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ABSTRACT

We revisit the cubic interaction of 1IB string theory in thearimally supersymmetric pp-wave
background. In the supergravity limit, we show that dethtemparison with AdS supergravity
determine the vertex completely. Extension of this suetigy vertex to the full string theory leads
to a new cubic vertex that combines the previous proposalsantains additional terms. We give
an alternative derivation of the holographic duality mapupergravity, first found by Dobashi and
Yoneya (hep-th/0406225) and show that our new vertex isistam with it. We compare some
non-BPS amplitudes (including impurity non-preserving®ywith the corresponding field theory
correlators, and discuss what they imply for the stringyagalization of the duality map. We also
notice that our vertex realizes th& 1), symmetry linearly, and propose a similar modification for
the flat space vertex.
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1 Introduction

The BMN duality [1] has drawn a lot of attention for the pasbtyears, largely because it opened
up a systematic way to test the AAS/CFT correspondence fBgaitring level. The most striking
discovery was that the tree-level string spectrum [3, 4hsrhaximally supersymmetric pp-wave
background [5, 6] matches exactly (that is, to all orderdhat’-expansion), a particular class of
N = 4 super Yang-Mills operators [1]. Since then, much effort basn made to understand how
the string interactions (non-zerp) fit into the duality. In spite of many important works in the
literaturé, the problem has not been fully solved yet. The goal of thisepas to report some
progress on this subject.

The simplest type of string interaction is the cubic intéiag in which two strings join to form
a single string or vice versa. There are three crucial issaeserning the cubic interaction in the
pp-wave duality.

1. Construction of the cubic vertex.

The string theory in the pp-wave is formulated in terms of @reen-Schwarz superstring
in the light-cone gauge. In this set-up, thetring vertex is given by the cubic part of the
light-cone Hamiltonian. The vertex is usually construdbydmposing the super-symmetry
constraints. However, unlike in flat-space, the constsadotnot completely fix the pp-wave
vertex.

2. Holographic duality map.

Once the cubic Hamiltonian is known, one can compute itsimnatements and obtain the
coupling among three arbitrary string states. On the Yarigs8ide, the natural observable
is the coefficient of the (normalized) cubic correlator. Taka the comparison between
these two observables, one needs a duality map, which mosthsaw ‘know’ about the
holography underlying the original AAS/CFT corresponaenc

3. Choice of basis (Operator mixing)

It is important to understand how the string and the Yandgd\Hlilbert spaces are mapped
to each other. While the matching of the free spectra focos®sly on the eigenvalues of
the physical observables, the duality map for the cubic&at®n tests in a much stronger
way the dictionary between string and gauge theory states.

In this paper, we will discuss some new findings and consid&son these three points.
Spradlin and Volovich [13, 14] made the first proposal for ¢hbic vertex, which was further

elaborated in [15, 16, 17, 18]. Aside from satisfying thevipgoe super-algebra, the SV vertex has
1See the review papers 7, 8, 9, 10, 11, 12] for a detaileddaibdiphy.
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two features: (a) it has definite parity under the accideBtasymmetry that exchanges the two
manifestSO(4) symmetry groups (the parity is odd in the conventions whieeevacuum i<,
invariant), (b) it has a smooth ‘flat space’ limit. Before tpgestion of whether these features are
compatible with the putative duality map was answered, fa@rgphysically different vertex was
proposed in [19, 20, 21]. This vertex satisfies the same pge\waper-algebra, but does not share
the above-mentioned features: (a) it has opposite parieiutiheZ,, (b) as a consequence of this
parity property, it does not have a smooth ‘flat space’ limit.

Which one of the two vertices is the correct one? In fact,esthe constraint from super-algebra
essentially gives a set of linear differential equatiohs, ight question would be “Which linear
combination of the two is the correct one?” Moreover, thegyraven exist other independent
solutions to the super-algebra equations, ending up withuléi-aimensional space of candidate
vertices.

Clearly, to resolve the situation, one has to understaniéibkdow holography works in the
pp-wave. Among others, Yoneya and collaborators have pdréuis line of thought systemat-
ically [22, 23]. Recently, in [24], they derived an explitiblographic duality map for the su-
pergravity sector of the pp-wave string theory by taking skeni-classical limit of the GKPW
relation [25, 26] in AdS/CFT. This map led them to concludat tihe correct vertex is a particular
linear combination of the two vertices introduced abovechhireaks theZ, symmetry ‘maxi-
mally’.

In this paper, we first re-derive the same duality map fromraesehat different perspective,
following the idea which first appeared in [27]. Then, we takedoser look at what it implies for
the cubic vertex. Among other things, we pay attention tolflie),- symmetry of supergravity
as well as the matrix elements of the super-descendant® ahihal primary state. We find that
the proposal of [24] should be further modified to includeethnew terms similar to the second
vertex mentioned above, in order for the duality map to h&dir derivation indicates that this
vertex is the unique one compatible with the duality mafalgh a rigorous proof is not yet
available. Finally, we discuss how to extend the duality naeihe full string theory. Suggestive as
our computation of stringy amplitudes are, the final answeenss to require more work including
sub-leading order computations in Yang-Mills.

This paper is organized as follows. Sections 2 and 3 focusipargravity (or BPS) processes.
Section 2 contains the derivation of the holographic dyatiap. In section 3, we first derive a
number of Ad$ x S° 3-point couplings and study their largelimit. Then we discuss th&(1)y
symmetry of type IIB supergravity and use it as an additiamadstraint on the pp-wave cubic
vertex. A unique answer for this vertex is obtained by raqgithat it reproduce the largé limit
of the previously derived AdS« S° 3-point couplings. In section 4, we go beyond the supergyavit
sector and study the cubic interaction among generic ssteitgs. In our construction, we demand



that the zero-mode structure of the string vertex reprodineesupergravity results derived in the
previous section. By combining the known vertices and atkiirgy some new terms, we present
a consistent proposal for the holograpBistring vertex. In order to test its validity, we compute
some stringy amplitudes and compare them against the fietwhthresults by using the simplest
generalization to the full string theory of the duality m&gction 5 contains our conclusions along
with a discussion of possible future directions.

2 Holography in supergravity

The holographic duality map in the supergravity sector camldrived in two simple stepsThe
first step is to note that the interaction part of the pp-waeenHtonian is equal to that of the
original AdS geometry in the Penrose limit. This relatiomdt restricted to the BPS sector, but
should hold even for the full string theory. The second stdp relate the AdS Hamiltonian to the
coefficients of the gauge theory correlators via the GKP\Atiah in supergravity [25, 26]. This is
possible since both quantities can be obtained from the #&sepergravity action on AdSx S°.

