formalised entirely. This will be corrected in time and
what we give here is merely an example.The diagram exhibits a double structure due to the
geometry of the detectors and to the physics: for example the TPC coordinates belong to a
TPC sector and to a track.

The entity sets, having names ending with a // sign contain information, derived from the
main entities and therefore in one to one correspondance with them. This information is
needed for the graphical representation of the objects, for example:

TPC// expresses the TPC coordinates in different systems like x,y,z, p, 6,..

Track// contains the helix parameters plus the starting and stopping points needed to draw
the tracks.

GRAPHICS STRUCTURE

The Graphical Object makes the connection between the object (see Data Structure), its
Representation, its Aspect and the graphical Segments in which it will be drawn.It has for
attribute the level of detail with which you want to draw this object.

The Representation tells you how an object will be drawn. Example: a TPC coordinate
can be just a symbol or an error bar or both, a storey can be a dot or have its exact shape. It
tells you what primitives are used to draw it.

The Aspect is the choice of symbol, colour, etc.It connects to the GKS bundles. The
actual aspect is then handled at the level of the workstation.

The Views entity defines what type of view (2D or 3D) and the type of coordinates to
plot.

The Logical Segment regroups Graphical Objects to be treated as a whole. It may be
represented in more than one view. Its attributes contain the ones for a GKS segment: 1d,
dimension,visibility,detectability, highlighting,priority. It is associated to transformations
which can be performed on segments as a whole.

The Actual Segment is simply the relationship between Views and Logical Segments.
More than one Logical Segment can be on a view and a Logical Segment can be on more than
one view.

Mark Segment makes the relation between Graphical Object and Logical Segment. Its
fundamental attribute is the Pick Identification which is used to select an object by picking its
representation on the screen.

CONTEXT

Date: 4 janvier 1987

1. 2.

DATA STRUCTURE GRAPHICS STRUCTURE
T TTTTTr T m TS)
i !
'3, “
f]
“ GRAPHICS KERNEL S |
N]

GRAPHICS QMMMMMM HE -Videau Reviewers:

Status: current
0 Date:

Entity-Relationship diagram

Vertex Particle

|
-
| Track Cluster [p#| Cal_Object
>
A
T 3
+ 4 + - T T o »
Vertex detector 1C TPC EC HC
coordinates coordinates coordinates storeys storeys
MV // IC // TPC // ec ;| |€C| |HC /

/

T1f 1

Pt 2

in shadedthe detector structure

nnnnnnnnnnnnn - in white the physical one
GRAPHICS Authors: H.Videau . . .
x Version: example Reviewers: S.Fisher
tatus: .
1| DATA STRUCTURE Date: 4 janvier 1987 Pate: 22/01/87

Entity-Relationship diagram

” GKS \ | “
“ Primitives \ + GKS Viewport '
]]
] \
Ve o e » e ey uuu\uuutut’uuu\uﬂ
Representation | <@-— memwm ——~p Primitive Transformation Views —® Window
. Graphical |gg———v-——— : Actual
AlIOH Obiject MarkSegment —> WMmm%wwﬁ | Segment
| il 2t]
’]
! GKS “
' segment ,
" \
' '
]
Marker Line Fill Area Set Text it :
Aspect Aspect Aspect Aspect
o k P T T YT F ;
“ GKS GKS GKS GKS '
+ | PM Bundle PL Bundle F Bundle T Bundle '
! “
\\\ o
x GRAPHICS Authors: H.Videau .
Version: 1 Reviewers:
Status: current
2 GRAPHICS STRUCTURE Date: 4 janvier 1987 Date:

Entity-Relationship diagram

10

APPENDIX 4
Tentative Data Description

SUBSCHEMA Graphics

: 'This exhibits the entity-relationship structure of the graphics'

AUTHOR 'H.Videau'
VERSION '1'
DATE '8 decembre 1986

DEFINE ATTRIBUTE

Name = CH16
" a name of 16 characters maximum'

2

Length =REAL
:" length in cm'’

END ATTRIBUTE
DEFINE ESET

GraphicalObject
‘'defines a graphical object as a relation between a physical object,\
a graphical representation, aspect parameters and segments'
=(DetailLevel = INTE [1,4])

b

Representation
:'Type of graphical representation , ex: symbol,error bars,..\
will be filled when thorougly studied'
= (Name)

