ALEPH 86 — 143
S.J. Wheeler
December 6, 1986
Distr: DATACQ/SOFTWR

A Database
Based on
BOS

Abstract
This document describes a number of subroutines which
have been written to enable tasks to store and retrieve banks
of constants from a direct access disk file. The package is
written in Fortran77 and uses the BOS memory management

system. The database package is available on all the ALEPH
VAXes at CERN.

BOS Database -1 - December 6, 1986

A Database
Based on
BOS
Author: S.J.Wheeler
Version of Document: 1.0
Revision date: 29 November 1986

Status: Version 1.0

BOS Database

December 6, 1986

1.

2.

3.

Contents

Introduction

Implementation details and Database Use

2.1 File Organisation

2.2 Naming Conventions
2.3 Include Files

2.4 Creating the Database
2.5 Using the Database

2.6 Linking Programs with the Database Package

2.7 Privileges needed
2.8 Limitations
2.9 Help !

The Routines

3.1 DBA_INIT_DATABASE

3.2 DBA_INIT_PACKAGE

3.3 DBA_DEFINE_NEW_BANK

3.4 DBA_DEFINE_BANK

3.5 DBA_INCLUDE_BANK

3.6 DBA_REPLACE_BANK

3.7 DBA_READ_SINGLE_BANK

3.8 DBA_LIST_ALL_BANKS

3.9 DBA_LIST NAMED_BANK

3.10 DBA_LIST_SINGLE_BANK
3.11 DBA_TOTAL_BANKS

3.12 DBA_LIST_HIGHEST_BANK
3.13 DBA_REMOVE_NAMED_BANK
3.14 DBA_REMOVE_SINGLE_BANK
3.15 DBA_GARBAGE_COLLECT
3.16 DBA_PUT_BANKS_ON_TAPE

ol lNe I BN B e e N B, B |

O

10
11
13
15
17
19
21
23
25
27
28
30
32
33
34

BOS Database -3 - December 6, 1986

Contents contd.

4, References 36

5. Appendix A Error Codes Returned by the Database Package 37

6. Appendix B An Example 39

BOS Database -4 — December 6, 1986

1. Introduction

This document describes a number of subroutines which have been written to enable
tasks to store and retrieve banks of constants from a direct access disk file. The package is
written in Fortran77 and uses the BOS memory management system (ref, 1) .

In the data acquisition system, it is necessary to have some form of temporary storage
system for sets of calibration constants produced by monitoring tasks before they are
written to tape. As the constants have to be written to tape in the form of BOS banks it was
decided that the direct access I/O facility of the BOS system would be the most convenient
method for storing the information. A description of this system may be found in Chapter 7
of reference 1. In addition, it is also useful to have a means of storing miscellaneous data,
for example run description information. By using the BOS direct access routines a
subroutine library has been written which will maintain a database of BOS banks on a direct
access file. The subroutines provide an interface between the user and the database.

It was decided that the following main functions were required of the interface, namely
the ability to write banks to the database, read banks from the database, remove banks from
the database, produce an index of banks on the database and write banks from the database
to tape. In addition to this, utility routines are required to initialise the database and perform
a garbage collection when necessary. Finally, the ability to maintain several different
databases was thought to be a desirable feature.

One problem that had to be resolved was how to allow simultaneous access to the
dataset by several different tasks at a time without :-

a) two jobs attempting to access the same record on the direct access dataset at the
same time

b) atask trying to read a set of banks from the database when a garbage collection
is taking place.

BOS provides a mechanism to prevent case a) whereby the dataset is reserved
temporarily for each task that wishes to access the dataset using the system records of the
dataset. However, this method is slow and can also be unreliable, there is no obvious
method in BOS to solve case b). Therefore, it was decided to use the VAX Lock Management
Facility of the VMS System Services (reference 2) to reserve access to the dataset, which not
only removes the danger of clashes between processes, but also speeds up the reservation

time considerably. The same system is used to prevent tasks from accessing the database

BOS Database -5 - December 6, 1986

when a garbage collection is in progress.
2. Implementation Details and Database Use

The database has already been installed on all the ALEPH VAXes (VXALFB, VXALBM,
VXALTP and VXALZO). However, the following notes will be useful for anyone wishing to
use the database or install the package on other VAX machines.

