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Abstract. One of the most exciting prospects for the LISA gravitational wave

observatory is the detection of gravitational radiation from the inspiral of a compact

object into a supermassive black hole. The large inspiral parameter space and low

amplitude of the signal makes detection of these sources computationally challenging.

We outline here a first cut data analysis scheme that assumes realistic computational

resources. In the context of this scheme, we estimate the signal-to-noise ratio that

a source requires to pass our thresholds and be detected. Combining this with an

estimate of the population of sources in the Universe, we estimate the number of

inspiral events that LISA could detect. The preliminary results are very encouraging

— with the baseline design, LISA can see inspirals out to a redshift z = 1 and should

detect over a thousand events during the mission lifetime.
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1. Introduction

The inspiral of a compact object (CO) into a supermassive black hole (SMBH) is an

exciting potential source for LISA [1]. The extreme mass ratio of these systems ensures

that the CO acts as a probe of the gravitational potential of the SMBH. For the last

several years before plunge, the orbit remains close to the SMBH and the emitted

gravitational radiation effectively maps out this strong field region of the spacetime

[2]. If the central object is really a Kerr black hole, extreme relativistic perihelion

and Lense-Thirring precessions are evident in the zoom and whirl waveforms [3]. These

complex features allow measurement of the mass and spin of the SMBH to unprecedented

precision [4]. If the central object is something other than a black hole, for instance a

massive boson star, the difference may be evident in the gravitational waves. Extreme

mass ratio inspiral (EMRI) waveforms thus provide a strong field test of GR and

black hole physics. Methods are presently being developed to detect and characterize

deviations from the Kerr predictions (e.g., [5]), but here we will focus on detection of

EMRIs into Kerr black holes.

The desire for LISA to detect a significant number of EMRIs during the mission has

been driving the final LISA mission specification. A typical expected EMRI source will

be buried in the detector noise. These signals can be extracted using matched filtering,

but the total number of detections will depend on the frequency range and level of the

LISA noise floor. We describe here a first cut effort to estimate the LISA detection

rate, assuming a plausible data analysis technique that employs realistic computational

resources. These preliminary results indicate that with its baseline design LISA should

see about a thousand EMRI events during its lifetime. There appears to be no pressing

need to modify the satellite design in order to enhance the EMRI event rate. More details

of this work can be found in a white paper prepared for the LIST (LISA International

Science Team) [6].

In section 2 we describe some astrophysical aspects of EMRIs, including the source

parameters of a typical event and an estimate of the capture event rate. In section 3

we outline a plausible detection scheme and then in section 4 we estimate the number

of events that LISA would see using this scheme, given the astrophysical rate estimate.

We finish in section 5 with a brief discussion of these results and outline some of the

remaining uncertainties.

2. Astrophysics of EMRIs

2.1. Source parameters

EMRIs occur as a consequence of large angle scattering encounters between objects in

the cusp of stars surrounding a supermassive black hole (SMBH) at the center of a

galaxy. Such encounters may put a star onto an orbit that passes sufficiently close to

the central black hole that gravitational radiation dominates the subsequent evolution

and it becomes bound to the SMBH. The stellar orbit decays over time, due to the
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loss of energy and angular momentum in bursts of gravitational radiation emitted near

periapse. Initially these bursts are widely separated in time and the radiation will not be

detectable, but in the last few years of inspiral the source will be radiating continuously

at frequencies to which LISA is sensitive. The typical frequency of the gravitational

radiation is determined by the mass of the primary, M . The floor of the LISA noise

curve (∼ 0.003Hz−0.03Hz) therefore sets the mass range to which we are most sensitive

at M ∼ 105M⊙ − 5 × 106M⊙. LISA could detect nearby sources with other primary

masses, but we concentrate on this mass range since it should dominate the event rate.