2.1 From AdSto pp-wave

The first step is a direct consequence of the standard AdSADHTpp-wave dictionaries. In the
following table, we summarize in the first two columns the pemameters that define each theory
and define the dimensionless Hamiltonians in the third calum

YM-loop / stringy effect genus / string loop Hamiltonian
AdS A= gy N = (Raas/ls)* 1/N HAS) = R 5P
PP X =gty N/J?=1/(wpa')?  go=J?/N H"Y =P, /p

Since the pp-wave theory describes the dynamics of;AdS? in the Penrose limit/, J — oo,
keeping\’ andg, fixed), then the two Hamiltonians must be the same in thist Jiexicept for the
shift by .J, which changes only thieee part:

lim {HAS(N1/N)—J} = HFP(N go) |. (2.1)

Penrose

In passing, we should emphasize that the mass gcaehe pp-wave has absolutely no physical
meaning. The expressions such as— 0’ or ‘;x — oo’ often found in the literature should be

interpreted as larg®’ and small\, respectively. In particular, the bona-fide flat spgee=( 0)

is not related to they — 0’ limit of the pp-wave. If the two were smoothly connectede th

2The main ideas of this section were first discussed in a larsteting in the appendix of Ref. [27].
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BMN duality would imply a holographic relation between II1Bisg theory in flat space and a very
strongly coupled gauge theory. Of course, some ingred(@tsexample, the Neumann matrix) of
the pp-wave Hamiltonian formally have a smogth- 0 limit. However, as we will see in the next
section, the cubic Hamiltonian contains pieces which neatly break symmetries of flat space.
Discontinuity of the 1 — 0’ limit has been recently noticed also in [28], where the &ditys
properties of the pp-wave string theory are studied.

Note also that we are taking the Penrose limit on the AdS Hamdan. This is to be contrasted
with the approach of [29], where the Hamiltonian is compudedctly in the pp-wave geometry.

2.2 Hamiltonian vs. Correlator

Now we move on to the second step of the derivation. Suppodeawe primary operatord;(x)
in a CFT; and the corresponding scalar fieldsliving in AdS,,,). Assume that the bulk action
takes the standard form,

1

1 .
S=- /dd“w—g [§(V¢2)2 +5mi(¢) + GUW o " (2.2)

where the AdS mass af; and the scaling dimension @6J; are related byn? = A(A — d/2).
The superscript id:¢,, is to stress that in this section we are working with candlyiceormalized
fields.

There are two things we can do with this action. First, we campute in supergravity the
normalized 3-point correlators following [26, 30],

ijk

C
(O1(21)O2(22)O03(x3)) = PR _1;2‘251‘x3 — (2.3)
Gs : L(8,
O = gemran > 11 ({P(Ar i i)r(&)}lﬂ) Mo —d),  @24)

r=1

wheres = (A1+As+A3)/2, 3. = 0—A,.. Second, we can canonically quantize the free part of the
action and read off the matrix elements of the cubic Hami#tonAs usual, canonical quantization
associates a harmonic oscillator to each normalizabldisnlto the free field equation of motion.
For a real scalar in AdS, the expansion takes the followimgfo

< emimt leeimmt) , (2.5)

Zm

wheret is the global time and denotes the spatial coordinates in the metric,

ds* = (—dt* + d#* + sin® 0dQ;_,) . (2.6)

cos? 6



In (2.5), the index in runs over all solutions, anfl(z) are the spatial part of the solutions. The
excitation number; is zero for the ground state and is a positive integer fortegcstates. The
matrix elements of the cubic Hamiltonian can be read off $yy inserting (2.5) into the cubic
term of the Hamiltonian. For the ground state wave functimiribe scalars,

B I'(A+1)
Jo= 2T (A —dj2 + 1)

the matrix elements turn out to he

(cos )™, (2.7)

3

G, r'(A,) Y2 Do —d)2)
His = g < 11 (F(AT —dj2 1)) (o) (2.:8)

Comparing (2.4) and (2.8), one finds that
20 (AT (AT (A3)
(BT (B2)T(B3)0(0) 1

In the pp-wave limit, we také\, — oo and use the relation (2.1) to obtain the holographic duality
map as advertised,

Hygs = (2.9)

ASDE!
2

(PP) 1. (ags)  Auz J1Js
H s —Plllqlr{)lscﬂms " (A123/2)! ( s ) Cha3

(2.10)

whereA»3 = Ay + Ay — Ag is kept finite. From here on, for any physical quantifyassigned
to each of the three states participating in the cubic ictera, we will use the notatiorX’ 53 =
X1+ Xo — X;.

2.3 Intuitive picture by Yoneya et al.

Holography in the pp-wave duality has remained a puzzle use¢éhe boundary of the original
AdS is completely lost in the process of taking the pp-waw@tli Then, how can one derive a
relation like (2.10) from the pp-wave string theory (or sigpavity) without tracing back to the
original AdS? Perhaps one cannot. We did trace back to tiggnatiAdS to derive (2.10). In the
next section, we will use it as a dynamic¢aput in constructing the cubic vertex in the pp-wave.
In other words, among all candidate vertices satisfying($u@er-)symmetry constraints, we will
pick out the one respecting the duality map. This point ofwieas pursued systematically by
Yoneya and collaborators [22, 23, 24]. We briefly review theark here from a slightly different
perspective. It will provide an intuitive understandingndiat (2.10) means.

3Excited states give different values Bf o3 through the overlap integral of wave-functions. Howevetgrthat all
the wave-functions of a same field share the coupling coh&tg. This fact will be important in section 3.
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Figure 1: The geodesics in (a) Lorentzian and (b) Euclided8 & global coordinates.

One starts with the GKPW relation for the correlators. As bagized in [22, 23, 24], the bulk
to boundary propagator should be understood as a Eucligghrnegral. The reason is that in the
Lorentzian signature, a massive particle can never reachdbndary. In global coordinates with
the metric (2.6), the geodesic equation can be easily sok@dexample, the solutions describing
a radial motion look like (See Figure 1),

cosh t

Lorentzian : sinf = sin Asint , Euclidean : sinf = )
coshT'

(2.11)

The second thing to notice is that in the semiclassical l{thit>> 1), the saddle point approxima-
tion to the 'propagator’ along the geodesic becomes raidbbr a large value of the distarZE in
time direction between the two boundary points, the Eualidgeodesic starting from a boundary
point runs exponentially toward the center of the AdS angssthere until it curves back to the
other boundary point. This is consistent with the fact that pp-wave limit magnifies the small
region around the center. In [24], the duality map (2.10) dexsved by systematically perform-
ing the saddle point approximation and constructing ancéffe action for a particle along the
geodesic.