2.1 File Organisation

On each VAX the following directories have been created with the corresponding logical

names.
Physical Name Logical Name Contents

[ONLINE.DATABASE.SOURCE] A_DBAS$SRC Contains all the fortran source
files and include files for the
database package

[ONLINE.DATABASE.NODEB] A_DBAS$DIR Contains all the object files
and the object library for the
database

[ONLINE.DATABASE.MGR] A_DBASMGR Contains the help library for
the database package

2.2 Naming Conventions

The following convention has been adopted for the routine names used in the package

DBA_Action_Object

where DBA serves as a label to identify the routine as coming from the DataBAse package.
The second part of the name indicates the action being performed by the routine and the
final part is the object on which the action is performed e.g. DBA_DEFINE_BANK. In some
routines the object is divided into 2 parts e.g. DBA_LIST_ALL_BANKS. All the database
routines, may be found in the object library :—

A_DBASDIR:NEWDBA.OLB

BOS Database -6 — December 6, 1986

2.3 Include Files

All the routines described in this report may be called as INTEGER FUNCTIONS where the
value of the function is the status value returned from the routine. The possible status
values are defined in a parameter file which may be included in user routines as follows:-

INCLUDE 'A_DBAS$SRC:DBASSDEF.INC'

A list of all status codes included in this parameter file is given in Appendix A. The
codes may be used with the VAX/VMS Run Time Library routine LIB$SIGNAL. The names
of the routines themselves may be included in user routines as follows :-

INCLUDE 'A_DBAS$SRC:DATABASE.INC'

2.4 Creating the Database

In order to allow a variable number of databases, each database has to be assigned a
different logical unit number by which it can be identified and refered to. By default the
name of the database file will be FOROXX where XX is the logical unit number. If the user
wishes the file to have an alternative name it is necessary to define it using the DCL
command ASSIGN. For example :—

ASSIGN DISKS$USER:[USERID.DATABASEIMYDAT.DAT = FOR(040

associates the dataset name DISKSUSER:[USERID.DATABASE]MYDATA.DAT to logical unit
number 40. If the name assignment is to be system wide (that is if users with different UICS
are going to access the database) then the ASSIGN command has to be used with the
SYSTEM option and the user has to have the corresponding privilege to assign the logical
name.The ALEPH DAQ database has been assigned to logical unit 92 on the VXALFB,
VXALBM, VXALTP and VXALZO VAXes, the name of the database is:—
DISK$USER:[ONLINE.DATABASE]DATABASE.DAT

Once a name has been assigned the dataset may be created by running a job
incorporating the routine DBA_INIT_DATABASE described in section 3.1.1. An example of
such a job may be found in:—

A_DBASSRC:CREATE_DATABASE.FOR

BOS Database -7 — December 6, 1986

2.5 Using the Database

Once created the database may be used freely in the following manner. The user must
define in their program a BOS array 20000 words long with the following FORTRAN
statement:—

COMMON /BCS/ IW (20000)

This array is used by the database package. The first call to the package must be the
database initialisation routine DBA_INIT PACKAGE descibed in section 3.3.2. Once this has
been done, any of the other database routines may be called.

A simple example of how to use the database package routines is given in Appendix B.
Another example may be found in:—

A_DBASSRC:INQUIRE_DB.FOR
This uses the UPI user interface package to present the user with a menu from which they
can choose to LIST all the banks on the database, DUMP a bank from the database to the
terminal screen, INCLUDE a bank in the database, REMOVE a bank from the database or
REPLACE a bank on the database.The corresponding executable image may be found in:—

A_DBASDIR:INQUIRE_DB.EXE

2.6 Linking Programs with the Database Package

As mentioned earlier in section 2.2 all the database routines are contained in the object
library A_DBASDIR:NEWDBA.OLB. Since all the database routines use BOS it is necessary to
link this in addition. On VXALBM, VXALTP and VXALZO the BOS library may be found in
[ONLINE.BOSJJHBOS77.0LB. A link to 'CERNSLIBS' is also required.