The secondary has to be a compact body to avoid tidal disruption before plunge, so we

consider white dwarfs (m ∼ 0.6M⊙), neutron stars (m ∼ 1.4M⊙) and both stellar mass

(m ∼ 10M⊙) and intermediate mass black holes (m ∼ 100M⊙). The spin of the primary

can take any value in the range S/M2 = 0 − 1, with spins around 0.9 probably being

typical, since this is approximately the point of spin equilibrium in black hole accretion

models [7, 8]. EMRI orbits are generally moderately eccentric at plunge, e ∼ 0 − 0.4

depending on the periapse at capture, and can have any initial inclination to the black

hole spin axis. The orbital periapse can take any value between the plunge periapse

at a few M and the capture periapse at 10’s of M , but we restrict this range by only

searching for inspirals that are in the last few years before plunge.

2.2. Capture event rate

There are two ingredients that go into an estimate of the frequency with which EMRIs

occur in the Universe. The first is an estimate of the space density of supermassive

black holes in the appropriate mass range, and the second is an estimate of the rate

at which each black hole is consuming compact objects. The space density of SMBHs

is constrained observationally, with the tightest measurement of black hole mass, M•,

coming from the correlation with spheroid velocity dispersion, σ

M• = M•,∗

(

σ

σ∗

)λ

(1)

where λ, M•,∗ and σ∗ are constants. We use σ∗ = 90 km s−1 and constrain λ and

M•,∗ from observations. Merritt and Ferrarese [9] find λ = 4.72 and M•,∗ = 3× 106 M⊙.

Tremaine et al [10] find λ = 4.02 and M•,∗ = 5×106 M⊙, but use a nonstandard definition

of dispersion. The galaxy velocity dispersion function may be constrained indirectly

using galaxy luminosity functions and the L − σ correlation [11]. In conjunction with

the M − σ relation (1), this leads to a black hole mass function of the form

M•
dN

dM•
= φ∗

ǫ

Γ
(

γ
ǫ

)

(

M•

M•,∗

)γ

exp

(

−
(

M•

M•,∗

)ǫ)

(2)

where ǫ = 3.08/λ, Γ(z) is the Gamma function and φ∗ is a constant equal to the

total number density of galaxies. Aller and Richstone [11] use the value λ = 4.02 from

Tremaine et al [10] to set ǫ = 0.8 and constrain the parameters φ∗, M•,∗ and γ according

to galaxy type. These values are listed in Table 1. For the mass range of interest in this
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analysis, M• ∼< 5× 106M⊙, the total Aller and Richstone space density of black holes is

approximately

M•
dN

dM•

= 3 × 10−3 h2
65 Mpc−3 (3)

where h65 = H0/65 km s−1 Mpc−1 is the Hubble parameter. Some Sc−Sd galaxies have

central black hole masses much lower than would be derived from their luminosities [12].

If we remove these from the sample, the black hole space density is reduced by a factor

of two. We adopt this lowered value as the reference density for estimating the capture

rate. In an interval ∆ log10(M•/M⊙) = 0.5, the total space density of black holes is then

1.7 × 10−3h2
65Mpc−3.

To estimate the rate at which each SMBH is capturing compact objects, we make

use of Marc Freitag’s simulation of the Milky Way [13]. That simulation used σ = σ∗

and M• = 4 × 106 M⊙ and predicts present day capture rates of 5 × 10−6 y−1, 10−6 y−1

and 10−6 y−1 for 0.6 M⊙ white dwarfs, 1.4 M⊙ neutron stars and 9 M⊙ black holes

respectively. Freitag does not simulate intermediate mass black hole remnants, but

Madau and Rees [14] estimate a dynamical friction rate of 2 × 10−9 y−1 in the Milky

Way for these objects. We assume optimistically that half of these are captured by

gravitational radiation (the others being direct plunges) and use a capture rate of

1 × 10−9 y−1. To extrapolate from these results to other central black hole masses

we note that since these bodies are captured by large angle scattering [15], the

rate of gravitational capture is comparable to the rate of direct plunges and each is

approximately half of the dynamical friction rate. For stars with mass m much greater

than the mean, the dynamical friction timescale is

tdf ≈ 0.3
σ3

G2 m ρ∗ ln Λ
(4)

where ρ∗ is the local stellar density, σ is the spheroid velocity dispersion and ln Λ ∼ 5

measures the range of impact parameters for stellar encounters in the cluster [16].