2

RepresPrimit
'many to many relationship between Primitives and Representation\
tells you what primitives are drawn to figure the object’

b

Primitive
:'This entity maps on the GKS entities '
=(Name)
SIZE 4,4

b4

MarkSegment
:'tells you what GraphicalObject belongs to what LogicalSegment'
=(PickId = INTE [1,*] : ' Pick identification")

2

LogicalSegment
:'decomposition of the picture in graphical segments not considering\
its appearance in different views, collection of GraphicalObjects'
=(ID = INTE :'identification’,
DI =INTE 2I3 : 'dimension 2 or 3',
VisFlag =LOGI : ' visibility flag',

11
DetFlag =LOGI :'detectability flag',

HiLight =LOGI : ' high lighting flag’,
Prior = INTE : ' priority")
ActualSegment

:'the graphical segments appearing in each particular view,it is in fact\
an entified relationship between view and LogicalSegment'

=(ExFlag =LOGI :'existence flag')
Views
:'the way we look at the objects'
=(ProjDim = INTE [2,3]: ' dimension of the projection’,
CoorChoice = INTE [1,*]: ' choice of coordinates')
Windows
:'Set of windows on the screen '
=(Posit (3) =Length :'Position of the window',
WinSize (3) = Length :'Size of the window',
BackCol =INTE :'Background colour’,
Title =CH32 :'Title',
Type =INTE :'Type,
Font = INTE : ' Font',
CharSize =INTE :'Character size',
CharSpace =INTE :'Character spacing',
Collnd = INTE : ' Colour index',
Status = INTE ;' Status’)
MarkerAspect
:' appearance of a marker associated to a GraphicalObject'
=(MarkType = = INTE [1,4]: ' marker type',
MarkSize =INTE : " marker size’',
Collnd = INTE [1,*]: ' colour index")
LineAspect
:'appearance of a line associated to a graphical object’
=(LineType = INTE [1,4]: ' line type',
LineSize = INTE : ' line size',
Collnd = INTE [1,*]: ' colour index")
FASAspect
:'appearance of a fill area set associated to a graphical object’
=(PatType = INTE [1,4]: ' pattern type’,
Collnd = INTE [1,*]: ' colour index")
TextAspect

:'appearance of a text associated to a graphical object’
=(TextString = CH16 : ' text string’,

Collnd = INTE [1,*]: ' colour index’,
Size = INTE ;' size,

Spacing =INTE :'spacing',

Font =INTE :'Font')

.
2

END ESET

12
DEFINE RSET

(GraphicalObject [1,1] -> [0,*] Representation)
: 'a graphical object has a representation’

b

(RepresPrimit [1,1] -> [1,*] Representation)

: 'a primitive may be used in more than one representation’
(RepresPrimit [1,1] -> [1,*] Primitives)

: 'a representation may use more than one primitive'
(MarkSegment [1,1] -> [1,*] GraphicalObject)

: 'a graphical object may belong to more than one segment'

2

(MarkSegment [1,1] -> [1,*] LogicalSegment)
: 'one segment may contain more than one object'
(ActualSegment [1,1] -> [1,*] LogicalSegment)

: 'the same logical segment seen in different views corresponds\
to different actual segments'

(ActualSegment [0,1] -> [0,*] Views)

: 'the same logical segment seen in different views corresponds\
to different actual segments'

(Views[1,1] -> [0,1] Windows)

: 'To a view is associated the Window in which it is represented’
(GraphicalObject [0,1] -> [1,*] MarkerAspect)

: 'a graphical object has an aspect for a composing marker '

2

(GraphicalObject [0,1] -> [1,*] LineAspect)
: 'a graphical object has an aspect for a composing line '

2

(GraphicalObject [0,1] -> [1,*] FASAspect)
: 'a graphical object has an aspect for a composing Fill Area Set '

2

(GraphicalObject [0,1] -> [1,*] TextAspect)
: 'a graphical object has an aspect for a composing text '

b

(GraphicalObject [0,1] -> [1,*] Parll
-> [1,*] Par2l
->[1,*] Par3
BY ObjectType)
: 'a graphical object is associated to an object in a parallel set'

b

END RSET
END SUBSCHEMA

	
	
	
	
	
	
	
	
	
	
	
	