On VXALFB the BOS library has now been installed as a sharable image. In order to link
it 2 option files are required:—

[ONLINE.BOS]BOS.OPT and

[ONLINE.BOS]BOS_COMMON.OPT
A link to 'CERNSLIBS' is not required.

BOS Database -8 - December 6, 1986

2.7 Privileges Needed

As mentioned earlier the VAX Lock system service is used to reserve access to the
database. Since the reservation in general has to be system wide, it is necessary for all
processes using the database package to have the SYSLCK privilege.

2.8 Limitations

There is no limit on the size of banks which can be saved on the database, or on the
number of banks which may be saved (the database is automatically extended if it becomes
full). There is no limit on the bank numbers of the banks saved on the database, provided
that the bank number is zero or a positive integer, negative bank numbers are used by the
database package itself.

2.9 Help !

A help library has been written which contains shortened versions of all the database
routine descriptions given in Section 3. It has been installed on each VAX and may be
accessed by typing HELP DBA. The help library itself may be found in:—

A_DBASMGR:DBA.HLB

BOS Database -9 — December 6, 1986

3. The Routines

All the routines used in the database package are described in this section.

3.1 DBA_INIT DATABASE.
DBA_INIT_DATABASE is used to ceate a new database.

FORMAT DBA_INIT_DATABASE lun_db
RETURNS type: longword(unsigned)
access: write only

mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference
Logical unit number of database to be created

DESCRIPTION If a new database is to be created then it is necessary to create the dataset
(after a logical unit has been assigned to it) using the above routine. This
routine needs only to be used once. It should not be used after the banks
have been added to the database since its effect is to erase everything on
the dataset. It is recommended that this routine is used in a separate job
only to be run before the database is used.The routine creates a dataset
with 150 records, each with length 1000 words.

N.B. This routine should be used with caution !

BOS Database

-10- December 6, 1986

3.2 DBA_INIT PACKAGE.
DBA_INIT_PACKAGE is used to open an existing database.

FORMAT

DBA_INIT_PACKAGE lun_db, lun_output

RETURNS

type: longword(unsigned)
access: write only
mechanism: by value

ARGUMENTS

lun_db

type: longword

access: read only

mechanism: by reference

Logical unit number of database to be opened
lun_output

type: longword

access: read only

mechanism: by reference

Logical unit number of file to which BOS output messages should be sent

DESCRIPTION

This routine initialises the BOS array which must have been defined in the
calling routine to be 20000 words long. The database on logical unit
number lun_db is opened. The output destination to which all BOS output
messages are sent is defined e.g. lun_output = 6 will result in all
messages being sent to the screen. BOS messages can be supressed by
setting lun_output to 0. The output destination is defined in the routine
by setting word 6 of the BOS array to the desired logical unit number. If,
for example, the user wishes to reenable output after they have set
lun_output to 0 then they have to do it by setting word 6 of the BOS
array directly. This routine must be called once by each process using the
database package before using any of the following routines, otherwise
they will all return the error code DBA_SS_NOT_INIT.

N.B. This routine is the same as the routine DBA_INIT described in the last
version of this document.

BOS Database —-11- December 6, 1986

3.3 DBA_DEFINE NEW_BANK.

DBA_DEFINE_NEW_BANK is suitable for defining a new bank, which does not already exist on
the database.

FORMAT DBA_DEFINE_NEW_BANK lun_db, bank_name,
bank_number, bank_length,
bank_index

RETURNS type: Iongword(unsigned)

access: write only

mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference
Logical unit number of database on which bank is to be stored eventually
bank_name

type: character string
access: read only
mechanism: by descriptor
Name of bank to be defined
bank_number

type: longword
access: read only
mechanism: by reference
Number of bank to be defined
bank_length

type: longword
access: read only
mechanism: by reference
Length of bank to be defined

BOS Database 12— December 6, 1986
bank_index
type: longword
access: write only

mechanism: by reference
Index of defined bank in calling routine's BOS array

DESCRIPTION

Defines the bank with specified bank_name, bank_number and
bank_length in the calling routine's BOS array. The index of the bank is
returned as bank_index. If the bank already exists on the database then

the bank is not defined and an error code is returned as the function value.