Writing (2.10) asC'23 = Li93 - Hi23, One could heuristically argue that;,; originates from
the body of the geodesic passing through the center of Ad&ieapby the pp-wave, whilé,3
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Figure 2: Supergravity multiplet. Fermions are hidden msimall boxes

comes from the ‘legs’ connecting the center and the boundanywould be very interesting to
generalize this semi-classical picture to the full stringary and derive a similar duality map.

3 Supergravity vertex

In this section, we derive the supergravity vertex consistéth the duality map (2.10), leaving
the full string theory vertex to the next one. In the first ®di®n, we compute several examples
of HlAdS as described in section 2. In the second one, we determintoiimeof Hl(%ds) by
demanding that it satisfy the super-algebra, respectttig,, symmetry of 11B supergravity, and
match the data of the first subsection according to (2.10).

3.1 ‘Experimental’ data

We begin by reviewing the structure of the 1IB supergravityltiplet in AdS; x S° [31, 32].
After Kaluza-Klein reduction, the supergravity modes faaraeries of half-BPS multiplets of the
su(2,2|4) super-algebra. Each multiplet is labeled by an integeFigure 2 shows how such a
multiplet splits into several representations of the basen(2,4) @ so(6) bosonic algebra. The
notation|a, b, c|(; ;) denotes the Dynkin label undiO(6) and theSU(2) x SU(2) ~ SO(4) C
SO(2,4) quantum number. The AdS energyof the ground state of a given supergravity mode is
the integemp plus half of the number - of supercharges needed to reach the given state from the
ground state.



In addition to the super-algebra quantum numbers, each ma@dsigned the so-calléd(1)y
charge. ThisU(1) is the subgroup of th&'L(2,R) of the IIB supergravity, preserved by the
AdS; x S° background. The dilaton-axion scalars form a complex sdahl with charge+2
and combinations of NSNS and RR two-form fields have chatigiesvhile the graviton and RR
4-form fields are neutral.

Note that thid/(1)y is an exact symmetry of the AdS and pp-wave supergravityattiqular,
the U(1)y charge should be conserved in a cubic interaction invol#mge supergravity states.
Even in the full string theory in which th&(1)y is broken, the selection rule will continue to
hold when all three external states are supergravity staB84]. This selection rule will play an
important role in constructing the holographic cubic veitethe pp-wave.

In the following, we present some explicit examples of thetrimalement H:4% in (2.10).
They will impose severe constraints éf;; through (2.10). For simplicity, we consider only
scalar fields inAdSs. There are four scalar fields that are also scalar onStheas shown in
Figure 2. Thes andt fields are particular combinations of some components oftheiton and
RR 4-form field. The complex3 field is the dilaton-axion pair which is related to the staxda
form 7 = y + ie~¢ by the conformal mapping,

T —1T0
T4+ 710

B= (3.1)

so that, for any constant background valyethe U(1),, symmetry actdinearly on B. The se-
lection rule becomes manifest in this variable. Finally,wi# also consider the field which is
basically the graviton with both indices along the direction. So, it is a scalar iddSs, but a
symmetric, traceless tensor on tfie

The S° scalarss, ¢, B transforms in0, k, 0] representation afO(6). Thisk is identified with
the quadratic Casimir for spherical harmonics®9n V?Y = —k(k + 4)Y. As shown in Figure 2,
k is related toA andp ask = p — nr/2 = A — np. More precise definition of the fields and their
cubic couplings are summarized in the appendix A and reteetherein.

Bosonic impurities

The first class of amplitudes we consider involve thretates. In the pp-wave set-up wheré@)
R-charge is singled out, &0 (6) representation splits into differefD(4) representations. They
correspond to the following operators in Yang-Mills, usyahlled the ‘scalar-impurity’ operators
in the pp-wave literature.

J
Op=Te(Z7), O1=Tr(¢Z’), Oy=> Tr(¢zp2’™). (3.2)
=0



The number of impuritiesiz satisfies the relatiood + ng = k£ = A. SinceJ is conserved,
Aq93 = k123 = (np)123 holds. The following table summarizes several amplitudése numbers
on the first column denote the number of impurities of eachraipe The second column contains
the value of LHS of (2.10) normalized ny}g; = /JiJ2J3/N. The third and fourth columns
contain the two factors on the RHS of (2.10). For later coremee, we defing; = \/m
(i=1,2).

A123
0 12° 1 2 0
(s's?|s%) | Hias/ Cf% = Vil (Aifﬁ)! (JJQIQ) Chzs/ sz?),
(00/0) 1- ko3 Aqs 1
(01]1) q2k123 ANPY G2
(02\2) qgk123 AP CI% (3 3)
(11|2) q1q2k123 ANPY q192
(11]0) q1q2k123 J33J2 Aqg3 \/ﬁ
(12[1) 0105K123 J}—félzs Jlljg
(22/0) ¢2a3kro (42) 2p

The variablek;,3 counts the impurity number violation, so it has definite gaievalues. How-
ever, we formally write it as if it is an undetermined var@pbéven when it vanishes, to facilitate
comparison with the pp-wave vertex.

From the point of view of Kaluza-Klein reduction, operatovih different scalar impurity
configurations correspond to different spherical harm®niave-functions on th&°. The factors
V; in the first column come from the spherical harmonics oventaggrals. As such, they are
common for all supergravity fields that are scalar on§heSo, we will not separately discuss the
effects of scalar impurities when we discuss other scalksfians below.

Next, we discuss the effect of the ‘vector impurities.” Irethupergravity sector, the vector
impurities are simply total derivatives acting on a givemmary operator,

O ="Ti(Z, ¢,etc.), OV =09,0, 0OF) =0,00. (3.4)

The resulting operators are descendants of the primanatgpein any CFT, correlators of descen-
dants are completely determined by those of primaries. fHaisis reflected in the supergravity
computation. Primary state and descendant states areediff@ave functions of a same super-
gravity field. So, they share the same coupling constant.cRiedifference inH,3 then comes
from the overlap integral of the three wave functions. THWing table summarizes an explicit



example of thes field.

