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ABSTRACT

We revisit the cubic interaction of IIB string theory in the maximally supersymmetric pp-wave

background. In the supergravity limit, we show that detailed comparison with AdS supergravity

determine the vertex completely. Extension of this supergravity vertex to the full string theory leads

to a new cubic vertex that combines the previous proposals and contains additional terms. We give

an alternative derivation of the holographic duality map insupergravity, first found by Dobashi and

Yoneya (hep-th/0406225) and show that our new vertex is consistent with it. We compare some

non-BPS amplitudes (including impurity non-preserving ones) with the corresponding field theory

correlators, and discuss what they imply for the stringy generalization of the duality map. We also

notice that our vertex realizes theU(1)Y symmetry linearly, and propose a similar modification for

the flat space vertex.

1On leave of absence fromQueen Mary, University of London, E1 4NS London, UK.



1 Introduction

The BMN duality [1] has drawn a lot of attention for the past two years, largely because it opened

up a systematic way to test the AdS/CFT correspondence [2] atthe string level. The most striking

discovery was that the tree-level string spectrum [3, 4] in the maximally supersymmetric pp-wave

background [5, 6] matches exactly (that is, to all orders in theα′-expansion), a particular class of

N = 4 super Yang-Mills operators [1]. Since then, much effort hasbeen made to understand how

the string interactions (non-zerogs) fit into the duality. In spite of many important works in the

literature1, the problem has not been fully solved yet. The goal of this paper is to report some

progress on this subject.

The simplest type of string interaction is the cubic interaction, in which two strings join to form

a single string or vice versa. There are three crucial issuesconcerning the cubic interaction in the

pp-wave duality.

1. Construction of the cubic vertex.

The string theory in the pp-wave is formulated in terms of theGreen-Schwarz superstring

in the light-cone gauge. In this set-up, the3-string vertex is given by the cubic part of the

light-cone Hamiltonian. The vertex is usually constructedby imposing the super-symmetry

constraints. However, unlike in flat-space, the constraints do not completely fix the pp-wave

vertex.

2. Holographic duality map.

Once the cubic Hamiltonian is known, one can compute its matrix elements and obtain the

coupling among three arbitrary string states. On the Yang-Mills side, the natural observable

is the coefficient of the (normalized) cubic correlator. To make the comparison between

these two observables, one needs a duality map, which must somehow ‘know’ about the

holography underlying the original AdS/CFT correspondence.

3. Choice of basis (Operator mixing)

It is important to understand how the string and the Yang-Mills Hilbert spaces are mapped

to each other. While the matching of the free spectra focusesmainly on the eigenvalues of

the physical observables, the duality map for the cubic interaction tests in a much stronger

way the dictionary between string and gauge theory states.

In this paper, we will discuss some new findings and considerations on these three points.

Spradlin and Volovich [13, 14] made the first proposal for thecubic vertex, which was further

elaborated in [15, 16, 17, 18]. Aside from satisfying the pp-wave super-algebra, the SV vertex has
1See the review papers [7, 8, 9, 10, 11, 12] for a detailed bibliography.
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two features: (a) it has definite parity under the accidentalZ2 symmetry that exchanges the two

manifestSO(4) symmetry groups (the parity is odd in the conventions where the vacuum isZ2

invariant), (b) it has a smooth ‘flat space’ limit. Before thequestion of whether these features are

compatible with the putative duality map was answered, another physically different vertex was

proposed in [19, 20, 21]. This vertex satisfies the same pp-wave super-algebra, but does not share

the above-mentioned features: (a) it has opposite parity under theZ2, (b) as a consequence of this

parity property, it does not have a smooth ‘flat space’ limit.

Which one of the two vertices is the correct one? In fact, since the constraint from super-algebra

essentially gives a set of linear differential equations, the right question would be “Which linear

combination of the two is the correct one?” Moreover, there may even exist other independent

solutions to the super-algebra equations, ending up with a multi-dimensional space of candidate

vertices.

Clearly, to resolve the situation, one has to understand better how holography works in the

pp-wave. Among others, Yoneya and collaborators have pursued this line of thought systemat-

ically [22, 23]. Recently, in [24], they derived an explicitholographic duality map for the su-

pergravity sector of the pp-wave string theory by taking thesemi-classical limit of the GKPW

relation [25, 26] in AdS/CFT. This map led them to conclude that the correct vertex is a particular

linear combination of the two vertices introduced above which breaks theZ2 symmetry ‘maxi-

mally’.

In this paper, we first re-derive the same duality map from a somewhat different perspective,

following the idea which first appeared in [27]. Then, we takea closer look at what it implies for

the cubic vertex. Among other things, we pay attention to theU(1)Y symmetry of supergravity

as well as the matrix elements of the super-descendants of the chiral primary state. We find that

the proposal of [24] should be further modified to include three new terms similar to the second

vertex mentioned above, in order for the duality map to hold.Our derivation indicates that this

vertex is the unique one compatible with the duality map, although a rigorous proof is not yet

available. Finally, we discuss how to extend the duality mapto the full string theory. Suggestive as

our computation of stringy amplitudes are, the final answer seems to require more work including

sub-leading order computations in Yang-Mills.

This paper is organized as follows. Sections 2 and 3 focus on supergravity (or BPS) processes.

Section 2 contains the derivation of the holographic duality map. In section 3, we first derive a

number of AdS5 × S5 3-point couplings and study their largeJ limit. Then we discuss theU(1)Y

symmetry of type IIB supergravity and use it as an additionalconstraint on the pp-wave cubic

vertex. A unique answer for this vertex is obtained by requiring that it reproduce the largeJ limit

of the previously derived AdS5×S5 3-point couplings. In section 4, we go beyond the supergravity

sector and study the cubic interaction among generic stringstates. In our construction, we demand
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that the zero-mode structure of the string vertex reproducethe supergravity results derived in the

previous section. By combining the known vertices and also adding some new terms, we present

a consistent proposal for the holographic3-string vertex. In order to test its validity, we compute

some stringy amplitudes and compare them against the field theory results by using the simplest

generalization to the full string theory of the duality map.Section 5 contains our conclusions along

with a discussion of possible future directions.

2 Holography in supergravity

The holographic duality map in the supergravity sector can be derived in two simple steps2. The

first step is to note that the interaction part of the pp-wave Hamiltonian is equal to that of the

original AdS geometry in the Penrose limit. This relation isnot restricted to the BPS sector, but

should hold even for the full string theory. The second step is to relate the AdS Hamiltonian to the

coefficients of the gauge theory correlators via the GKPW relation in supergravity [25, 26]. This is

possible since both quantities can be obtained from the sameIIB supergravity action on AdS5×S5.

2.1 From AdS to pp-wave

The first step is a direct consequence of the standard AdS/CFTand pp-wave dictionaries. In the

following table, we summarize in the first two columns the twoparameters that define each theory

and define the dimensionless Hamiltonians in the third column.