Galaxies with SMBHs in the mass range to which LISA is sensitive tend to have

isothermal density profiles in the core, ρ∗ = σ2/(2 π G r2). Substituting this profile

and the relation (1) with λ = 4 into equation (4), we deduce, for each stellar component

m, the radius, rdf(m), within which tdf < t, as a function of time t. Assuming the cluster

has an age t ∼ 1010 y and all the stars within rdf(m) have sunk to the center, we find that

the total mass in such stars scales as Mdf(m)/M•,∗ ≈ F (m/M⊙)1/2 (M•/M•,∗)
3/8, where

F is the fraction of the total stellar mass in that component and M•,∗ ∼ 3 × 106M⊙.

Taking the mass in gravitational captures to be half this, we estimate the extreme mass

ratio capture rate in a galaxy today to be

1

2

Mdf(m)

m t
≈ F M•,∗

2 m t

(

M•

M•,∗

)
3

8

(

m

M⊙

)
1

2

≈ 10−4 F

(

M•

M•,∗

)
3

8

(

m

M⊙

)− 1

2

y−1 (5)

where we again used t ∼ 1010y. Using a Kroupa IMF and standard initial-final mass

relations, the mass fraction F = 0.2 for 0.7 M⊙ white dwarfs, F = 0.03 for 10 M⊙ black

holes and F = 4 × 10−5 for ∼ 100 M⊙ Pop III black holes. Taking M• = M•,∗, the



Event rates for LISA EMRI sources 5

M•,∗ φ∗ γ

Galaxy Type (107 h−1
65 M⊙) (10−3 h3

65 Mpc−3)

E 17 2.3 0.12

S0 5 33.7 0.046

Sa−Sb 2 5.0 0.32

Sc−Sd 0.5 29.4 0.03

Table 1. Parameters for black hole space densities in equation (2).

rates predicted by equation (5) agree with Freitag’s simulation for 10 M⊙ black holes

and within a factor of two of the Madau and Rees estimate for 100 M⊙ black holes.

Equation (5) over predicts Freitag’s white dwarf rate by a factor of four, but the previous

assumptions are not valid for white dwarfs since the capture time is longer than the

Hubble time and mass segregation discriminates against these low mass stars. However,

the M
3/8
• scaling with black hole mass should be fairly good for all stellar components

and we use this to scale Freitag’s rates for the Milky Way to other galaxy masses.

Combining this with the black hole space density, we estimate the rate of mergers today

for three ranges of SMBH mass, and four types of compact object capture. These rates

are summarized in Table 2.

There are uncertainties in both the space density of black holes and the capture rate.

The distribution of galaxy velocity dispersions can be constrained by direct observation,

rather than using the indirect correlation with luminosity employed here. Sheth et al

[17] use SDSS data to measure velocity dispersions, and find the total SMBH space

density in our range of interest to be an order of magnitude lower. However, the SDSS

spectra do not have sufficient resolution to measure the dispersion in this black hole

mass range, so this extrapolation should not be trusted. Hils and Bender [18] estimate

the white dwarf capture rate to be a factor of 150 smaller than our extrapolation from

Freitag, but they assume an adiabatic central density profile and only half the number of

white dwarfs that modern IMFs predict. Sigurdsson and Rees [15] predict a rate that is

a factor of 50 lower than Freitag’s, but their central cusps were not fully self-consistent

and they ignored mass segregation. In more recent simulations, Freitag [19] uses a new

model and also finds capture rates for all species that are an order of magnitude lower.

The new model uses a different IMF and cluster model and contains a fixed mass central

SMBH while the old model grew the SMBH adiabatically from a tiny seed. We use the

old results because they are consistent with the expression (5) used to extrapolate to

other central SMBH masses, but must allow for these uncertainties. A conservative

rate for the white dwarfs would be 10−2 of those in Table 2. The black hole rates are

more robust to stellar dynamics, but depend on the mass fraction of stellar mass black

holes. While the increasing number of observed galactic black hole binaries give some

confidence that this mass fraction is not too different from our assumptions, we should

allow an order of magnitude or more uncertainty in the black hole rates.
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M• Merger rate R
(M⊙) (Gpc−3y−1)

0.6M⊙ WD 1.4M⊙ MWD/NS 10M⊙ BH 100M⊙ PopIII BH

106.5±0.25 8.5 1.7 1.7 1.7 × 10−3

106.0±0.25 6 1.1 1.1 10−3

105.5±0.25 3.5 0.7 0.7 7 × 10−4

Table 2. Estimated number of extreme mass ratio mergers. The rate of mergers per

cubic Gpc per year is given for three ranges in the mass of the supermassive black hole,

M•, and four types of captured compact object.