(s'5%|s%) | Hios/Ci9% = ViVikiog
000 V- k
(000) 123 5
(01‘1) q2Viski23
(11|0) 0192Vski23

The first row contains implicitly the entire table (3.3) witlo vector impurities. As one adds
vector impurities, the wave function effect shows up astemiin the last two rows. Note that the
scalar impurities and vector impurities commute with eatieo Note also that the ‘dynamic’ part,
k123 = (np)i123, counts only the scalar impurities but not the vector imipesi We see that the
accidentalZ, symmetry of the pp-wave string theory is broken. This willdpecial in determining
the cubic vertex in the next subsection.

Fermionicimpurities

So far, we considered only thefield which lies at the bottom of Figure 2. As we will see in the
next subsection, it turns out that the amplitudes listedvalaoe already sufficient to determine the
supergravity vertex. Still, by comparing some amplitude®lving other states in Figure 2, we
could verify in more detail, the validity of the vertex andvasll as the duality map (2.10).

For later convenience, we list all amplitudes involvinig and B together. In the following
table, itis understood th&f,V; is multiplied to each amplitude when bosonic impuritiesadded,
and thatk;,3 counts only the scalar impurities.

process  Hiag/ C’}g% process Hyos/ Cfgé

(s's?|s?) K123 (s'B?|B%) Gzk123

(t's%|s%) g3 (kiaz +4) (B'B?|s*)  qiqs(ki2s +4)

(s's’[%)  O(1/J) (t'B*|B°)  qy(kios +4)  (3.6)
(s'2[t°)  q3kues (B'B*[t*)  qlgsknas

(te?)s®)  O(1/J%)

(2)t%)  (kias +4)

The amplitudes are proportional to eithiaps or (k125 + 4). Note that for each proce$$2|3)
listed in (3.6), the constant shift ta,; is always equal tdng/2)123. In other words, including
the shift, the coupling is proportional ez + nr/2)123. This expression is most suitable for
comparison with the pp-wave vertex. Alternatively, one ecaeA = k + np to write the couplings
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as(A —ng/2)123. Note thatf A — ng/2) is nothing but the scaling dimension of the chiral primary
in the super-multiplet containing the given field. This igural since the coupling for a chiral
primary and those for its super-descendants are expecbegooportional to each other.

Finally, we compute amplitudes involving owrefield and twos fields. Unlike the examples
discussed above, this amplitude does not contain an exjlator ofk,.3, because is not a scalar
on theS®.

(¢'s%[s%)  Hyzs/Ci5) (s's%|¢%)  Hios/Co)
(-1[1) 0 (1) 0@/ (3.7)
(-2]0) 4 (02])  O(1/J?)
(-0[2) 0

3.2 Construction of the vertex

We will closely follow the standard process of constructihg vertex, and our result will share
many features with the previous proposals. However, coimpit with the duality map (2.10)
and the supergravity data listed in the previous subseutibbtead to a final result different from
all of the previous proposals.

Let us briefly sketch the standard process.(See, for exafBpler]). Quantization of the string
theory in the pp-wave is performed in the light-cone gaugethé light-cone gauge, space-time
symmetries are implemented in the interacting theory indifferent ways. All the generators that
leave the light-cone gauge fixing invariant are called kiagoal. They do not receive correction
from the interactions and can be promoted to local symneetmethe world-sheet. The remaining
generators are called dynamical and do receive correctibiesn the interactions are turned on.
For the string theory in the pp-wave, the light-Hamiltonard a half of the 32 supercharges are
the only dynamical generators.

In principle, the cubic interaction part of the dynamicahgeators (Hamiltoniai/; and super-
charges?; ) can be written as an operators in the string Fock space vdhiahge the number of
strings. In practice, it is more convenient to transkte(); into state$ H3), |(Q)s) in the three string
Hilbert space. Construction of/;), |3) takes two steps. First, one builds a kinematical vertex
|V} which manifestly respects all the kinematical symmetri€sen, the dynamical generators
take the form H;) = hs|V), |Qs) = ¢s|V') The prefactorsis, ¢; chosen such that the kinematical
constraints are not spoiled and at the same time the comontalation among the dynamical
generators are also satisfied.
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Freetheory: Review

The 1IB supergravity in the pp-wave has manif€6x(4) x SO(4) rotation symmetry inherited from
the SO(2,4) x SO(6) symmetry of AdS; x S°. Following [17], we use the vector indeéxand
bi-spinor indicesy,, a; for the firstSO(4) C SO(2,4), and ('; as, ap) for the secondO(4) C
SO(6). The Hilbert space of the free supergravity in the pp-wavkeicribed by 8 bosonic oscilla-
tors{a’, (a’)f;a”, (¢’ )} and 8 fermionic oscillatorgb,, o, , (b7)192; by, w,, (b7)192}. The bosonic
oscillators build up(A;i, j) representation o60(2,4) and [a, b, c| representation o5O(6) in
Fig. 1.

The fermionic oscillators are identified with the kinematisuper-charges up to a light-cone-
momentum dependent factor (we assume o/p™ > 0 throughout this subsection),

oy = \/abcnaz» (?ﬁ)al% = \/a(bT)alon
q_dld2 = \/abdldw (qT)dld2 = \/a(bT)dld2 . (38)

They form a super-multiplet of the same diamond shape agur€&il. The other 16 super-charges
are dynamical. Explicitly, they are given by

leaz = (aT)dlal balaz — Qazads (bT)d1d27 (QT)OAOQ = Qqayay (bT>ala2 - (aT>d2a2bd1d2>
Qaldz - (aT)dlalbOhOcé + Qayai (bT)alc‘Qv (QT)OQOZ2 = aa1d1(bT)d1d2 + (aT)aéazquOQ . (39)

Note that all of them annihilate the oscillator vacuum, dmat they are eigenstates of thg1),-
symmetry. In what follows, the anti-commutators among tyeadnical supercharges are impor-
tant. The only nonvanishing terms are

{Qalaza(QT) Y = 25;‘:11552H+r0tations,

{Qaldw (QT)Blﬁz} = 25;‘115521{ + rotations . (3.10)

Cubic vertex

As a starting point, we use the kinematical vertex propos¢9],

3

1
V) = exp {5 Z azr)M’" }exp{ Zb qiby }|v 123 (3.11)

r,s=1

whereM"* are the supergravity Neumann coefficiens= +/|«; /s, i = 1,2, as before),

G e —q
M=|-qne ¢ —¢]. (3.12)
—1 —2 0

12



In order for the prefactor not to spoil the kinematical coaisit, it should consist of the following
combinations of oscillators.

K= qu(ab)’ = goa])’,  Yorer = qy(bh)re> — gy(b]) ™0,

’ ’ L - » (3.13)
L' = qi(ah)” — gola])’, 209 = qu (b)) — go(b]) ™.