BOS Database —-13- December 6, 1986

3.4 DBA_DEFINE_BANK.

DBA_DEFINE_BANK is suitable for defining a bank which already exists on the database and the
user wishes to replace.

FORMAT DBA_DEFINE_BANK lun_db, bank_name,
input_length, bank_number,
output_length, bank_index

RETURNS type: longword(unsigned)
access: write only
mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference
Logical unit number of database on which bank is to be stored eventually

bank_name
type: character string
access: read only

mechanism: by descriptor

Name of bank to be defined
input_length

type: longword

access: read only
mechanism: by reference
Desired length of bank to be defined
bank_number

type: longword

access: write only
mechanism: by reference
Number assigned to the defined bank

BOS Database

—14— December 6, 1986

output_length

type: longword

access: write only
mechanism: by reference

Length assigned to the defined bank

bank_index
type: longword
access: write only

mechanism: by reference
Index of defined bank in the calling routine's BOS array

DESCRIPTION

Defines a bank with the given bank_name in the calling program's BOS
array. The bank number is defined to be equal to the highest bank number
for that name on the disk. If the name does not exist, then bank_number
is set to 1. If the bank already exists on disk then a check is made to see if
input_length is the same as the length for the bank on disk. If the
lengths are not the same then the bank is defined with the same length as
the bank already saved and this is returned in the output_length
argument. In which case the error code DBA_SS_LENGTH_CHANGED is
returned as the function value. The bank index is returned as
bank_index.

BOS Database —15- December 6, 1986

3.5 DBA_INCLUDE_BANK.

DBA_INCLUDE_BANK is suitable for adding banks to the database if the user does not wish to
overwrite previous versions of the bank.

FORMAT DBA_INCLUDE_BANK lun_db, bank_name,
bank_number [,bank_format]

RETURNS type: longword(unsigned)
access: write only
mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference
Logical unit number of database on which bank is to be stored
bank_name

type: character string
access: read only
mechanism: by descriptor
Name of bank to be stored
bank_number

type: longword
access: read only

mechanism: by reference
Number of bank to be stored

bank_format
type: character string
access: read only

mechanism: by descriptor
Format of bank to be stored. If omitted bank is stored with integer format.

BOS Database

—16— December 6, 1986

DESCRIPTION

This routine stores the specified bank on the database. An optional bank
format up to 40 characters long may be specified for the bank. A
description of the structure of bank format strings may be found in section
3.3 of reference 1. The routine does not store the bank if an error
condition is detected. For example it does not store the bank if it already
exists on the dataset (DBA_REPLACE_BANK needs to be used if this
function is required). Checks are made to see that the bank has been
defined by the calling routine and that the bank number is valid.An
automatic garbage collection is called if the database is full. The routine
waits until the garbage collection has completed and then saves the bank.
The bank is not dropped from the calling routine's BOS array once it has
been added to the database.

Note: If a bank format has been specified the format is saved by the
routine in the following manner. A bank is defined with the same name
as the bank to be saved and bank number = — (bank_number + 1). The
format string is written into the bank and then the bank is saved on the
database.

BOS Database —-17- December 6, 1986

3.6 DBA_REPLACE_BANK.
DBA_REPLACE_BANK is suitable for adding or replacing banks on the database.

FORMAT DBA_REPLACE_BANK lun_db, bank_name,

bank_number [,bank_format]

RETURNS type: longword(unsigned)
access: write only
mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference
Logical unit number of database on which bank is to be replaced
bank_name

type: character string
access: read only
mechanism: by descriptor
Name of bank to be replaced
bank_number

type: longword
access: read only
mechanism: by reference
Number of bank to be replaced

bank_format
type: character string
access: read only

mechanism: by descriptor

Format of bank to be replaced. If omitted bank is stored with integer
format if it does not already exist, otherwise it is stored with the format of
the bank it replaces

BOS Database

—-18— December 6, 1986

DESCRIPTION

This routine writes a bank with the given name and number to the
database overwriting any bank with exactly the same specifications. An
optional bank format, up to 40 characters long may be specified. If a bank
of the same name and number already exists on the database, but has a
different length then that bank is deleted from the dataset and the new bank
is added to the last free record of the dataset. If an error condition is
detected then the bank is not written to the dataset. The bank is not deleted
from the calling routine's BOS array once it has been written to the
database. An automatic garbage collection is called if the database becomes
full.