3. Detection of EMRIs

The amplitude of a typical EMRI event is below the level of noise fluctuations in the

detector. Matched filtering allows detection of signals by building up signal power over

many cycles of the waveform. However, the complexity of EMRI waveforms makes this

procedure challenging. The inspiral waveform depends on 14 different parameters — 2

angles and a distance defining the source location, 2 angles defining the orientation of

the primary’s spin, the mass and spin of the primary, the mass of the secondary, three

adiabatic constants defining the geodesic that the secondary is on at a specified time

t0 (for instance the orbital periapse, eccentricity and inclination) and three dynamical

constants that represent the phases of the secondary’s motion at t0 [20]. In the final

year of the inspiral, an EMRI waveform has ∼ 1y× 3mHz ∼ 105 cycles. Even assuming

that only about eight of these fourteen parameters affect the phase evolution (see next

paragraph) one would still estimate that ∼ (105)8 = 1040 templates will be required to

perform a fully coherent matched filter search for year long inspiral waveforms. The

most generous extrapolation to 2013 still makes this far more than is computationally

reasonable. An optimistic extrapolation of Moore’s Law (doubling compute power every

1.5 to 2 years [21]) would yield typical commercial CPUs with around 50–100 Gflops

when LISA flies, and around 50–100 Tflops for a cluster of a thousand such units.

Computing the overlap with a template sampled at ∼ 0.03Hz uses ∼ 0.03 flops, so

this cluster could search ∼ 1015 templates. Even taking advantage of various tricks to

reduce the template count (see below), the 1040 templates needed for a fully coherent

search is well out of reach. Instead, we will have to use a hierarchical search, the first

stage of which will be a coherent search of shorter segments of the data. The preceding

parameter list did not include the spin of the secondary (3 additional parameters). This

is a reasonable omission since it does not significantly affect the phase of the waveform

over the duration of the short coherent segments.

The initial coherent search can be simplified by noting that the two sky position

angles, the two source orientation angles and the azimuthal phase of the inspiraling

body at t0 are ‘extrinsic’ — these parameters do not change the intrinsic radiation

of the source, but only how it projects onto the detector. This distinction makes

it cheap to search over these variables [22]. A pure quadrupole gravitational wave
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can be decomposed into a linear combination of five orthonormal waveforms hi(λI ; t)

that depend on the intrinsic parameters, with amplitudes that depend on the extrinsic

parameters. The optimal matched filter statistic

ρ2 =

II
∑

α=I

5
∑

i=1

〈hi(λI), sα〉2 , where 〈a, b〉 = 4ℜ
[

∫ ∞

0

ã∗(f) b̃(f)

Sb(f)
df

]

(6)

maximizes over possible values of the extrinsic parameters automatically. In (6), ã

denotes a Fourier transform, z∗ denotes complex conjugation and Sb(f) is the power

spectral density of the detector noise in the channel b(t). The LISA output can be

represented approximately by two synthetic Michelsons (denoted I and II) [23], and

the sα are the signals constructed from these two channels. The expression (6) is an

unconstrained maximum and so the best fit amplitudes need not correspond to physical

values of the extrinsic parameters. The unconstrained maximum has the advantage of

computational simplicity at the expense of a slight increase in the false alarm probability

for the search. The sky position angles are not strictly extrinsic, since the motion of

LISA in its orbit introduces a sky position dependent Doppler modulation into the

signal. However, on short (∼ few week) timescales, this principally causes a linear

frequency drift. This can be mimicked by redshifting the mass of the primary, which

allows us to use (6) for the coherent search if the segments are not too long. True

EMRI waveforms additionally have significant contributions from multipole moments

other than the quadrupole. In this analysis we adopt the quadrupole search statistic

(6) again for computational ease at the expense of some lost detection rate. Further

computational savings may be gained by replacing one of the adiabatic parameters (say

the periapse) with the time offset from when that parameter had a particular value,

rp = r0. Time offsets can be searched cheaply using inverse fast Fourier transforms.