YM-loop / stringy effect genus / string loop Hamiltonian

AdS λ = g2
YMN = (RAdS/ls)

4 1/N H(AdS) ≡ RAdSP0

PP λ′ = g2
YMN/J

2 = 1/(µp+α′)2 g2 = J2/N H(PP) ≡ P+/µ

Since the pp-wave theory describes the dynamics of AdS5 × S5 in the Penrose limit (N, J → ∞,

keepingλ′ andg2 fixed), then the two Hamiltonians must be the same in this limit, except for the

shift byJ , which changes only thefree part:

lim
Penrose

{

H(AdS)(λ, 1/N) − J
}

= H(PP)(λ′, g2) . (2.1)

In passing, we should emphasize that the mass scaleµ in the pp-wave has absolutely no physical

meaning. The expressions such as ‘µ → 0’ or ‘µ → ∞’ often found in the literature should be

interpreted as largeλ′ and smallλ′, respectively. In particular, the bona-fide flat space (µ = 0)

is not related to the ‘µ → 0’ limit of the pp-wave. If the two were smoothly connected, the
2The main ideas of this section were first discussed in a limited setting in the appendix of Ref. [27].
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BMN duality would imply a holographic relation between IIB string theory in flat space and a very

strongly coupled gauge theory. Of course, some ingredients(for example, the Neumann matrix) of

the pp-wave Hamiltonian formally have a smoothµ→ 0 limit. However, as we will see in the next

section, the cubic Hamiltonian contains pieces which manifestly break symmetries of flat space.

Discontinuity of the ‘µ → 0’ limit has been recently noticed also in [28], where the causality

properties of the pp-wave string theory are studied.

Note also that we are taking the Penrose limit on the AdS Hamiltonian. This is to be contrasted

with the approach of [29], where the Hamiltonian is computeddirectly in the pp-wave geometry.

2.2 Hamiltonian vs. Correlator

Now we move on to the second step of the derivation. Suppose wehave primary operatorsOi(x)

in a CFTd and the corresponding scalar fieldsϕi living in AdS(d+1). Assume that the bulk action

takes the standard form,

S = −
∫

dd+1x
√−g

[

1

2
(∇ϕi)2 +

1

2
m2
i (ϕ

i)2 +
1

6
Gc
ijkϕ

iϕjϕk
]

, (2.2)

where the AdS mass ofϕi and the scaling dimension ofOi are related bym2 = ∆(∆ − d/2).

The superscript inGc
ijk is to stress that in this section we are working with canonically normalized

fields.

There are two things we can do with this action. First, we can compute in supergravity the

normalized 3-point correlators following [26, 30],

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x1 − x2|2β3|x2 − x3|2β1 |x3 − x1|2β2
, (2.3)

C123 =
Gc

123

25/2πd/4
×

3
∏

r=1

(

Γ(βr)

{Γ(∆r − d/2 + 1)Γ(∆r)}1/2

)

× Γ(σ − d/2) , (2.4)

whereσ = (∆1+∆2+∆3)/2, βr = σ−∆r. Second, we can canonically quantize the free part of the

action and read off the matrix elements of the cubic Hamiltonian. As usual, canonical quantization

associates a harmonic oscillator to each normalizable solution to the free field equation of motion.

For a real scalar in AdS, the expansion takes the following form:

ϕ(t, x) =
∑

i

fi(x)
√

2(∆ + ni)

(

aie
−i(∆+ni)t + a†ie

i(∆+ni)t
)

, (2.5)

wheret is the global time andx denotes thed spatial coordinates in the metric,

ds2 =
1

cos2 θ

(

−dt2 + dθ2 + sin2 θdΩ2
d−1

)

. (2.6)
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In (2.5), the indexi in runs over all solutions, andfi(x) are the spatial part of the solutions. The

excitation numberni is zero for the ground state and is a positive integer for excited states. The

matrix elements of the cubic Hamiltonian can be read off simply by inserting (2.5) into the cubic

term of the Hamiltonian. For the ground state wave functionsof the scalars,

f0 =

√

Γ(∆ + 1)

πd/2Γ(∆ − d/2 + 1)
(cos θ)∆ , (2.7)

the matrix elements turn out to be3,

H123 =
Gc

123

23/2πd/4
×

3
∏

r=1

(

Γ(∆r)

Γ(∆r − d/2 + 1)

)1/2

× Γ(σ − d/2)

Γ(σ)
. (2.8)

Comparing (2.4) and (2.8), one finds that

H123 =
2Γ(∆1)Γ(∆2)Γ(∆3)

Γ(β1)Γ(β2)Γ(β3)Γ(σ)
C123, (2.9)

In the pp-wave limit, we take∆r → ∞ and use the relation (2.1) to obtain the holographic duality

map as advertised,

H
(PP)
123 = lim

Penrose
H

(AdS)
123 =

∆123

(∆123/2)!

(

J1J2

J3

)

∆123
2

C123 , (2.10)

where∆123 ≡ ∆1 + ∆2 − ∆3 is kept finite. From here on, for any physical quantityX assigned

to each of the three states participating in the cubic interaction, we will use the notationX123 ≡
X1 +X2 −X3.

2.3 Intuitive picture by Yoneya et al.

Holography in the pp-wave duality has remained a puzzle because the boundary of the original

AdS is completely lost in the process of taking the pp-wave limit. Then, how can one derive a

relation like (2.10) from the pp-wave string theory (or supergravity) without tracing back to the

original AdS? Perhaps one cannot. We did trace back to the original AdS to derive (2.10). In the

next section, we will use it as a dynamicalinput in constructing the cubic vertex in the pp-wave.

In other words, among all candidate vertices satisfying the(super-)symmetry constraints, we will

pick out the one respecting the duality map. This point of view was pursued systematically by

Yoneya and collaborators [22, 23, 24]. We briefly review their work here from a slightly different

perspective. It will provide an intuitive understanding ofwhat (2.10) means.
3Excited states give different values ofH123 through the overlap integral of wave-functions. However, note that all

the wave-functions of a same field share the coupling constant Gc
123

. This fact will be important in section 3.
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2T
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θ

tE
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3π/2

π

π/20

π/2

t
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θmin ∼ 2e−T

A

θ

Figure 1: The geodesics in (a) Lorentzian and (b) Euclidean AdS in global coordinates.

One starts with the GKPW relation for the correlators. As emphasized in [22, 23, 24], the bulk

to boundary propagator should be understood as a Euclidean path integral. The reason is that in the

Lorentzian signature, a massive particle can never reach the boundary. In global coordinates with

the metric (2.6), the geodesic equation can be easily solved. For example, the solutions describing

a radial motion look like (See Figure 1),

Lorentzian : sin θ = sinA sin t , Euclidean : sin θ =
cosh t

cosh T
. (2.11)

The second thing to notice is that in the semiclassical limit(∆ ≫ 1), the saddle point approxima-

tion to the ’propagator’ along the geodesic becomes reliable. For a large value of the distance2T in

time direction between the two boundary points, the Euclidean geodesic starting from a boundary

point runs exponentially toward the center of the AdS and stays there until it curves back to the

other boundary point. This is consistent with the fact that the pp-wave limit magnifies the small

region around the center. In [24], the duality map (2.10) wasderived by systematically perform-

ing the saddle point approximation and constructing an effective action for a particle along the

geodesic.