Note: If the optional bank format is specified the format will be saved in
the same way as for DBA_INCLUDE_BANK. This means that if a new

format is specified for the bank to be replaced it will overwrite the old
format.

BOS Database —19- December 6, 1986

3.7 DBA_READ_SINGLE_ BANK.
DBA_READ_SINGLE_BANK should be used to retrieve banks from the database.

FORMAT DBA_READ_SINGLE_BANK lun_db, bank_name,
bank_number, bank_index,
flag

RETURNS type: longword(unsigned)

access: write only
mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference
Logical unit number of database from which bank is to be read

bank_name
type: character string
access: read only

mechanism: by descriptor
Name of bank to be read
bank_number

type: longword
access: read only
mechanism: by reference
Number of bank to be read
bank_index

type: longword
access: write only
mechanism: by reference

Index of bank in calling routine's BOS array

BOS Database —20- December 6, 1986
flag
type: longword
access: write only

mechanism: by reference
Flag set to 1 if bank exists on database, set to O if it does not

DESCRIPTION

This routine reads the bank of the given name and number from the
database into the calling routine's BOS array. It returns the index of the
bank as bank_index. If a bank format has been defined for the bank this
is retrieved and redefined for the bank using a call to the BOS routine
BKFMT. The flag is set to 1 or O depending on whether the bank exists or
does not exist on the dataset.

BOS Database —21- December 6, 1986

3.8 DBA_LIST_ALL_BANKS.
DBA_LIST_ALL_BANKS may be used to obtain lists of the names, numbers and lengths of banks
stored on the database.

FORMAT DBA_LIST_ALL_BANKS lun_db, maximum,
name_array, number_array,
length_array, total

RETURNS type: longword(unsigned)
access: write only
mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference
Logical unit number of database on which banks to be listed are stored.

maximum
type: longword
access: read only

mechanism: by reference

Maximum number of banks to be listed

name_array

type: character string

access: write only

mechanism: by descriptor, array reference

Array containing the names of the banks on the database
number_array

type: longword

access: write only

mechanism: by reference, array reference

Array containing the numbers of the banks on the database

BOS Database

—22— December 6, 1986

length_array

type: longword

access: write only

mechanism: by reference, array reference

Array containing the lengths of the banks on the database
total

type: longword

access: write only

mechanism: by reference

Total number of banks listed

DESCRIPTION

Returns the names (in alphabetical order), numbers and lengths of all the
banks on the database along with the total number of banks up to a
maximum defined by the maximum argument which may be any
positive integer. The arrays for the names, numbers and lengths in the the
calling routine should be defined to be equal to or larger than maximum.
If there are more than maximum banks on disk the error code
DBA_SS_TOO_MANY_BANKS is returned as the function value.

BOS Database ~23— December 6, 1986

3.9 DBA_LIST_NAMED_BANK.

DBA_LIST_NAMED_BANK may be used to obtain a list of bank numbers and bank lengths for a
given bank name saved on the database.

FORMAT DBA_LIST_NAMED BANK lun_db, maximum,
bank_name, number_array,
length_array, total

RETURNS type: longword(unsigned)
access: write only

mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference

Logical unit number of database on which banks to be listed are stored

maximum
type: longword
access: read only

mechanism: by reference
Maximum number of banks to be listed
bank_name

type: character string
access: read only

mechanism: by descriptor

Name of bank bank to be listed
number_array

type: longword

access: write only

mechanism: by reference, array reference

Array containing the bank numbers of banks with the same name on the
database

BOS Database

—24— December 6, 1986

length_array

type: longword

access: write only

mechanism: by reference, array reference

Array containing the bank lengths of banks with the same name on the
database

total
type: longword
access: write only

mechanism: by reference
Total number of banks with the same name listed

DESCRIPTION

Returns the numbers (in numerical order) and lengths of all the banks on
the specified database with the same name up to a maximum defined by
the maximum argument. If there are more than banks than the specified
maximum on the dataset with the same name the error code
DBA_SS_TOO_MANY_BANKS is returned as the function value.