The signal-to-noise ratio (SNR) accumulated in a single short coherent segment is

not sufficient for detection. The SNR is built up in the second stage of the search, by

incoherently adding the power in the coherent segments to find inspirals that persist

through the full data set. The phase angles of the motion in the radial and vertical

directions (the Boyer-Lindquist r and θ coordinates) vary on a dynamical timescale, and

so a very high resolution in the other search parameters would be needed if we were to

require consistency in these angles over the whole inspiral. For this reason, we maximize

over these angles (using a template bank) before combining the coherent results. This

is why we refer to this stage of the search as ‘incoherent’. The resulting statistic, Pk,

on a given coherent segment is the maximum of ρ2 over all possible values of these

two dynamical phases. The azimuthal phase angle (Boyer-Lindquist φ coordinate) also

varies on a dynamical timescale, but this is an extrinsic parameter and we maximize over

it automatically by constructing the ρ2 statistic. A given set of full inspiral parameters

defines a trajectory through certain coherent segments at certain times. Summing Pk

along this trajectory gives the final search statistic. This scheme is a first-cut approach

to a hierarchical search and more optimal approaches are currently being investigated.
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4. Estimating the LISA event rate

4.1. Template waveforms

Waveform templates are needed to scope out this approach to data analysis. The

extreme mass ratio means that true waveforms can be well determined from perturbation

theory. However, no gravitational waveforms have yet been generated using fully

perturbative calculations, although this should be possible by the time LISA flies [24].

Waveforms from special classes of geodesic orbits have been computed [3, 25] but these

are neither generic enough nor sufficiently fast computationally to be useful. Instead, we

have made use of two types of kludged waveforms. The ‘numerical kludge’ waveforms are

constructed by assuming the inspiraling body is always instantaneously on a geodesic of

the spacetime. The geodesic parameters are evolved continuously using post-Newtonian

radiation reaction expressions and an approximate quadrupole gravitational wave is

then constructed from the resulting trajectory [20]. The ‘analytic kludge’ waveforms are

constructed by adding post-Newtonian precessions and evolution to Peters and Mathews

(Keplerian) waveforms [4]. Neither set of waveforms has sufficient phase accuracy to

be used for detection purposes, but the waveforms capture the main features of the

inspiral and should therefore give reasonable estimates of template counts. The analytic

and numerical kludge waveforms drift out of phase with each other over a timescale

of a few hours, although this can be corrected somewhat by modifying the waveform

parameters. However, the template counts obtained from the two approaches agree

within a few tens of percent. Performing the analysis using these two independent

methods in parallel has thus increased our confidence in the results. Comparisons to

perturbative waveforms from geodesics at certain points in parameter space also indicate

that the kludges perform extremely well.

4.2. Length of coherent integration

The maximum length of the coherent segments is set by computational limitations.

Assuming that the data analysis will be performed on a 50 Teraflops computer cluster

over k years (∼the mission lifetime), there are ∼ 1.5 k×1021 operations at our disposal.

The number of operations required to search the mission data with a single coherent

template is 10×3fmaxτ log2(fmaxτ), where τ = ky ∼ 3y is the total length of the mission

and fmax ∼ 0.03Hz is the maximum frequency we try to resolve at the first stage. The

factor 10 is the cost to compute the ρ2 statistic (6) and the rest is the cost of using

FFT’s to search over all possible time offsets. Equating the computational cost with

the assumed computing power, we can cope with up to ∼ 1012 templates. This assumes

that the coherent stage dominates the computational cost. Estimates of the cost of the

incoherent stage indicate that this is a fair assumption.