Writing (2.10) asC123 = L123 · H123, one could heuristically argue thatH123 originates from

the body of the geodesic passing through the center of AdS captured by the pp-wave, whileL123
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U(1)Y-2 2-1 0 1

B̄ B

t

s

φ

q̄† q†
8

6

4

2

nF = 2(∆ − p)

Figure 2: Supergravity multiplet. Fermions are hidden in the small boxes

comes from the ‘legs’ connecting the center and the boundary. It would be very interesting to

generalize this semi-classical picture to the full string theory and derive a similar duality map.

3 Supergravity vertex

In this section, we derive the supergravity vertex consistent with the duality map (2.10), leaving

the full string theory vertex to the next one. In the first subsection, we compute several examples

of H(AdS)
123 as described in section 2. In the second one, we determine theform of H(AdS)

123 by

demanding that it satisfy the super-algebra, respect theU(1)Y symmetry of IIB supergravity, and

match the data of the first subsection according to (2.10).

3.1 ‘Experimental’ data

We begin by reviewing the structure of the IIB supergravity multiplet in AdS5 × S5 [31, 32].

After Kaluza-Klein reduction, the supergravity modes forma series of half-BPS multiplets of the

su(2, 2|4) super-algebra. Each multiplet is labeled by an integerp. Figure 2 shows how such a

multiplet splits into several representations of the bosonic so(2, 4) ⊕ so(6) bosonic algebra. The

notation[a, b, c](i,j) denotes the Dynkin label underSO(6) and theSU(2) × SU(2) ≈ SO(4) ⊂
SO(2, 4) quantum number. The AdS energy∆ of the ground state of a given supergravity mode is

the integerp plus half of the numbernF of supercharges needed to reach the given state from the

ground state.
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In addition to the super-algebra quantum numbers, each modeis assigned the so-calledU(1)Y

charge. ThisU(1) is the subgroup of theSL(2,R) of the IIB supergravity, preserved by the

AdS5 × S5 background. The dilaton-axion scalars form a complex scalar field with charge±2

and combinations of NSNS and RR two-form fields have charges±1, while the graviton and RR

4-form fields are neutral.

Note that thisU(1)Y is an exact symmetry of the AdS and pp-wave supergravity. In particular,

theU(1)Y charge should be conserved in a cubic interaction involvingthree supergravity states.

Even in the full string theory in which theU(1)Y is broken, the selection rule will continue to

hold when all three external states are supergravity states[33, 34]. This selection rule will play an

important role in constructing the holographic cubic vertex in the pp-wave.

In the following, we present some explicit examples of the matrix elementHAdS
123 in (2.10).

They will impose severe constraints onHPP
123 through (2.10). For simplicity, we consider only

scalar fields inAdS5. There are four scalar fields that are also scalar on theS5, as shown in

Figure 2. Thes andt fields are particular combinations of some components of thegraviton and

RR 4-form field. The complexB field is the dilaton-axion pair which is related to the standard

form τ = χ + ie−φ by the conformal mapping,

B =
τ − τ0
τ + τ0

, (3.1)

so that, for any constant background valueτ0, theU(1)Y symmetry actslinearly onB. The se-

lection rule becomes manifest in this variable. Finally, wewill also consider the fieldφ which is

basically the graviton with both indices along theS5 direction. So, it is a scalar inAdS5, but a

symmetric, traceless tensor on theS5.

TheS5 scalarss, t, B transforms in[0, k, 0] representation ofSO(6). Thisk is identified with

the quadratic Casimir for spherical harmonics onS5: ∇2Y = −k(k + 4)Y . As shown in Figure 2,

k is related to∆ andp ask = p− nF/2 = ∆ − nF . More precise definition of the fields and their

cubic couplings are summarized in the appendix A and references therein.

Bosonic impurities

The first class of amplitudes we consider involve threes-states. In the pp-wave set-up where aU(1)

R-charge is singled out, anSO(6) representation splits into differentSO(4) representations. They

correspond to the following operators in Yang-Mills, usually called the ‘scalar-impurity’ operators

in the pp-wave literature.

O0 = Tr(ZJ), O1 = Tr(φZJ), O2 =
J
∑

l=0

Tr(φZ lψZJ−l) . (3.2)
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The number of impuritiesnB satisfies the relationJ + nB = k = ∆. SinceJ is conserved,

∆123 = k123 = (nB)123 holds. The following table summarizes several amplitudes.The numbers

on the first column denote the number of impurities of each operator. The second column contains

the value of LHS of (2.10) normalized byC(0)
123 ≡ √

J1J2J3/N . The third and fourth columns

contain the two factors on the RHS of (2.10). For later convenience, we defineqi ≡
√

Ji/J3

(i = 1, 2).

(s1s2|s3) H123/C
(0)
123 ≡ Vs∆123

∆123

(∆123/2)!

(

J1J2

J3

)

∆123
2

C123/C
(0)
123

(00|0) 1 · k123 ∆123 1

(01|1) q2k123 ∆123 q2

(02|2) q2
2k123 ∆123 q2

2

(11|2) q1q2k123 ∆123 q1q2

(11|0) q1q2k123
J1J2

J3
∆123

1√
J1J2

(12|1) q1q
2
2k123

J1J2

J3
∆123

1√
J1J3

(22|0) q2
1q

2
2k123

(

J1J2

J3

)2
∆123

2
2

J1J2

(3.3)

The variablek123 counts the impurity number violation, so it has definite integer values. How-

ever, we formally write it as if it is an undetermined variable, even when it vanishes, to facilitate

comparison with the pp-wave vertex.

From the point of view of Kaluza-Klein reduction, operatorswith different scalar impurity

configurations correspond to different spherical harmonics wave-functions on theS5. The factors

Vs in the first column come from the spherical harmonics overlapintegrals. As such, they are

common for all supergravity fields that are scalar on theS5. So, we will not separately discuss the

effects of scalar impurities when we discuss other scalar fields thans below.

Next, we discuss the effect of the ‘vector impurities.’ In the supergravity sector, the vector

impurities are simply total derivatives acting on a given primary operator,

O = Tr(Z, φ, etc.), O(1)
µ = ∂µO, O(2)

µν = ∂µ∂νO . (3.4)

The resulting operators are descendants of the primary operator. In any CFT, correlators of descen-

dants are completely determined by those of primaries. Thisfact is reflected in the supergravity

computation. Primary state and descendant states are different wave functions of a same super-

gravity field. So, they share the same coupling constant. Theonly difference inH123 then comes

from the overlap integral of the three wave functions. The following table summarizes an explicit

9



example of thes field.

(s1s2|s3) H123/C
(0)
123 ≡ VvVsk123

(00|0) Vs · k123

(01|1) q2Vsk123

(11|0) q1q2Vsk123

(3.5)

The first row contains implicitly the entire table (3.3) withno vector impurities. As one adds

vector impurities, the wave function effect shows up as written in the last two rows. Note that the

scalar impurities and vector impurities commute with each other. Note also that the ‘dynamic’ part,

k123 = (nB)123, counts only the scalar impurities but not the vector impurities. We see that the

accidentalZ2 symmetry of the pp-wave string theory is broken. This will becrucial in determining

the cubic vertex in the next subsection.