BOS Database —-25- December 6, 1986

3.10 DBA_LIST_SINGLE_BANK.
DBA_LIST_SINGLE_BANK may be used to search the database for a specific bank.

FORMAT DBA_LIST_SINGLE_BANK lun_db, bank_name,
bank_number, bank_length,
flag

RETURNS type: longword(unsigned)

access: write only
mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference

Logical unit number of database on which banks to be listed are stored

bank_name
type: character string
access: read only

mechanism: by descriptor
Name of bank to be searched for
bank_number

type: longword

access: read only
mechanism: by reference
Number of bank to be searched for
bank_length

type: longword

access: write only
mechanism: by reference
Length of bank if found

BOS Database -26— December 6, 1986

flag
type: longword
access: write only

mechanism: by reference
Flag set to 1 if bank found on database, set to 0 if bank not found

DESCRIPTION This routine searches the dataset for the bank with the specified name and

number. If found it returns the length of the bank and sets flag to 1. If not
found flag is set to 0.

BOS Database

—27- December 6, 1986

3.11 DBA_TOTAL_BANKS.
DBA_TOTAL_BANKS may be used to find the total number of banks saved on a database.

FORMAT DBA_TOTAL_BANKS lun_db, total
RETURNS type: longword(unsigned)
access: write only
mechanism: by value
ARGUMENTS lun_db
type: longword
access: read only
mechanism: by reference
Logical unit number of database for which total number of banks is to be
found
total
type: longword
access: write only
mechanism: by reference
Total number of banks on the database
DESCRIPTION This routine returns the total number of banks stored on the specified

database. It should be noted that all banks are in the total, including banks
used by the database package itself (i.e. banks with numbers less than
ZEr0).

BOS Database —28— December 6, 1986

3.12 DBA_LIST_HIGHEST BANK.

DBA_LIST_HIGHEST_BANK may be used to find the highest bank number for the given bank
name on the database.

FORMAT DBA_LIST_HIGHEST_BANK Iun_db, bank name,
bank_number, bank_length

RETURNS type: longword(unsigned)
access: write only
mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference
Logical unit number of database to be searched

bank_name
type: character string
access: read only

mechanism: by descriptor

Name of bank for which highest number is to be found
bank_number

type: longword

access: write only
mechanism: by reference

Highest bank number for given name
bank_length

type: longword

access: write only
mechanism: by reference

Length of bank with highest number

BOS Database —-29— December 6, 1986

DESCRIPTION This routine finds the the highest bank number for the given name. In
addition to the number it returns the length of the bank with the highest

bank number.

BOS Database -30-— December 6, 1986

3.13 DBA_REMOVE_NAMED BANK.

DBA_REMOVE_NAMED_BANK may be used to remove a set of banks with the same name from
the database.

FORMAT DBA_REMOVE_NAMED BANK lun_db, maximum,
bank_name, total

RETURNS type: longword(unsigned)
access: write only
mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference

Logical unit number of database from which banks are to be removed

maximum
type: longword
access: read only

mechanism: by reference
Maximum number of banks to be removed

name
type: character string
access: read only

mechanism: by descriptor
Name of banks to be removed

total
type: longword
access: write only

mechanism: by reference
Total number of banks removed

BOS Database -31- December 6, 1986

DESCRIPTION Deletes all banks of the same name from the database up to a maximum
defined by maximum. If there are more than maximum banks of the
same name on the database the error code DBA_SS_TOO_MANY_BANKS is
returned as the function value.

BOS Database -32— December 6, 1986

3.14 DBA_REMOVE_SINGLE_BANK.
DBA_REMOVE_SINGLE_BANK may be used to remove a specified bank from the database.

FORMAT DBA_REMOVE_SINGLE_BANK lun_db, bank name,
bank_number
RETURNS type: longword(unsigned)
access: write only

mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference

Logical unit number of database from which bank is to be removed

bank_name
type: character string
access: read only

mechanism: by descriptor
Name of bank to be removed
bank_number

type: longword
access: read only
mechanism: by reference

Number of bank to be removed

DESCRIPTION This routine removes the specified bank from the dataset (if the bank

exists). An error code is returned as the function value if the bank does not
exist.