Following the literature on the construction of the verter,assume that the prefactor has at most
two powers of bosonic oscillators. It will be justified by roling the amplitudes via the duality
map. ThelU(1)y symmetry demands thail;) contains only terms with the same numberYof
andZ, and that the supercharges have termsYike"*! depending on theit/ (1), charges. Itis
straightforward to enumerate all possible terms allowealfpear in the supercharges. Schemati-
cally,

1Q3) = (a1LZ + coKY Z? + 3 LY?Z° + e, KY?ZH)|V),

Q1) = (WKY +doLY?Z + dsKY*Z? + d, LY Z%)|V),

Qs) = (LY + aKY?Z + LY 2 + e,KY* Z°)|V),

Q) = (LWKZ+doLY Z? + dsKY?Z° + dy LY Z*)|V) . (3.14)

Define the sum of super-charges in the free theory,

Q=> QY, (3.15)

r=1

for the four kinds of dynamical supercharges. The supegkabyat the cubic level demands that

QQL) + QQs) = |Hz), Q|QL) + Q'|Qs) = |Hs) , (3.16)

and that similar equations witRHS = 0 hold for all the other combinations of super-charges.

A straightforward but tedious calculation gives a seenyigker-constrained set of linear equa-
tions among the coefficients in (3.14). However, it turnstbat many of the relations are linearly
dependent, and there are three independent solutions. oliteoa for the cubic Hamiltonian is
given by,

\Hy) = hy ((L2 LK1+ YZY 4 2K LY Z + Y32 — KA(YZ) + L2(YZ)2) V)

+h_ (K? + L?)|V) 4+ hy (K2 + L? +8) (Y 2)4| V), (3.17)
wherehg, h_, h, are so far undetermined constants. As expected, the slgera alone does not

fix the vertex completely. It is now time to use our knowledgehmlography discussed above.
Using the conservation laws for the kinematical symmeties;? + ¢ = 1, one can show that

(Li,)2|V> = (np)i2slV), (3.18)
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that is, (L")? counts the change in the number of scalar impurities. Sitpilane can show that
the (K%)? term counts vector impurities. However, we saw that vectgpuirities contribute only
the ‘wave-function factorV, and do not affect the coupling constant. This fact demanasha
duality map (2.10) thatH3) should not contain a factor dfk*)? when all external states are
SO(4) x SO(4) scalars. This implies thdt_ = h, = h,.. The overall normalization can be fixed
by matching any one of the non-zero amplitudes listed in)(AB in all, the final answer i§

|Hy) = cm,(< 2+ (LY Y2 KOO LY Loy + Y0 D) ) V)

C Oé (e} Ol (7
;23 (L 2 2L6262Yj2 2202[ 4 _ K% 1K61B1Ya2161 2 61) |V> (3_19)

Note that we used only the ‘bosonic impurity’ part of the poexs subsection to determine the
vertex. The(L")? factor givesk,,3 part of (3.3) and (3.5). The wave-function factdr andV,,
match exactly elements of the bosonic Neumann matrix.

Now, all the amplitudes containing ‘fermionic impuritigg'ovide further checks on the vertex.
First, note that the factai( Z')? + 4) multiplying Y*Z* matches ko5 + 4) in (3.6). In fact, the
(YZ)" term and(Y Z)* terms can be combined int@p + nx/2)(1 + Y*Z*)|V). The factors
of ¢1,¢o in (3.6) come from both the fermionic Neumann matrix, andtfayse proportional to
(k123 +4), also fromY*Z*. Finally, one can check that the& (Y Z)? term gives the non-vanishing
entry in the table (3.7) for thébss) amplitudes.

4 String theory vertex

We now turn to the task of generalizing the supergravityese(8.19) to the full string theory. We
first need to enlarge the Fock space to include also the statated by the stringy oscillatoag
andb!. Then we need to find a-string vertex satisfying two main constraints: it shoutdlize
the pp-wave super-algebra at cubic level and it should rettuthe supergravity expression (3.19)
in the ua; — 0 limit. In principle one could proceed in a systematic way asealin the previous
section for the BPS sector, but this exhaustive approacther complicated at the string level. It
is easier and also more instructive to derive the cubic ¥dsyecombining the results derived in
previous works.

We start by choosing a coherent state that realizes the kitiegthpart of the algebrd”) =
E, Ey |v)123, Wwhere the two terms contain the bosonic and the fermiomtritiutions respectively.

40ur definitions for the products df and Z are slightly different from those of [17]Y2 = Y3/2,Y? =
Y3/3,Y* = YA/12 and similarly forZ. Accordingly, the polynomials and s appearing in (4.3) should be un-
derstood ag(Y) =Y +iY3, 0¥ = §9 (1 + Y4 (1 + Z4) —i[(Y?)Y (1 + Z*%) — (Z3)¥ (1 + V)] + (Y2Z?)¥ and

I =51 — YY1 = 2% —i[(YR) (1 - 2% — (227 (1 =YY + (Y222)7 .
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Let us recall their explicit expressiohsThe bosonic exponential reads [13]

3
E, =exp {% n(r N;;f% ( s)} : 4.1)
r,s=1

The string Neumann coefficients are usually written in teoferoducts of infinite matrices. From
this formal definition many properties can be derived [36, hBwever it is difficult to obtain an
explicit value of theN;? in terms ofn, m and theq;’s, since the original product expression
contains the inverse of an infinite matrix. A detailed stufljhe Neumann coefficients for # 0
can be found in [37, 38, 39]. In the fermionic sector we wileuke coherent state introduced
in [20], which can be written in th€0(4) x SO(4) notation as done in [17]

By = exp [Z DI (A AR i SN mn] . (4.2)
r,s=1m,n>0
As we reviewed in the introduction, this kinematical pan dse completed into a fully su-
persymmetric interacting Hamiltonian in (at least) two gicglly different ways. One possible
completion was first proposed by [13, 14, 16] in #1@(8) formalism. Subsequently the same ver-
tex was recast in th8O(4) x SO(4) language [17, 18] and here we will stick to th&(4) x SO(4)
notation

TN -
\Hy)y = — [(Kinjuiaij)v”(Y,Z)— (LZ-/L]-/+§6Z-/]-/>U”(Y,Z) (4.3)

a1 a1a2

N Kd1alzd20¢2sa1a2(Y)5’f . (Z) [(OlloqLoQa62 : (Y)Sd1d2(z):||v>7

where again we follow the conventions and notation of [1®gept for the normalization the
bosonic constituents which is slightly different,
. O/ . . O[/ -/
K=\———K,, I'=|——— Kb, (4.4)
2p|on sz 2ulonasas|
Another possibility for writing a supersymmetric vertexdscussed in [21], where it was
proposed to use simply the free Hamiltonian as prefactdnetbherent state