Fermionic impurities

So far, we considered only thes field which lies at the bottom of Figure 2. As we will see in the

next subsection, it turns out that the amplitudes listed above are already sufficient to determine the

supergravity vertex. Still, by comparing some amplitudes involving other states in Figure 2, we

could verify in more detail, the validity of the vertex and aswell as the duality map (2.10).

For later convenience, we list all amplitudes involvings, t andB together. In the following

table, it is understood thatVvVs is multiplied to each amplitude when bosonic impurities areadded,

and thatk123 counts only the scalar impurities.

process H123/C
(0)
123

(s1s2|s3) k123

(t1s2|s3) q8
2(k123 + 4)

(s1s2|t3) O(1/J4)

(s1t2|t3) q8
2k123

(t1t2|s3) O(1/J4)

(t1t2|t3) (k123 + 4)

process H123/C
(0)
123

(s1B2|B̄3) q4
2k123

(B1B̄2|s3) q4
1q

4
2(k123 + 4)

(t1B2|B̄3) q4
2(k123 + 4)

(B1B̄2|t3) q4
1q

4
2k123

(3.6)

The amplitudes are proportional to eitherk123 or (k123 + 4). Note that for each process(12|3)

listed in (3.6), the constant shift tok123 is always equal to(nF/2)123. In other words, including

the shift, the coupling is proportional to(nB + nF/2)123. This expression is most suitable for

comparison with the pp-wave vertex. Alternatively, one canuse∆ = k+nF to write the couplings
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as(∆−nF/2)123. Note that(∆−nF/2) is nothing but the scaling dimension of the chiral primary

in the super-multiplet containing the given field. This is natural since the coupling for a chiral

primary and those for its super-descendants are expected tobe proportional to each other.

Finally, we compute amplitudes involving oneφ field and twos fields. Unlike the examples

discussed above, this amplitude does not contain an explicit factor ofk123, becauseφ is not a scalar

on theS5.

(φ1s2|s3) H123/C
(0)
123

(·1|1) 0

(·2|0) q2
1q

4
2

(·0|2) 0

(s1s2|φ3) H123/C
(0)
123

(11|·) O(1/J3)

(02|·) O(1/J2)
(3.7)

3.2 Construction of the vertex

We will closely follow the standard process of constructingthe vertex, and our result will share

many features with the previous proposals. However, compatibility with the duality map (2.10)

and the supergravity data listed in the previous subsectionwill lead to a final result different from

all of the previous proposals.

Let us briefly sketch the standard process.(See, for example, [35, 7]). Quantization of the string

theory in the pp-wave is performed in the light-cone gauge. In the light-cone gauge, space-time

symmetries are implemented in the interacting theory in twodifferent ways. All the generators that

leave the light-cone gauge fixing invariant are called kinematical. They do not receive correction

from the interactions and can be promoted to local symmetries on the world-sheet. The remaining

generators are called dynamical and do receive correctionswhen the interactions are turned on.

For the string theory in the pp-wave, the light-Hamiltonianand a half of the 32 supercharges are

the only dynamical generators.

In principle, the cubic interaction part of the dynamical generators (HamiltonianH3 and super-

chargesQ3 ) can be written as an operators in the string Fock space whichchange the number of

strings. In practice, it is more convenient to translateH3, Q3 into states|H3〉, |Q3〉 in the three string

Hilbert space. Construction of|H3〉, |Q3〉 takes two steps. First, one builds a kinematical vertex

|V 〉 which manifestly respects all the kinematical symmetries.Then, the dynamical generators

take the form|H3〉 = ĥ3|V 〉, |Q3〉 = q̂3|V 〉 The prefactorŝh3, q̂3 chosen such that the kinematical

constraints are not spoiled and at the same time the commutation relation among the dynamical

generators are also satisfied.
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Free theory: Review

The IIB supergravity in the pp-wave has manifestSO(4)×SO(4) rotation symmetry inherited from

theSO(2, 4) × SO(6) symmetry ofAdS5 × S5. Following [17], we use the vector indexi and

bi-spinor indicesα1, α̇1 for the firstSO(4) ⊂ SO(2, 4), and (i′;α2, α̇2) for the secondSO(4) ⊂
SO(6). The Hilbert space of the free supergravity in the pp-wave isdescribed by 8 bosonic oscilla-

tors{ai, (ai)†; ai′ , (ai′)†} and 8 fermionic oscillators{bα1α2 , (b
†)α1α2 ; bα̇1α̇2 , (b

†)α̇1α̇2}. The bosonic

oscillators build up(∆; i, j) representation ofSO(2, 4) and [a, b, c] representation ofSO(6) in

Fig. 1.

The fermionic oscillators are identified with the kinematical super-charges up to a light-cone-

momentum dependent factor (we assumeα ≡ α′p+ > 0 throughout this subsection),

qα1α2 =
√
αbα1α2 , (q†)α1α2 =

√
α(b†)α1α2 ,

q̄α̇1α̇2 =
√
αbα̇1α̇2 , (q̄†)α̇1α̇2 =

√
α(b†)α̇1α̇2 . (3.8)

They form a super-multiplet of the same diamond shape as in Figure 1. The other 16 super-charges

are dynamical. Explicitly, they are given by

Qα̇1
α2 = (a†)α̇1α1bα1α2 − aα2α̇2(b

†)α̇1α̇2 , (Q†)α̇1

α2 = aα1α̇1(b
†)α1α2 − (a†)α̇2α2bα̇1α̇2 ,

Q̄α1
α̇2 = (a†)α̇1α1bα̇1α̇2 + aα2α̇2(b

†)α1α2 , (Q̄†)α1

α̇2 = aα1α̇1(b
†)α̇1α̇2 + (a†)α̇2α2bα1α2 . (3.9)

Note that all of them annihilate the oscillator vacuum, and that they are eigenstates of theU(1)Y

symmetry. In what follows, the anti-commutators among the dynamical supercharges are impor-

tant. The only nonvanishing terms are

{Qα̇1
α2 , (Q

†)β̇1

β2} = 2δα̇1

β̇1
δβ2
α2
H + rotations,

{Q̄α1
α̇2 , (Q̄

†)β1

β̇2} = 2δα1
β1
δβ̇2

α̇2
H + rotations . (3.10)

Cubic vertex

As a starting point, we use the kinematical vertex proposed in [19],

|V 〉 = exp

{

1

2

3
∑

r,s=1

a†(r)M
rsa†(s)

}

exp

{

−
2
∑

i=1

b†(i)qib
†
(3)

}

|v〉123, (3.11)

whereM rs are the supergravity Neumann coefficients (qi =
√

|αi/α3|, i = 1, 2, as before),

M =







q2
2 −q1q2 −q1

−q1q2 q2
1 −q2

−q1 −q2 0






. (3.12)
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In order for the prefactor not to spoil the kinematical constraint, it should consist of the following

combinations of oscillators.

Ki = q1(a
†
2)
i − q2(a

†
1)
i, Y α1α2 = q1(b

†
2)
α1α2 − q2(b

†
1)
α1α2 ,

Li
′

= q1(a
†
2)
i′ − q2(a

†
1)
i′, Z α̇1α̇2 = q1(b

†
2)
α̇1α̇2 − q2(b

†
1)
α̇1α̇2 .