To estimate the number of templates required for a coherent search of segments

of duration T , we compute the standard metric on template space, Γab = 1
2
〈∂ah|∂bh〉

[26, 27]. Since the search over extrinsic parameters and the time offset have already
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been accounted for, we project these directions out of the metric to give the number of

intrinsic templates

Nint ≈ (12(1 −A))−
N̂

2 N̂
N̂

2

∫ √
γ dλ1 · · ·dλN̂ , (7)

where N̂(= 7) is the number of remaining parameters, γ is the determinant of the N̂×N̂

metric projected onto the intrinsic subspace and A < 1 is the average match. The latter

characterizes the coarseness of the template grid — it is the average overlap that a

randomly placed waveform has with the nearest template in the bank. There are seven

not eight remaining parameters since the distance to the source is only an amplitude

scaling and therefore does not require additional templates. The template count (7)

is averaged over values of the extrinsic parameters and the time offset. Assuming

we are searching only for the last k years of the inspiral, templates must be placed

at approximately N = k/(T/y) different values of the time offset to cover the whole

inspiral, giving a total Ntemp = Nint N . We have used Monte Carlo simulations to

calculate the integral (7). This involved choosing points randomly distributed over

the waveform parameter space and computing the corresponding determinant of the

template metric, γ, at each point. We also looked at trends in the template density as

the template parameters were slowly varied and found power law dependencies which

were verified over large regions of parameter space by the Monte Carlo simulation. The

power law fitting function was easily integrated to give the final template count (7).

The template count was estimated using both types of kludged waveforms and the two

results agreed to within a few tens of percent. Overall, our results suggested that, for

an average match of 0.9, the computational limit to the length of the coherent segments

is ∼ 3 weeks. This first cut analysis assumed that the coherent templates were of equal

length in time. In practice, it will be better to use a different division into coherent

segments, for instance templates with equal numbers of wave cycles. Such refinements

are being investigated.

4.3. Threshold signal to noise

The final detection statistic in this scheme is P =
∑N

k=1 Pk — the sum of the coherent

detection statistics, Pk, along a trajectory through certain coherent segments at certain

times, which corresponds to a particular inspiral. This is illustrated pictorially in

Figure 1. The coherent statistic Pk is the maximum of the ρ2 statistic along a slice

in parameter space (corresponding to varying the two phase angles). In the presence of

Gaussian noise, the ρ2 statistic is distributed as a χ2 with 10 degrees of freedom, but the

distribution of the maximum, Pk, is analytically intractable. However, by performing

Monte Carlo simulations over a range of signal parameters, we find that Pk typically

has mean µk ∼ 18 and standard deviation σk ∼ 4.5. From the central limit theorem,

we argue that the sum P may be approximated by a normal distribution with mean

µ = Nµk and standard deviation σ =
√

Nσk.

The detection threshold is characterized by the number of standard deviations by
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Figure 1. Illustration of the incoherent summation. A full inspiral corresponds to

a sequence of the ‘best-overlapping’ coherent templates at different times. Our final

search statistic is obtained by summing the power along such trajectories. We maximize

over the two phase angles before summation in order to reduce the computational cost

of the incoherent stage.

which P must exceed its pure noise mean in order to be a robust detection. This is

the threshold Z-score, Z = (P − µ)/σ. We set the threshold to ensure the entire search

has a false alarm probability pf . Since the search involves a summation along many

different possible trajectories, we need the false alarm rate for each trajectory to be less

than pf/Ntraj, where Ntraj is the number of independent trajectories, i.e., the number

of independent ways to combine the coherent segments into a full inspiral. For a fixed

trajectory start time, we expect this number to exceed the Nint = Ntemp/N ∼ 1010

templates used for each time offset in the coherent search. During a three year
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observation there are additionally ∼ 3 y × 1 mHz ∼ 105 independent start times, which

means that for a 1% total false alarm rate, the false alarm rate per trajectory per

time offset should be less than 10−17, giving a threshold Z-score of 8.8. The number of

independent trajectories can be more accurately estimated by computing the metric on

the incoherent space in a similar way to the metric on the coherent space. Preliminary

calculations suggest that the estimate of ∼ 1010 × 105 independent trajectories is

reasonable. In fact, changing this by an order of magnitude does not significantly affect

the threshold Z-score since we are well within the tail of the distribution. We assume a

typical Z-score of 8 in subsequent threshold calculations.