3
|Hs)p =Y _ H,|V). (4.5)

r=1

However, it was first noticed in [24] that neither of the twatiaes (4.3) and (4.5) have the expected
behaviour from the holographic point of view. We can reparéss observation in a somehow

SFor the conventions on the string oscillators and the eitmlifinition of the Neumann matrices the reader is
referred to [15] and references therein.
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different way by using the results of the previous sectibe:supergravity limit of the vertices (4.3)
and (4.5) breaks the relation (2.1) because they contaire g6frterm in the prefactor which is
absent on the AdS side. So it was proposed [24] that the hegdbgr cubic vertex for the pp-
wave background is proportional t&/); + |H) p. It is interesting to notice that this combination
reproduces, when restricted to the scalar bosonic osm#lathe ‘phenomenological’ prefactor
introduced in [40] to explain the field theory results fronti@g theory point of view.

However, a closer comparison between the proposed veitex+ |H) p and the large/ limit
of the AdS couplings shows that relation (2.1) is not yetsé@til. In fact, when we restrict the
combination H); + |H) p to the supergravity sector, the only term that perfectlyanes the AdS
expectation is the one without fermionic insertions Ygfand Z,). However, it is not difficult to
see how to modify the vertex (4.5) in such a way that its cooam with (4.3) gives the expected
supergravity answer. First we should add two pieces quiartice fermions ¥* and Z*) so that
at the supergravity level thé(1)y violating terms of (4.3) are canceled. Then a contributidh w
eight fermionic insertionsY(*Z*) should be added to match the second term in (3.19). Thus our
final proposal for the holographic cubic vertex is

(0)

|H) = % <\H>1 + |H>H> : (4.6)

where

\Hy) 1y = (i H,) (1 + Y4> (1 + Z4) vy 4.7)

Clearly this contribution to the vertex is a natural geneedion of the (4.5) and it satisfies by itself
the supersymmetry constraints. In fact the combination Y* + 74 + Y1 24)|V) satisfies all the
requirement related to the kinematical part of the pp-wdgetaa. Thus it can be ‘dressed’ with
the free supercharges or Hamiltonian as done in [21] in ci@@roduce a consistent system of
interacting correction to the free generators. Notice #isb the commutation of the kinematical
constraints withy H, is again a combination of the kinematical constraints ams toes not
spoil the properties of the coherent stéte.

4.1 Somecheckson thestring vertex

From the gauge theory point of view the holographic vertextaims a great deal of information
on non-BPS quantities, since the dependence of the Neumatric@s ori.«; in (4.6) translates,
in the SYM theory, into the exact dependence on the 't Hooftpliog. Moreover in the non-
supersymmetric sector, the comparison with the gauge yhsdhe only way at our disposal to
check the correctness of the proposal (4.6). However, tilisist entirely clear how to relate in
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general string and gauge theory results, since the dicq2al0) betweers-point correlators in
the two descriptions has been derived only in the supertyrapproximation. The authors of [24]
proposed a small modification of (2.10)

ASDE!

JiJ: 2 _ i3 A
A( }2) Cos = (f)” F'T (7 + 1) Hisy (4.8)
3

where f is a combination that appears in various places of the stamgputations (see, for in-
stance, [15]):f = (1 — 4uaK). With this prescription th8-point functions among BPS states are
independent ofi«;, even if the full string vertex (4.6) is used to compute thergator. This can
be checked by using the relation between the stringy Neurnaefiicients and the supergravity
ones:NJ = fM% for1 < i j <2andNZ = M®. The requirement to have constaapoint
functions among BPS states is in accordance with the exghacte-renormalization theorem [41]
of the SYM correlators among three BPS operators. Of cotiseuld be very interesting tde-
rive (4.8) in order to check the non-renormalization theorerstgad of imposing it. Moreover it
is quite likely that other/’-dependent modifications will appear in the exact dictigrizatween
Cla3 anngf). However, if we focus on the first order in théexpansion, the simple Eq. (4.8)
is able to capture completely the relation between gaugayhend string theory. Let us briefly
summarize the evidence collected so far supporting thisqual.

— The first thing we want to verify is that the new terms introeld in (4.6) do not spoil the
agreement between string and gauge theory correlatorsl fiouprevious works. It is clear that
for purely bosonic amplitudes the new terms present in @&)irrelevant and so all the checks
already done in this subsect@upports our proposal (4.6). On the contrary, the amplgwdiéh
four or more fermionic impurities are sensitive to the ntiesl contained in (4.6). However, in
the situation studied in [24], the four fermions are dividiecGn impurity preserving way, that is
two of them act on the ingoing state (the one with negaiiyeand the others act on the outgoing
states (those with; > 0). In this case, the new contributions in (4.7) appear onlhatmext-to-
leading order in\, In fact theY* and Z* terms appearing it ),; are multiplied by>" H, and
in the impurity preserving processgs, H, ~ O(X). Similar terms quartic in the fermions are
present also inH);, but they do not have the energy difference as additionabfand so their
contribution survives also at the first order in tNeexpansion. Thus th&(\') result for these
amplitudes is again in agreement also with the vertex (4I8)s situation is very similar to that
encountered in the study of the processes where the numlo@apafities is preserved, but their
flavor changes (like the process considered in [40]). Alsthicase onlyH ), contributes to the
leading order result of the string amplitude.

— In the truly non-impurity preserving processes, where #ig number of impurities changes
from the operatof); to the operator§); andO,, the full vertex (4.6) enter. We have already seen

5This applies also to the recent papers [42], as well as taqueworks [40, 43].
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in section 3 that the new terms in (4.7) are necessary to lgreement with the largé limit of
supergravity results. In the BPS sector this ensures tleastting amplitudes do agree also with
the gauge theory answer, thanks to the standard AdS/CFTiyduagt us see how this works by
focusing for instance on the sixth case in the table (3.3 rEtevant operators are

J2
Oy = Tr(¢2"), 0, = %7 S TGz, Oy = (2% | (4.9)
=0

and it is straightforward to see that the gauge theory coatbiits reproduces in the largdimit
the third column of (3.3)

_ 1 C(O)
O O O = 123 : 4.10
(Os(@5) Oal2) Or(1)) VI s |11 — 12]208|xg — 23|21 |2y — 21]?02 ( )
On the string side one obtains
123 (V] a3y @00 @y @y [ H) = 2N3g Nog = 2 Mg Mgy - (4.11)