(3.13)

Following the literature on the construction of the vertex,we assume that the prefactor has at most

two powers of bosonic oscillators. It will be justified by matching the amplitudes via the duality

map. TheU(1)Y symmetry demands that|H3〉 contains only terms with the same number ofY

andZ, and that the supercharges have terms likeY nZn±1 depending on theirU(1)Y charges. It is

straightforward to enumerate all possible terms allowed toappear in the supercharges. Schemati-

cally,

|Q3〉 = (c1LZ + c2KY Z
2 + c3LY

2Z3 + c4KY
3Z4)|V 〉,

|Q†
3〉 = (d1KY + d2LY

2Z + d3KY
3Z2 + d4LY

4Z3)|V 〉,

|Q̄3〉 = (c̄1LY + c̄2KY
2Z + c̄3LY

3Z2 + c̄4KY
4Z3)|V 〉,

|Q̄†
3〉 = (d̄1KZ + d̄2LY Z

2 + d̄3KY
2Z3 + d̄4LY

3Z4)|V 〉 . (3.14)

Define the sum of super-charges in the free theory,

Q =

3
∑

r=1

Q(2)
r , (3.15)

for the four kinds of dynamical supercharges. The super-algebra at the cubic level demands that

Q|Q†
3〉 +Q†|Q3〉 = |H3〉, Q̄|Q̄†

3〉 + Q̄†|Q̄3〉 = |H3〉 , (3.16)

and that similar equations withRHS = 0 hold for all the other combinations of super-charges.

A straightforward but tedious calculation gives a seemingly over-constrained set of linear equa-

tions among the coefficients in (3.14). However, it turns outthat many of the relations are linearly

dependent, and there are three independent solutions. The solution for the cubic Hamiltonian is

given by,

|H3〉 = h0

(

(L2 −K2)(1 + Y 4Z4) + 2KL(Y Z + Y 3Z3) −K2(Y Z)2 + L2(Y Z)2
)

|V 〉

+h−(K2 + L2)|V 〉 + h+(K2 + L2 + 8)(Y Z)4|V 〉, (3.17)

whereh0, h−, h+ are so far undetermined constants. As expected, the super-algebra alone does not

fix the vertex completely. It is now time to use our knowledge on holography discussed above.

Using the conservation laws for the kinematical symmetriesandq2
1 + q2

2 = 1, one can show that

(Li
′

)2|V 〉 = (nB)123|V 〉, (3.18)
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that is,(Li
′

)2 counts the change in the number of scalar impurities. Similarly, one can show that

the (Ki)2 term counts vector impurities. However, we saw that vector impurities contribute only

the ‘wave-function factor’Vv and do not affect the coupling constant. This fact demands via the

duality map (2.10) that|H3〉 should not contain a factor of(Ki)2 when all external states are

SO(4) × SO(4) scalars. This implies thath− = h0 = h+. The overall normalization can be fixed

by matching any one of the non-zero amplitudes listed in (3.3). All in all, the final answer is4,

|H3〉 = C
(0)
123

(

(Li
′

)2 + {(Li′)2 + 4}Y 4Z4 +K α̇1α1Lα̇2α2(Yα1α2Zα̇1α̇2 + Y 3
α1α2

Z3
α̇1α̇2

)
)

|V 〉

+
C

(0)
123

2

(

Lα̇2α2Lβ̇2β2Y 2
α2β2

Z2
α̇2β̇2

−K α̇1α1K β̇1β1Y 2
α1β1

Z2
α̇1β̇1

)

|V 〉 . (3.19)

Note that we used only the ‘bosonic impurity’ part of the previous subsection to determine the

vertex. The(Li
′

)2 factor givesk123 part of (3.3) and (3.5). The wave-function factorVs andVv
match exactly elements of the bosonic Neumann matrix.

Now, all the amplitudes containing ‘fermionic impurities’provide further checks on the vertex.

First, note that the factor((Li
′

)2 + 4) multiplying Y 4Z4 matches(k123 + 4) in (3.6). In fact, the

(Y Z)0 term and(Y Z)4 terms can be combined into(nB + nF/2)(1 + Y 4Z4)|V 〉. The factors

of q1, q2 in (3.6) come from both the fermionic Neumann matrix, and forthose proportional to

(k123 +4), also fromY 4Z4. Finally, one can check that theL2(Y Z)2 term gives the non-vanishing

entry in the table (3.7) for the(φss) amplitudes.

4 String theory vertex

We now turn to the task of generalizing the supergravity vertex (3.19) to the full string theory. We

first need to enlarge the Fock space to include also the statescreated by the stringy oscillatorsa†n
andb†n. Then we need to find a3-string vertex satisfying two main constraints: it should realize

the pp-wave super-algebra at cubic level and it should reduce to the supergravity expression (3.19)

in theµαi → 0 limit. In principle one could proceed in a systematic way as done in the previous

section for the BPS sector, but this exhaustive approach is rather complicated at the string level. It

is easier and also more instructive to derive the cubic vertex by combining the results derived in

previous works.

We start by choosing a coherent state that realizes the kinematical part of the algebra|V 〉 =

EaEb |v〉123, where the two terms contain the bosonic and the fermionic contributions respectively.
4Our definitions for the products ofY and Z are slightly different from those of [17]:Y 2 = Y 2

P /2, Y 3 =

Y 3

P /3, Y 4 = Y 4

P /12 and similarly forZ. Accordingly, the polynomialsv ands appearing in (4.3) should be un-

derstood ass(Y ) = Y + iY 3, vij = δij(1 + Y 4)(1 + Z4) − i[(Y 2)ij(1 + Z4) − (Z2)ij(1 + Y 4)] + (Y 2Z2)ij and

vi′j′ = δi′j′ (1 − Y 4)(1 − Z4) − i[(Y 2)i′j′ (1 − Z4) − (Z2)i′j′(1 − Y 4)] + (Y 2Z2)i′j′ .
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Let us recall their explicit expressions5. The bosonic exponential reads [13]

Ea = exp

{

1

2

3
∑

r,s=1

a†n(r)N
rs
nma

†
m(s)

}

. (4.1)

The string Neumann coefficients are usually written in termsof products of infinite matrices. From

this formal definition many properties can be derived [36, 15], however it is difficult to obtain an

explicit value of theN rs
nm in terms ofn,m and theαi’s, since the original product expression

contains the inverse of an infinite matrix. A detailed study of the Neumann coefficients forµ 6= 0

can be found in [37, 38, 39]. In the fermionic sector we will use the coherent state introduced

in [20], which can be written in theSO(4) × SO(4) notation as done in [17]

Eb = exp

[

3
∑

r,s=1

∑

m,n≥0

(

bα1α2 †
−m(r)b

†
n(s)α1α2

+ bα̇1α̇2 †
m(r) b

†
−n(s) α̇1α̇2

)

Qrs
mn

]

. (4.2)

As we reviewed in the introduction, this kinematical part can be completed into a fully su-

persymmetric interacting Hamiltonian in (at least) two physically different ways. One possible

completion was first proposed by [13, 14, 16] in theSO(8) formalism. Subsequently the same ver-

tex was recast in theSO(4)×SO(4) language [17, 18] and here we will stick to theSO(4)×SO(4)

notation

|H3〉I = −
[

(

KiK̃j +
1

2
δij

)

vij(Y, Z) −
(

Li′L̃j′ +
1

2
δi′j′
)

vi
′j′(Y, Z) (4.3)