In the presence of a signal, the Z-score is increased. If a source has an intrinsic

signal to noise ratio SNR=
√

〈s, s〉 over the entire observation, the SNR in each of the

N coherent segments is approximately a factor of 1/
√

N less. The expected SNR in each

segment is further reduced by the fact that we use a discrete bank of templates to detect

the signal. We characterize the coarseness of the template bank by a match factor M,

which has contributions from discreteness in the coherent template bank (the average

match A), in the time sampling and in the incoherent template bank. We assume an

overall match factor of M = 0.8 is reasonable. A signal increases the expectation value

of the ρ2 statistic for the nearest template from 10 to 10 + (M/N) 〈s, s〉. Assuming the

maximization over the phase angles gives the correct values for the embedded signal,

the corresponding Pk’s will have a similar value, and the sum P will be N times that

value. Setting this equal to the threshold Z-score Zthresh, we find the threshold signal to

noise for a detection

SNRthresh =

√

N

M

(

µk − 10 + Zthresh

σk√
N

)

(8)

This is the signal-to-noise ratio from the two synthetic Michelsons combined that a

source must have in order to be detected under this scheme. The match factor M does

not include a ‘fitting factor’ (reduction in signal due to physical inaccuracies in the

template model [27]) since the actual search, when LISA flies, will use true perturbative

waveforms as templates, for which the fitting factor should be close to one.

4.4. White dwarf background

The population of close white dwarf binaries in the Milky Way radiate in the LISA band,

generating a background that affects our ability to detect inspirals. At higher frequencies

the binaries are sufficiently separated in frequency to be removed from the data. At lower

frequencies we are theoretically limited by Shannon’s Theorem, which gives the binary

confusion noise used in [4]. In practice, the best white dwarf subtraction algorithm

that currently exists is the gCLEAN algorithm [28]. The residual noise remaining after

applying the gCLEAN algorithm is somewhat higher than predicted by the Shannon

limit, and it is possible to estimate the effective gCLEAN confusion noise limit from

these residuals. We have computed signal-to-noise ratios using both confusion noise

levels. We regard the Shannon limit as optimistic and the current gCLEAN limit as
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pessimistic in terms of how well we will be able to subtract binaries from actual LISA

data.

4.5. Estimated rates

For a given source, the SNR scales with proper distance to the source as D−1. The SNR

threshold (8) therefore translates into a maximum distance to which the source can be

detected. If a given type of inspiral event is occurring at a rate R and has signal-to-noise

ratio SNR at a fiducial distance D, then during an observation time T we will detect

Ndet events

Ndet =
4 π

3
D3RT

[

SNR

SNRthresh

]3

. (9)

Using the capture rates in Table 2, we can estimate how many events of each type LISA

will detect during its lifetime. We computed the appropriate SNR at the fiducial distance

of 1Gpc using the Synthetic LISA simulator [29] and numerical kludge waveforms. We

fixed the masses of the primary and secondary at a typical value for each mass range,

but averaged the SNR over possible orientations of the source and over two values of the

eccentricity at plunge — e = 0.25 (corresponding to large initial periapse) and e = 0.4

(small initial periapse). The averaging assumed the orientation angles are uniformly

distributed and the eccentricities equally likely, but was appropriately weighted to

account for the fact that certain parameter values allow the source to be detected to

larger distances. The event rate estimates are given in Table 3 for an ‘optimistic’ case

and a ‘pessimistic’ case:

• ‘Optimistic’ — assumes a 5 year LISA lifetime, SNR’s constructed from the optimal

AET combination [30], optimistic white dwarf background subtraction and 3 week

coherent integrations (giving SNRthresh ∼ 36).

• ‘Pessimistic’ — assumes a 3 year LISA lifetime, SNR’s constructed from a single

synthetic Michelson (X signal), pessimistic (gCLEAN) white dwarf background

subtraction and 2 week coherent integrations (giving SNRthresh ∼ 34).