By using (3.12) and, in this cas&y;,3 = 2, we see that this is equal to the first column of the
table (3.3) multiplied by the factof which is the difference between the supergravity and the
full Neumann matrices for the elemerﬂ/%% with 1 < 4,5 < 2. However, the dictionary (4.8) was
engineered to cancel the factorsfodind in fact we get the same-independent answer obtained in
section 3. Itis also easy to study the same amplitude in tingstase, where the second operator
is replaced by

nl

Ja
1 _ L
Oy = —— > Te(¢pZ'p27") ™ 2t1 . 4.12
2 \/72 s (¢ ) ( )

In this case the tree-level result on the gauge theory sigder because the phase forces the final
sum over! to vanish. On the string side, the only difference with theSBfase is that now the
result is proportional to the Neumann matricés N23, while before we had = 0. By using the
results of [37], we find that in this case the first non-trivaahtribution to the RHS of (4.8) starts
at order)’, in agreement with the gauge theory results which fixes teelgvel contribution to be
zero.

— The last case of table (3.3) presents the prototypical chsapurity non-preserving pro-
cesses. In this case both ‘outgoing’ operators contain tamurities. On the gauge theory side
the largeJ/ limit of this amplitude does not change when we pass from BgSaiors to stringy
ones with the BMN phase (like that of Eq. (4.12)). This is hessaonly particular terms in the sum
defining the operators contribute to the amplitude indla@ar approximation and®>*// — ( for
anyn # 0 in the BMN limit. On the string side this observation implitst the element&/’ |
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with 1 < 7,5 < 2 of the Neumann matrices arat, leading order in )\, basically the same as the
zero-mode elements. Again by using the results of [37] onecback that this is indeed the case.
Thus we can use the agreement between string and supeyfCavitresults at the BPS level in
order to claim that impurity non-preserving amplitudeseggat leading order i also for generic
non-BPS states.

5 Discussion

In the usual approach to the BMN duality, one first tries tddthe pp-wave string Hamiltonian
by using only the internal consistency of the theory and tlbeks for a string/SYM dictionary
compatible with the string vertex. Since the two vertice8)4nd (4.5) are rather different, they
motivated two different ways to relate string theory intdi@ns with the dual gauge theory results.
Inspired by the string bit proposal [44, 45], various aushig6, 47, 48, 49] studied the relation
between the string vertex (4.3) and the mixing between siagd double trace operators on the
field theory side (see also [50, 51] for further checks in thisction). In particular, they proposed
to identify the3-string couplings derived from (4.3) with the matrix elerteeaf the gauge theory
dilatation generator in a particular basis in the space @kthgle and double trace operators. On
the other hand the vertex (4.5) was motivated by realizingtiimg theory the proposal of [52]
that relates th&-string couplings with the correlators among the BMN oparsibn the gauge
theory side. Notice that also this point of view is consist&ith the string bit picture, since it
identifies, in theua; — oo limit, the world-sheet dynamics with the free contracti@nsong the
constituents of the three operators (see for instance theeBgfor the3-point function in [52]
and [12]). Even though these two proposals were checkedriougadifferent cases, the situation
was not completely satisfactory. First the agreement batvetring and field theory results was
checked only at leading order ii. Then, on the conceptual ground, it was rather unclear the
role played in the duality by the gauge theory operatorsdhaexact eigenstates of the dilatation
generator. At leading order i, these eigenvectors are a particular combination of singte a
double trace operators. However, on the one hand the cosoparetween the string vertex (4.5)
and the gauge theory results gave agreement only by usingritfieal BMN operators [27, 53,
21] and ignoring the multi-trace corrections of the dilateigenvectors. On the other hand the
string/gauge theory comparison with the vertex (4.3) nexglia mixing between single and double
traces that wasdifferent from the one necessary to define the dilatation eigenvectorfact the
field theory computations of [40, 43], that are done with tilatdtion eigenvectors, represented
for long time a puzzle from the string point of view, sinceytlseemed to be not related to either
of the two vertices (4.3)-(4.5).

In order to overcome these problems, in this paper we reg¢ineeapproach commonly adopted
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so far and constructed3astring interaction in the PP-wave background by taking idnsider-
ation all possible information from different descriptgofiom the very beginning. In particular,
we study systematically the constraints on the string dyesieoming from the largd limit of
AdS; x S° supergravity. Our results confirm the physical picture obBghi and Yoneya [24] and
show how the string vertex has to be generalized in orderdgorde correctly also impurity non-
preserving processes. Moreover, as explained in sectidfiZd ] this approach is able to explain
also the partial success, for impurity preserving processethe previous string/gauge theory
comparisons (see the discussion above). For these prscésisepossible to separate the con-
tributions coming from the free field theory combinatoricsmh those responsible of the operator
mixing and map them into thg7s) , and|H3) sy parts of the full string verteki ).

Let us conclude by summarizing here the main results denmvids paper and focusing on the
properties of the vertex (4.6). A first unexpected featurthad the string interaction must break
the Z, symmetry of the pp-wave background, which, on the contnaag preserved by the free
spectrum. It was first noticed in [19] that SV vertex [13] hadddinite parity under this discrete
symmetry. It was further proposed that one should build fdint3-string vertex, with opposite
parity, in order to make a direct comparison with gauge thearrelators possible. This idea
was in striking contrast with the belief that there was a uaigossible interacting Hamiltonian
realizing the relevant supersymmetry algebra. Howevexphait realization of this proposal [21]
showed the necessity of further constraints in order to firgetely the string cubic Hamiltonian.
However, it turns out that the behaviour under#esymmetry is not a reliable input for fixing the
form of the string vertex. A first signal that tH#s was not a good symmetry at the interacting level
came from the study [54] of field theory correlators amongtdiion eigenstates containing vector
impurities. Here instead we used the insights coming fropesgravity and we showed that the
interacting Hamiltonian must contain both odd and evensarnderZ,. Moreover the vertex (4.6)
singled out by our analysis contain né)(4) x SO(4) preserving combinations of the various
building blocks [15, 21], realizing once more a situatioftg@ommon in physics (i.e. everything
that is not forbidden is compulsory). It is natural at thisrpdo ask whether it is necessary to add
further corrections to Eq. (4.6) that are not captured bysupergravity analysis. Although this
seems unlikely we can not rule out such corrections. Foant® we still use as an additional input
the requirement that the prefactor is at most quadraticarbtisonic oscillators. In order to clarify
completely this point it would be necessary to derive thacttamiltonian from first principles,
for instance by applying a standard path integral appro&zhia the derivation of the prefactor
(and not only for the exponential part, as it was done in [12])