− K α̇1α1L̃α̇2α2sα1α2(Y )s∗α̇1α̇2
(Z) − K̃ α̇1α1Lα̇2α2s∗α1α2

(Y )sα̇1α̇2(Z)

]

|V 〉 ,

where again we follow the conventions and notation of [17], except for the normalization the

bosonic constituents which is slightly different,

Ki =

√

α′

2µ|α1α2α3|
Ki
P , Li

′

=

√

α′

2µ|α1α2α3|
Ki′

P . (4.4)

Another possibility for writing a supersymmetric vertex isdiscussed in [21], where it was

proposed to use simply the free Hamiltonian as prefactor of the coherent state

|H3〉D =

3
∑

r=1

Hr|V 〉 . (4.5)

However, it was first noticed in [24] that neither of the two vertices (4.3) and (4.5) have the expected

behaviour from the holographic point of view. We can rephrase this observation in a somehow
5For the conventions on the string oscillators and the explicit definition of the Neumann matrices the reader is

referred to [15] and references therein.
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different way by using the results of the previous section: the supergravity limit of the vertices (4.3)

and (4.5) breaks the relation (2.1) because they contain someK2
0 term in the prefactor which is

absent on the AdS side. So it was proposed [24] that the holographic cubic vertex for the pp-

wave background is proportional to|H〉I + |H〉D. It is interesting to notice that this combination

reproduces, when restricted to the scalar bosonic oscillators, the ‘phenomenological’ prefactor

introduced in [40] to explain the field theory results from a string theory point of view.

However, a closer comparison between the proposed vertex|H〉I + |H〉D and the largeJ limit

of the AdS couplings shows that relation (2.1) is not yet satisfied. In fact, when we restrict the

combination|H〉I + |H〉D to the supergravity sector, the only term that perfectly matches the AdS

expectation is the one without fermionic insertions (ofY0 andZ0). However, it is not difficult to

see how to modify the vertex (4.5) in such a way that its combination with (4.3) gives the expected

supergravity answer. First we should add two pieces quarticin the fermions (Y 4 andZ4) so that

at the supergravity level theU(1)Y violating terms of (4.3) are canceled. Then a contribution with

eight fermionic insertions (Y 4Z4) should be added to match the second term in (3.19). Thus our

final proposal for the holographic cubic vertex is

|H〉 =
C

(0)
123

2

(

|H〉I + |H〉II
)

, (4.6)

where

|H3〉II =

(

3
∑

r=1

Hr

)

(

1 + Y 4
)(

1 + Z4
)

|V 〉 . (4.7)

Clearly this contribution to the vertex is a natural generalization of the (4.5) and it satisfies by itself

the supersymmetry constraints. In fact the combination(1 + Y 4 +Z4 + Y 4Z4)|V 〉 satisfies all the

requirement related to the kinematical part of the pp-wave algebra. Thus it can be ‘dressed’ with

the free supercharges or Hamiltonian as done in [21] in orderto produce a consistent system of

interacting correction to the free generators. Notice alsothat the commutation of the kinematical

constraints with
∑

rHr is again a combination of the kinematical constraints and thus does not

spoil the properties of the coherent state|V 〉.

4.1 Some checks on the string vertex

From the gauge theory point of view the holographic vertex contains a great deal of information

on non-BPS quantities, since the dependence of the Neumann matrices onµαi in (4.6) translates,

in the SYM theory, into the exact dependence on the ’t Hooft coupling. Moreover in the non-

supersymmetric sector, the comparison with the gauge theory is the only way at our disposal to

check the correctness of the proposal (4.6). However, it is still not entirely clear how to relate in
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general string and gauge theory results, since the dictionary (2.10) between3-point correlators in

the two descriptions has been derived only in the supergravity approximation. The authors of [24]

proposed a small modification of (2.10)

∆123

(

J1J2

J3

)

∆123
2

C123 = (f)−
∆123

2 Γ

(

∆123

2
+ 1

)

H
(PP)
123 , (4.8)

wheref is a combination that appears in various places of the stringcomputations (see, for in-

stance, [15]):f = (1− 4µαK). With this prescription the3-point functions among BPS states are

independent ofµαi, even if the full string vertex (4.6) is used to compute the correlator. This can

be checked by using the relation between the stringy Neumanncoefficients and the supergravity

ones:N ij
00 = fM ij for 1 ≤ i, j ≤ 2 andN i3

00 = M i3. The requirement to have constant3-point

functions among BPS states is in accordance with the expected non-renormalization theorem [41]

of the SYM correlators among three BPS operators. Of course it would be very interesting tode-

rive (4.8) in order to check the non-renormalization theorem, instead of imposing it. Moreover it

is quite likely that otherα′-dependent modifications will appear in the exact dictionary between

C123 andH(PP)
123 . However, if we focus on the first order in theλ′ expansion, the simple Eq. (4.8)

is able to capture completely the relation between gauge theory and string theory. Let us briefly

summarize the evidence collected so far supporting this proposal.

– The first thing we want to verify is that the new terms introduced in (4.6) do not spoil the

agreement between string and gauge theory correlators found in previous works. It is clear that

for purely bosonic amplitudes the new terms present in (4.7)are irrelevant and so all the checks

already done in this subsector6 supports our proposal (4.6). On the contrary, the amplitudes with

four or more fermionic impurities are sensitive to the novelties contained in (4.6). However, in

the situation studied in [24], the four fermions are dividedin an impurity preserving way, that is

two of them act on the ingoing state (the one with negativeαi) and the others act on the outgoing

states (those withαi > 0). In this case, the new contributions in (4.7) appear only atthe next-to-

leading order inλ′, In fact theY 4 andZ4 terms appearing in|H〉II are multiplied by
∑

rHr and

in the impurity preserving processes
∑

rHr ∼ O(λ′). Similar terms quartic in the fermions are

present also in|H〉I, but they do not have the energy difference as additional factor and so their

contribution survives also at the first order in theλ′ expansion. Thus theO(λ′) result for these

amplitudes is again in agreement also with the vertex (4.6).This situation is very similar to that

encountered in the study of the processes where the number ofimpurities is preserved, but their

flavor changes (like the process considered in [40]). Also inthis case only|H〉I contributes to the

leading order result of the string amplitude.