We do not fold uncertainties in the astrophysical event rate into this distinction, but use

the rates in Table 2 in both cases. Results are quoted for both the standard LISA design,

with 5 × 106km arm length, and a ‘Short LISA’ design, for which the arm lengths were

reduced to 1.6× 106km. Equation (9) assumes a flat Minkowski space volume/distance

relation. For sources at redshift z > 1, this should not be trusted. Moreover, effects

that have been ignored such as frequency redshifting and source evolution will become

important. For cases with SNR(1Gpc) >
∼ 120 (so that Dmax > 3.6Gpc = Dp(z = 1)), we

quote a rough lower limit to the number of events with z < 1, all of which LISA can

detect — Ndet = Vc(z < 1)RT , using comoving volume Vc = 199Gpc3 (appropriate for

a flat, Ωm = 0.27, H0 = 65km s−1 Mpc−1 cosmology).
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M• m LISA Short LISA

Optimistic Pessimistic Optimistic Pessimistic

300 000 0.6 8 0.7 14 1

300 000 10 700* 89 902 115

300 000 100 1* 1* 1* 1*

1 000 000 0.6 94 9 80 7

1 000 000 10 1100* 660* 1100* 500

1 000 000 100 1* 1* 1* 1*

3 000 000 0.6 67 2 11 0.3

3 000 000 10 1700* 134 816 25

3 000 000 100 2* 1* 2* 1

Table 3. Estimated number of LISA EMRI detections, under the ‘optimistic’ and

‘pessimistic’ set of assumptions described in the text. Estimates are given for both the

standard LISA design, and for ‘Short LISA’. Entries marked with a ∗ are z < 1 lower

limits since LISA can detect these sources to z ≫ 1 and evolution is unknown.

5. Discussion

The estimates in Table 3 indicate that even under the pessimistic assumptions, LISA

should detect over a thousand EMRI events during its lifetime and there seems to be no

particular advantage to using a shorter arm length. The biggest remaining uncertainty is

in the astrophysical rates (Table 2). Using more conservative estimates, the detection of

white dwarf inspirals becomes marginal, but the stellar mass black hole signals are still

robust. The uncertainty arising from the use of kludged waveforms may be quantified

by comparing to perturbative waveforms [3, 25]. The template counts appear quite

robust and the SNRs are not bad. We have compared SNRs computed from kludged

waveforms to SNRs computed using the quadrupole piece of an adiabatic sequence of

perturbative waveforms in the simplest case of circular equatorial inspiral. For such

inspirals, the last year SNRs agree within ∼ 20% for all spins, but the kludge SNRs are

larger. This could lead to a factor ∼ 2 overestimate of the detection rates. However,

including all multipoles, the total SNRs of the perturbative waveforms are larger than

those of the pure quadrupole kludge waveforms, since the higher multipoles are generally

at frequencies more accessible to LISA. A modified search therefore might recover these

events. This effect is expected to be even stronger for eccentric orbits although the

uncertainty in the rates should still only be a factor of a few, but perturbative eccentric

inspiral waveforms were not available for comparison.

An issue that has not yet been properly addressed is self-confusion — there is a

background of gravitational radiation from all the unresolved EMRIs in the Universe

from which the louder signals must be extracted. This is an additional noise source

which is now being estimated. We have also assumed that it is possible to remove the

resolved white dwarf binaries from the LISA data stream before performing the EMRI

search. Methods like gCLEAN in principle will remove the EMRI signals as well as the
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white dwarf binaries. It may therefore be necessary to do the searches for EMRIs and

binaries simultaneously, which would change the computational requirements.

The approach to EMRI data analysis outlined here is a first cut. Under this scheme

a source requires a SNR ∼ 30 to be detected. If we had infinite computational power

and could perform a fully coherent search, the detection SNR would still be ∼ 15, for

the same false alarm probability. We therefore lose about a factor of two in reach by

using a hierarchical search. With a more careful division into coherent segments or a

different incoherent summation, we may recover some of these lost events. The fact that

even this first cut scheme predicts a thousand inspiral detections suggests that LISA

will detect many EMRI events despite the remaining uncertainties.
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