CERN Accelerating science

000802342 001__ 802342
000802342 003__ SzGeCERN
000802342 005__ 20151106224149.0
000802342 0247_ $$2DOI$$a10.1016/j.nima.2003.11.069
000802342 0248_ $$aoai:cds.cern.ch:802342$$pcerncds:CERN
000802342 035__ $$9CERN annual report$$a2004-3.1314
000802342 035__ $$9Inspire$$a648147
000802342 041__ $$aeng
000802342 100__ $$aManfredi, P F
000802342 245__ $$aThe readout of the LHC beam luminosity monitor$$bAccurate shower energy measurements at a 40 MHz repetition rate
000802342 260__ $$c2004
000802342 520__ $$aThe LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.
000802342 595__ $$aSIS INSP2004
000802342 595__ $$iE200407-8017277 (Compendex)
000802342 65017 $$2SzGeCERN$$aParticle Physics
000802342 690C_ $$aARTICLE
000802342 690C_ $$aCERN
000802342 693__ $$aCERN LHC$$eXX
000802342 695__ $$9INSPEC$$aParticle-beams
000802342 695__ $$9INSPEC$$aBeam-luminosity-characterization
000802342 695__ $$9INSPEC$$aDeconvolution-algorithms
000802342 695__ $$9INSPEC$$aRadiation-detectors
000802342 695__ $$9INSPEC$$aColliding-beam-accelerators
000802342 695__ $$9INSPEC$$aionizing-radiation; dosimetry
000802342 695__ $$9INSPEC$$aSignal-processing
000802342 695__ $$9INSPEC$$aSpurious-signal-noise
000802342 695__ $$9INSPEC$$aRadiation- hardening
000802342 695__ $$9INSPEC$$aElectrons
000802342 695__ $$9INSPEC$$aElectric-charge
000802342 695__ $$9INSPEC$$aCapacitance
000802342 695__ $$9INSPEC$$aElectric- currents
000802342 695__ $$9INSPEC$$aalgorithms
000802342 695__ $$9INSPEC$$a932-1, 944-7, 932-1-1, 944-8, 716-1, 921
000802342 700__ $$aRatti, L
000802342 700__ $$aSpeziali, V
000802342 700__ $$aTraversi, G
000802342 700__ $$aManghisoni, M
000802342 700__ $$aRe, V
000802342 700__ $$aDenes, P
000802342 700__ $$aPlacidi, Massimo
000802342 700__ $$aRatti, A
000802342 700__ $$aTurner, W C
000802342 700__ $$aDatte, P S
000802342 700__ $$aMillaud, J E
000802342 710__ $$5AB
000802342 773__ $$c501-506$$pNucl. Instrum. Methods Phys. Res., A$$v518$$y2004
000802342 901__ $$uLawrence Berkeley Natl. Laboratory, Berkeley, CA 94720, United States
000802342 916__ $$sn$$w200400$$ya2004
000802342 960__ $$a13
000802342 961__ $$c20090915$$h1902$$lCER01$$x20041109
000802342 963__ $$aPUBLIC
000802342 970__ $$a002491269CER
000802342 980__ $$aARTICLE