– In the truly non-impurity preserving processes, where also the number of impurities changes

from the operatorO3 to the operatorsO1 andO2, the full vertex (4.6) enter. We have already seen
6This applies also to the recent papers [42], as well as to previous works [40, 43].
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in section 3 that the new terms in (4.7) are necessary to have agreement with the largeJ limit of

supergravity results. In the BPS sector this ensures that the string amplitudes do agree also with

the gauge theory answer, thanks to the standard AdS/CFT duality. Let us see how this works by

focusing for instance on the sixth case in the table (3.3). The relevant operators are

O1 = Tr(φZJ1) , O2 =
1√
J2

J2
∑

l=0

Tr(φ̄Z lψZJ2−l) , O3 = Tr(ψZJ3) , (4.9)

and it is straightforward to see that the gauge theory combinatorics reproduces in the largeJ limit

the third column of (3.3)

〈Ō3(x3)O2(x2)O1(x1)〉 =
1√
J1J3

C
(0)
123

|x1 − x2|2β3 |x2 − x3|2β1|x3 − x1|2β2
. (4.10)

On the string side one obtains

123〈v| aψ̄0(3) a
φ̄
0(2)a

φ
0(2) a

φ
0(1)|H〉 = 2N12

00N
23
00 = 2fM12

00M
23
00 . (4.11)

By using (3.12) and, in this case,∆123 = 2, we see that this is equal to the first column of the

table (3.3) multiplied by the factorf which is the difference between the supergravity and the

full Neumann matrices for the elementsN ij
00 with 1 ≤ i, j ≤ 2. However, the dictionary (4.8) was

engineered to cancel the factors off and in fact we get the sameµ–independent answer obtained in

section 3. It is also easy to study the same amplitude in the string case, where the second operator

is replaced by

O2 =
1√
J2

J2
∑

l=0

Tr(φ̄Z lψZJ2−l) e
2πi nl

J2+1 . (4.12)

In this case the tree-level result on the gauge theory side iszero, because the phase forces the final

sum overl to vanish. On the string side, the only difference with the BPS case is that now the

result is proportional to the Neumann matricesN12
0nN

23
n0, while before we hadn = 0. By using the

results of [37], we find that in this case the first non-trivialcontribution to the RHS of (4.8) starts

at orderλ′, in agreement with the gauge theory results which fixes the tree-level contribution to be

zero.

– The last case of table (3.3) presents the prototypical caseof impurity non-preserving pro-

cesses. In this case both ‘outgoing’ operators contain two impurities. On the gauge theory side

the largeJ limit of this amplitude does not change when we pass from BPS operators to stringy

ones with the BMN phase (like that of Eq. (4.12)). This is because only particular terms in the sum

defining the operators contribute to the amplitude in theplanar approximation ande2πin/J → 0 for

anyn 6= 0 in the BMN limit. On the string side this observation impliesthat the elementsN ij
nm
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with 1 ≤ i, j ≤ 2 of the Neumann matrices are,at leading order in λ′, basically the same as the

zero-mode elements. Again by using the results of [37] one can check that this is indeed the case.

Thus we can use the agreement between string and supergravity/CFT results at the BPS level in

order to claim that impurity non-preserving amplitudes agree at leading order inλ′ also for generic

non-BPS states.

5 Discussion

In the usual approach to the BMN duality, one first tries to build the pp-wave string Hamiltonian

by using only the internal consistency of the theory and thenlooks for a string/SYM dictionary

compatible with the string vertex. Since the two vertices (4.3) and (4.5) are rather different, they

motivated two different ways to relate string theory interactions with the dual gauge theory results.

Inspired by the string bit proposal [44, 45], various authors [46, 47, 48, 49] studied the relation

between the string vertex (4.3) and the mixing between single and double trace operators on the

field theory side (see also [50, 51] for further checks in thisdirection). In particular, they proposed

to identify the3-string couplings derived from (4.3) with the matrix elements of the gauge theory

dilatation generator in a particular basis in the space of the single and double trace operators. On

the other hand the vertex (4.5) was motivated by realizing instring theory the proposal of [52]

that relates the3-string couplings with the correlators among the BMN operators on the gauge

theory side. Notice that also this point of view is consistent with the string bit picture, since it

identifies, in theµαi → ∞ limit, the world-sheet dynamics with the free contractionsamong the

constituents of the three operators (see for instance the figures for the3-point function in [52]

and [12]). Even though these two proposals were checked in various different cases, the situation

was not completely satisfactory. First the agreement between string and field theory results was

checked only at leading order inλ′. Then, on the conceptual ground, it was rather unclear the

role played in the duality by the gauge theory operators thatare exact eigenstates of the dilatation

generator. At leading order ing2 these eigenvectors are a particular combination of single and

double trace operators. However, on the one hand the comparison between the string vertex (4.5)

and the gauge theory results gave agreement only by using theoriginal BMN operators [27, 53,

21] and ignoring the multi-trace corrections of the dilation eigenvectors. On the other hand the

string/gauge theory comparison with the vertex (4.3) required a mixing between single and double

traces that wasdifferent from the one necessary to define the dilatation eigenvectors. In fact the

field theory computations of [40, 43], that are done with the dilatation eigenvectors, represented

for long time a puzzle from the string point of view, since they seemed to be not related to either

of the two vertices (4.3)-(4.5).

In order to overcome these problems, in this paper we reversed the approach commonly adopted
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so far and constructed a3-string interaction in the PP-wave background by taking into consider-

ation all possible information from different descriptions from the very beginning. In particular,

we study systematically the constraints on the string dynamics coming from the largeJ limit of

AdS5 × S5 supergravity. Our results confirm the physical picture of Dobashi and Yoneya [24] and

show how the string vertex has to be generalized in order to describe correctly also impurity non-

preserving processes. Moreover, as explained in section 5 of [24], this approach is able to explain

also the partial success, for impurity preserving processes, of the previous string/gauge theory

comparisons (see the discussion above). For these processes, it is possible to separate the con-

tributions coming from the free field theory combinatorics from those responsible of the operator

mixing and map them into the|H3〉D and|H3〉SV parts of the full string vertex|H3〉.
Let us conclude by summarizing here the main results derivedin this paper and focusing on the

properties of the vertex (4.6). A first unexpected feature isthat the string interaction must break

theZ2 symmetry of the pp-wave background, which, on the contrary,was preserved by the free

spectrum. It was first noticed in [19] that SV vertex [13] had adefinite parity under this discrete

symmetry. It was further proposed that one should build a different3-string vertex, with opposite

parity, in order to make a direct comparison with gauge theory correlators possible. This idea

was in striking contrast with the belief that there was a unique possible interacting Hamiltonian

realizing the relevant supersymmetry algebra. However an explicit realization of this proposal [21]

showed the necessity of further constraints in order to fix completely the string cubic Hamiltonian.

However, it turns out that the behaviour under theZ2 symmetry is not a reliable input for fixing the

form of the string vertex. A first signal that thisZ2 was not a good symmetry at the interacting level

came from the study [54] of field theory correlators among dilatation eigenstates containing vector

impurities. Here instead we used the insights coming from supergravity and we showed that the

interacting Hamiltonian must contain both odd and even terms underZ2. Moreover the vertex (4.6)

singled out by our analysis contain newSO(4) × SO(4) preserving combinations of the various

building blocks [15, 21], realizing once more a situation quite common in physics (i.e. everything

that is not forbidden is compulsory). It is natural at this point to ask whether it is necessary to add

further corrections to Eq. (4.6) that are not captured by oursupergravity analysis. Although this

seems unlikely we can not rule out such corrections. For instance we still use as an additional input

the requirement that the prefactor is at most quadratic in the bosonic oscillators. In order to clarify

completely this point it would be necessary to derive the cubic Hamiltonian from first principles,

for instance by applying a standard path integral approach also in the derivation of the prefactor

(and not only for the exponential part, as it was done in [12]).