BOS Database

—33-— December 6, 1986

3.15 DBA_GARBAGE_COLLECT.
DBA_GARBAGE_COLLECT may be used to garbage collect the database.Since BOS does not
reuse the space obtained by deleting banks from the direct access dataset it is necessary to

perform occasional garbage collections on the dataset in order to regain the unused space.

FORMAT

DBA_GARBAGE_COLLECT lun_db

RETURNS

type: longword(unsigned)
access: write only
mechanism: by value

ARGUMENTS

lun_db

type: longword

access: read only

mechanism: by reference

Logical unit number of database to be garbage collected

DESCRIPTION

This routine performs a garbage collection on the database specified by
lun_db. All the banks on the dataset are copied to a sequential dataset on
logical unit number 91.The dataset is then reinitialised to remove all the
old banks and the size increased if it was found to be completely full. The
banks are copied back from the sequential dataset onto the database dataset
and the sequential dataset is deleted. No other process is able to access the
database whilst a garbage collection is taking place.
N.B. The garbage collection procedure takes a long time, therefore it
should be used as little as possible. For this reason the dataset created on
the VAX to hold the database, is large (it is capable of storing approx.
12000 words of BOS bank data). Secondly, it is better to use the
DBA_REPLACE_BANK routine if a bank is to be replaced on the dataset
rather than to delete the old bank (using DBA_DELETE_SINGLE_BANK)

and then add the new one (using DBA_INCLUDE_BANK). The reason for
this is that the REPLACE routine overwrites the old record in the database
whereas the INCLUDE routine will add the bank to the first unused record,
even if there are previous records which are empty because banks have
been removed from them.

BOS Database —34— December 6, 1986

3.16 DBA_PUT_BANKS_ON_TAPE.
DBA_PUT_BANKS_ON_TAPE does not write banks directly to tape but sends a message, using

the UPI message facility (reference 3), to the tape task telling it which banks to read from the
database and write to tape.

FORMAT DBA_PUT_BANKS_ON_TAPE lun_db, number_banks,
bank names,

bank numbers

RETURNS type: longword(unsigned)
access: write only
mechanism: by value

ARGUMENTS lun_db
type: longword
access: read only

mechanism: by reference

Logical unit number of database on which banks to be written are stored
number_banks

type: longword

access: read only

mechanism: by reference

Number of banks to be written to tape
bank_names

type: character string

access: read only

mechanism: by descriptor, array reference
Array of bank names to be written to tape
bank_numbers

type: longword

access: read only

mechanism: by reference, array reference
Corresponding array of bank numbers to be written

BOS Database

—35- December 6, 1986

DESCRIPTION

This routine constructs a message to be sent to the tape task containing a
list of the names and numbers of banks the user wishes to be written to
tape. The message is in the form of a character string and is equivalenced
to an integer message_buffer array. The message_buffer has the following

structure:-

MSG_BUFFER(1) = 'DTB' flag word to indicate this is a
message from the database
package

MSG_BUFFER(2) = NUMBER_BANKS total number of banks to be
written

MSG_BUFFER(3) = LUN_DB logical unit number of
database

MSG_BUFFER(4) = BANK1_NAME name of first bank

MSG_BUFFER(5) = BANK1_NUMBER number of first bank

MSG_BUFFER(N) = 0 flag to indicate end of list

Before writing the name and number into the list a check is made to see
that the data acquisition tape task is active.

Note: This routine is the same as EVIO_ PUT_DBA_BANKS_ON_TAPE.