Another interesting aspect of our string proposal is to ssethel/ (1), symmetry is realized
at the level of BPS (or supergravity) interactions. Actyahis is a general observation, not re-
stricted to the particular pp-wave background we are foguen. In fact a similar pattern appears
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also in the construction of the flat space 1IB string field tiye [55] it was noticed that th&'(1)y
symmetry forces the supergravity prefactor to be quartibéfermionic fields. However, the full
string construction [56] requires the presence of othensahat survive also when the amplitudes
are restricted to the supergravity sector. The originakolaion in [56] was that these new terms
are proportional (at the supergravity level) to the differe of the free Hamiltonian (. H,) and
thus are zero on-shell. In order to have a consetvgld,. symmetry also off-shell, [56] proposed
that theU (1), generator should get corrections in the interacting thedeye we show that there
is a simpler way out: one can define the off-shell cubic Hamilin for the flat space to be a simple
combination of the Brink, Green and Schwarz vertex and ofahewing vertex

8
|Hs) = |H3)pes — <Z Hr) (1 + HY§G8> V) sas (5.1)

a=1
where we are now using the conventions of [56]. Notice thagitiditional piece is irrelevant if we
just want to compute on-shell scattering amplitudes bexauiat space the energy is conserved.
Thus previous checks on S-matrix elements like those ing8& ot affected by the modification
proposed here. However, the inclusion of the new terms it) (felds alU(1)y preserving (Su-
pergravity) vertex also off-shell. In the pp-wave case tb&ure is necessary since we clearly do
not want any conservation law di, in the physical observables and so the terms proportional to
>, H, can not be disregarded. However, the modification propas€8.1) is important also in
flat space every time one needs to go off-shell. Problemsigtype are constructing &string
vertex by sewing tw@-string vertices or computing the energy of an arbitraryngtconfiguration
including the cubic contribution&;. It is known that the vertekH;) z¢s is incomplete and can
not be used to deal consistently with these questions. Beaafuthese problems it has been pro-
posed that the light-cone string field theory contains alsartic terms [58, 59, 60, 61]. It would
be very interesting to reconsider these issues by using-gteng vertex (5.1) to see whether it
can provide a different completion 0ff3) 55 that does not require quartic corrections.

Also on the field theory side the string vertex (4.6) togethigh the duality map (4.8) yields
some interesting and counterintuitive consequences.nstrnce, it is common to write the BMN
operators by focusing only on the leading term in the» oo limit, even if in principle they are
combinations of various contributions with the same quantumbers. This is the so-called ‘di-
lute gas approximation’ where the impurities are alwaysigfin to be far apart from each other.
However in the impurity non-preserving processes this @gpration breaks down even in the
simplest situations, since in the holographic diction&yQ) between gauge and string theory
correlators there is a compensatiAglependent factor. This term plays an important role in the
correlators withdifferent barred and unbarred operators (i.e. with different ‘ingdbesnd ‘outgo-
ing’ states). In the dilute gas approximation this kind ofpditades is trivially vanishing, while

"The importance of certain compensating terms, subleaditttgi/ — oo limit, was already stressed in [62, 54].
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on the string side the corresponding processes are nonszece they get a non-zero contribution
from the various term in the prefactor containing the femgdnsertions. The presence of the
compensating factor in (2.10) enhances the contributionsrg from the subleading (ifh) terms
in the definition of the BMN operators and gives a non-zerovanslso on the gauge theory side.
Finally a very important open issue is the full justificatafthe holographic dictionary. For ex-
ample, the duality map (4.8), if correct, can provide a retsoh to the puzzle of fractional powers
of \' raised in [63]. While the map in the supergravity sector@@Has been derived from directly
from the rules of the ADS/CFT duality, its string generdiiza (4.8) has been proposed [24] by
imposing the non-renormalization of tRgoint BPS correlators. Itis clearly important to test and
possibly completely fix this holographic dictionary. Twaneplementary approaches are possible:
either one can work from the bulk point of view and generatize physical picture sketched in
section 2.3 from the particle to the string case, or onesstesin the field theory by pushing the
computations to the subleading ordenin
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A Coupling constants

We summarize the cubic couplings needed to compute the s in section 3. Thésss)
coupling was first computed in [41]. Couplings for tw@nd another arbitrary field were worked
out in [64, 65]. Other couplings listed below can be derivedaisimilar way. We follow the
notations of [65]. The part of AdSsupergravity action relevant to our discussion can be evriéis

N2
5= / P /=g{Ls+ Ly} . (A1)
The quadratic Lagrangian takes the following form
A
Ly = — Z %{(V@)Q +m2e*} — Ap{|VB|* +mp|B|*} . (A.2)
p=s,t,¢

The mass of each scalar is determined by the usual relatior= A(A — 4) and the relation
betweenA andi mentioned in subsection 3.1. The normalization constaetgigen by
k(k—1)(k+2 k+4)(k k+2
Ay = MR () A, = 9 WA () Ap = 2(k), Ay =1z(k). (A.3)
The cubic Lagrangian is given by
1 1 1 1
Ly = _EG§§§5)515253 - 6G§t;§)t1t2t3 - §G§§§>t15253 - §G§§t§)slt2t3
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1 SS S B D), S B D,
—501 0's%s" — G BB - GV BB, (A.4)

where the coupling constants are given by

1.2.3 9 Q1QiaQrg (o0 +2)! 1,42 43
(s7s°s”) 2 Tt D0+ Dt D (0_3)!a(k1,k2,k3)<(] c=C?),

1,2,3 9(a1+2)(a2+2)(a3+2) (‘7+8)! 1,423
) 3t 3) (ks 7 3) (o 3 31 F e k) (CTCTCT),

123y . o0 +2)(aa+2)(az+2) ! 1,423
(t §S ) D2 (kl +3)(k52 + 1)(]{33—|— 1) (al _5)!a(k17k27k3)<0 cc >7

(0 +4)asay (aq +6)! L
(hr 1) (ks + 3) (kg 7 3) (a1 1)1 R R Ba)(C°C ¢, (A9

2 (0 +2) (g + 2)anas

(stt?3) . 2°

(SlBZBS) : 2 &(kl,kg,k3)<010203>,

ki+1
(tlBZB?’) o4 (0 +4)ay (]{;O;2++32)<a3 + 2)a(k1, ko, k3)<010203>7
1.2.3 50(0+1)(a; —1)(aq —2) 1,23
(¢ S°S ) 2 (kj2+1)(/{53+1) h(kl,kg,k3)<TCC >
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