Another interesting aspect of our string proposal is to see how theU(1)Y symmetry is realized

at the level of BPS (or supergravity) interactions. Actually this is a general observation, not re-

stricted to the particular pp-wave background we are focusing on. In fact a similar pattern appears
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also in the construction of the flat space IIB string field theory: in [55] it was noticed that theU(1)Y

symmetry forces the supergravity prefactor to be quartic inthe fermionic fields. However, the full

string construction [56] requires the presence of other terms that survive also when the amplitudes

are restricted to the supergravity sector. The original observation in [56] was that these new terms

are proportional (at the supergravity level) to the difference of the free Hamiltonians (
∑

rHr) and

thus are zero on-shell. In order to have a conservedU(1)Y symmetry also off-shell, [56] proposed

that theU(1)Y generator should get corrections in the interacting theory. Here we show that there

is a simpler way out: one can define the off-shell cubic Hamiltonian for the flat space to be a simple

combination of the Brink, Green and Schwarz vertex and of thefollowing vertex

|H3〉 = |H3〉BGS −
(

∑

r

Hr

)(

1 +

8
∏

a=1

Y a
BGS

)

|V 〉BGS , (5.1)

where we are now using the conventions of [56]. Notice that the additional piece is irrelevant if we

just want to compute on-shell scattering amplitudes because in flat space the energy is conserved.

Thus previous checks on S-matrix elements like those in [57]are not affected by the modification

proposed here. However, the inclusion of the new terms in (5.1) yields aU(1)Y preserving (su-

pergravity) vertex also off-shell. In the pp-wave case thisfeature is necessary since we clearly do

not want any conservation law onHr in the physical observables and so the terms proportional to
∑

rHr can not be disregarded. However, the modification proposed in (5.1) is important also in

flat space every time one needs to go off-shell. Problems of this type are constructing a4-string

vertex by sewing two3-string vertices or computing the energy of an arbitrary string configuration

including the cubic contributionsH3. It is known that the vertex|H3〉BGS is incomplete and can

not be used to deal consistently with these questions. Because of these problems it has been pro-

posed that the light-cone string field theory contains also quartic terms [58, 59, 60, 61]. It would

be very interesting to reconsider these issues by using the3-string vertex (5.1) to see whether it

can provide a different completion of|H3〉BGS that does not require quartic corrections.

Also on the field theory side the string vertex (4.6) togetherwith the duality map (4.8) yields

some interesting and counterintuitive consequences. For instance, it is common to write the BMN

operators by focusing only on the leading term in theJ → ∞ limit, even if in principle they are

combinations of various contributions with the same quantum numbers7. This is the so-called ‘di-

lute gas approximation’ where the impurities are always thought to be far apart from each other.

However in the impurity non-preserving processes this approximation breaks down even in the

simplest situations, since in the holographic dictionary (2.10) between gauge and string theory

correlators there is a compensatingJ-dependent factor. This term plays an important rôle in the

correlators withdifferent barred and unbarred operators (i.e. with different ‘ingoing’ and ‘outgo-

ing’ states). In the dilute gas approximation this kind of amplitudes is trivially vanishing, while
7The importance of certain compensating terms, subleading in theJ → ∞ limit, was already stressed in [62, 54].
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on the string side the corresponding processes are non-zero, since they get a non-zero contribution

from the various term in the prefactor containing the fermionic insertions. The presence of the

compensating factor in (2.10) enhances the contributions coming from the subleading (inJ) terms

in the definition of the BMN operators and gives a non-zero answer also on the gauge theory side.

Finally a very important open issue is the full justificationof the holographic dictionary. For ex-

ample, the duality map (4.8), if correct, can provide a resolution to the puzzle of fractional powers

of λ′ raised in [63]. While the map in the supergravity sector (2.10) has been derived from directly

from the rules of the AdS/CFT duality, its string generalization (4.8) has been proposed [24] by

imposing the non-renormalization of the3-point BPS correlators. It is clearly important to test and

possibly completely fix this holographic dictionary. Two complementary approaches are possible:

either one can work from the bulk point of view and generalizethe physical picture sketched in

section 2.3 from the particle to the string case, or one starts from the field theory by pushing the

computations to the subleading order inλ′.
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A Coupling constants

We summarize the cubic couplings needed to compute the amplitudes in section 3. The(sss)

coupling was first computed in [41]. Couplings for twos and another arbitrary field were worked

out in [64, 65]. Other couplings listed below can be derived in a similar way. We follow the

notations of [65]. The part of AdS5 supergravity action relevant to our discussion can be written as

S =
N2

8π2

∫

d5x
√−g{L2 + L3} . (A.1)

The quadratic Lagrangian takes the following form

L2 = −
∑

ϕ=s,t,φ

Aϕ
2
{(∇ϕ)2 +m2

ϕϕ
2} − AB{|∇B|2 +m2

B|B|2} . (A.2)

The mass of each scalar is determined by the usual relationm2 = ∆(∆ − 4) and the relation

between∆ andk mentioned in subsection 3.1. The normalization constants are given by

As = 25 k(k−1)(k+2)
k+1

z(k), At = 25 (k+4)(k+5)(k+2)
k+3

z(k), AB = z(k), Aφ = 1
2
z(k) . (A.3)

The cubic Lagrangian is given by

L3 = −1

6
G

(sss)
123 s1s2s3 − 1

6
G

(ttt)
123 t

1t2t3 − 1

2
G

(tss)
123 t

1s2s3 − 1

2
G

(stt)
123 s

1t2t3
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−1

2
G

(φss)
123 φ1s2s3 −G

(sBB̄)
123 s1B2B̄3 −G

(sBB̄)
123 t1B2B̄3, (A.4)

where the coupling constants are given by

(s1s2s3) : 29 α1α2α3

(k1 + 1)(k2 + 1)(k3 + 1)

(σ + 2)!

(σ − 3)!
a(k1, k2, k3)〈C1C2C3〉,

(t1t2t3) : 29 (α1 + 2)(α2 + 2)(α3 + 2)

(k1 + 3)(k2 + 3)(k3 + 3)

(σ + 8)!

(σ + 3)!
a(k1, k2, k3)〈C1C2C3〉,

(t1s2s3) : 29 (σ + 2)(α2 + 2)(α3 + 2)

(k1 + 3)(k2 + 1)(k3 + 1)

α1!

(α1 − 5)!
a(k1, k2, k3)〈C1C2C3〉,

(s1t2t3) : 29 (σ + 4)α2α3

(k1 + 1)(k2 + 3)(k3 + 3)

(α1 + 6)!

(α1 + 1)!
a(k1, k2, k3)〈C1C2C3〉, (A.5)

(s1B2B̄3) : 24 (σ + 2)(α1 + 2)α2α3

k1 + 1
a(k1, k2, k3)〈C1C2C3〉,

(t1B2B̄3) : 24 (σ + 4)α1(α2 + 2)(α3 + 2)

k1 + 3
a(k1, k2, k3)〈C1C2C3〉,

(φ1s2s3) : 25σ(σ + 1)(α1 − 1)(α1 − 2)

(k2 + 1)(k3 + 1)
h(k1, k2, k3)〈T 1C2C3〉 .
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