BOS Database —-36— December 6, 1986

4. References

1. The BOS System — Volker Blobel ALEPH 86-62

2. VAX/VMS Volume 5A System Services

3. User Interface Package — C.Arnault, J.Bourotte, A.Lacourt ALEPH 86-27

BOS Database -37- December 6, 1986

S.Appendix A. Completion Codes Returned by the Database Package
A.1 Normal Completion

DBA_SS NORMAL
Routine has completed successfully

A.2 Error Detected

DBA_SS BANK_NOT_DEFINED

An attempt has been made to store a bank which has not been defined in the calling
routine's BOS array

DBA_SS BANK_ALREADY THERE

An attempt has been made to define or store a bank which is already on the database

DBA_SS_BANK _NOT_THERE

An attempt has been made to list or delete a bank on the dataset which is not there

DBA_SS_TOO_MANY_BANKS

There are more banks saved on the database than the maximum defined by the list and
delete routines

DBA_SS_INVALID NUMBER

An attempt has been made to define, add, delete, or list a bank with bank number less than
Zero

DBA_SS_LENGTH_DIFFERENT

Either: a bank has been defined with a length different to that given in the calling
sequence

Or: a bank has been replaced on the database with length different to that for the last
bank saved with the same name

DBA_SS_LOCKED
The database is locked by another user

BOS Database —38— December 6, 1986

A.3 Severe Error Detected

DBA_SS_ARRAY TOO_SMALL
A bank cannot be defined or read because the calling routine's BOS array is too small

DBA_SS _NOT_INIT

An attempt has been made to call the database access routines without first calling
DBA_INIT_PACKAGE

BOS Database -39 December 6, 1986

6.Appendix B An Example

PROGRAM EXAMPLE
IMPLICIT NONE
INCLUDE 'A_DBASDIR:DATABASE.INC'
C
C DEFINE BOS ARRAY
C
COMMON/BCS/TW (20000)
INTEGER STATUS, NUMBER, OUTPUT_LENGTH, INDEX
INTEGER NAMES(500),NUMBERS(500), WORDS(500)
INTEGER N_BANKS
INTEGER BANK_NAMES (6)
INTEGER BANK_NUMBERS (6)
INTEGER TOTAL
INTEGER INPUT_LENGTH
C
C INITIALISE DATABASE
C
STATUS = DBA_INIT (92,0)
C
C DEFINE BANK
C
INPUT_LENGTH = 40
STATUS = DBA_DEFINE_BANK
+ (92, FRED',INPUT_LENGTH,NUMBER,OUTPUT_LENGTH,INDEX)
C
C FILL WITH DATA
C

IW (INDEX + 1) = 1
IW (INDEX +2) =2
IW (INDEX + 3) =3

BOS Database —40— December 6, 1986

C
C SAVE ON DATABASE
C
STATUS = DBA_REPLACE_BANK (92, 'FRED', NUMBER)
C

C DEFINE BANK WITH NBANK, WITH NUMBER =99 AND LENGTH = 400
C

STATUS = DBA_DEFINE_NEW_BANK (92, 'BILL', 99, 400, INDEX)

C
C ADD TO DATABASE SPECIFYING A FORMAT
C
STATUS = DBA_INCLUDE_BANK (92, 'BILL', 99, 2LA,(F)"
C
C LIST BANKS
C
STATUS = DBA_LIST_ALL_BANKS
+ (92, 100, NAMES, NUMBERS, WORDS, TOTAL)
DOI=1,TOTAL
TYPE *, 'NAME '\NAMES (I),NUMBER',NUMBERS(I)
END DO
C

C SEND MESSAGE REQUESTING 'FRED' AND 'BILL' TO BE WRITTEN TO TAPE
C

N_BANKS =2

BANK_NAMES (1) = 'FRED'
BANK_NUMBERS (1) = NUMBER
BANK_NAMES (2) = BILL'
BANK_NUMBERS (2) =99

STATUS =DBA_WRITE_BANKS_TO_TAPE

+ (N_BANKS,BANK_NAMES,BANKS_NUMBERS)
C
CREMOVE BANK 'BILL' FROM THE DATABASE
C

STATUS = DBA_REMOVE_SINGLE_BANK (92, 'BILL', 99)

BOS Database —41- December 6, 1986

C
C GARBAGE COLLECT THE DATABASE
C
STATUS = DBA_GARBAGE_COLLECT (92)

END

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

