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Abstract. In the search for unmodeled gravitational wave bursts, there are a variety

of methods that have been proposed to generate candidate events from time series

data. Block Normal is a method of identifying candidate events by searching for

places in the data stream where the characteristic statistics of the data change. These

change-points divide the data into blocks in which the characteristics of the block are

stationary. Blocks in which these characteristics are inconsistent with the long term

characteristic statistics are marked as Event-Triggers which can then be investigated

by a more computationally demanding multi-detector analysis.

1. Finding Unmodeled Gravitational Waves

The ongoing search for the direct detection of gravitational waves using Earth based

experiments involves the analysis of observations made at a variety of different detectors.

These observations are time series samples of the detector state that are then processed

by various means to identify gravitational wave candidates. Broadly speaking the

searches for gravitational waves may be broken up into two categories, those searches

that are based upon a model, such as the search for gravitational waves from inspiraling

binaries, and those searches that endeavor to find gravitational waves without using

a model. The latter category of searches are often referred to as “burst” searches.

These searches typically seek to identify portions of data that are, for a short period,

anomalously “loud” in comparison to the surrounding data.

Identifying a gravitational wave burst in the absence of a source model is an involved

and potentially computationally expensive process. This is especially true when the

ratio of signal power to noise power is low. A convenient and natural approach to

mitigating the computational expense of identifying such bursts divides the problem of

detection into two parts. In the first part, an inexpensive procedure is used to identify

candidate sections of data that trigger the second part of the analysis. The second part

of the analysis focuses on the subintervals of data identified by the first. It is a more
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computationally complex and expensive analysis that either discards the candidate or

identifies it as a gravitational wave burst. In this way the first part of the analysis

carried out by a so-called “event-trigger generator”, performs triage on the data that

must be analyzed by the more complex second stage of the analysis.

2. The BlockNormal Pipeline

BlockNormal is an Event Trigger Generator that analyzes data in the time domain

and searches for moments in time where the statistical character of the time series data

changes. In particular, BlockNormal characterizes the time series between change-points

by the mean(µ) and variance(ν) of the samples.

Change-points are thus demarcation points, separating “blocks” of data that are

consistent with a distribution having a given mean and variance, which differs from the

mean and/or variance that best characterizes the data in an adjacent block. The onset

of a signal in the data will, because it is uncorrelated with the detector noise, increase

the variance of the time series for as long as the signal is present with significant power.

In this way blocks with variance greater than a “background” variance mark candidate

gravitational wave bursts.

Since candidate gravitational wave bursts are identified with changes in the detector

noise character it is best if the detector noise is itself stationary and white. The

BlockNormal analysis thus starts by identifying long segments of data, epochs, which

are relatively stationary. This process involves comparing adjacent stretches of data of

fixed a duration long relative to the expected duration of a gravitational wave burst

and asking whether adjacent stretches have consistent means and variances. In order to

avoid any bias that might come from analyzing outliers in the tails of the distribution

(where one might expect any true signal to be located), the mean and variance are

computed on only those samples that are within the 2.5th and 97.5th percentiles of the

sample values. If two consecutive stretches are inconsistent at the 95% confidence level,

the begining of the first stretch is used to define a new stationary segment.

Segments thus defined are split into a set of frequency bands whose lower band edge

is heterodyned to zero frequency. This base-banding allows for a crude determination of

the frequency of any identified triggers. Line and other spectral features are removed,

either by Kalman filtering or by regression against diagnostic channels, and the final

data whitened with a linear filter.

2.1. Finding Change-Points

Once the data has undergone the base-banding and whitening process, the search for

change-points begins in earnest. The method employed is similar to that described in [1]

and relies on a Bayesian analysis of the relative probability of two different hypotheses:

• M1, that the time series segment XN is drawn from a distribution characterized by

a single mean and variance; and
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• M2, that the time series segment XN consists of two continuous and adjacent

subsegments each drawn from a distribution characterized by a different mean

and/or variance.

Given the time series segment XN , consisting of N samples, we write the probability of

hypothesis M1 as P (M1|XN) and the probability of hypothesis M2 as P (M2|XN). The

odds of M2 compared to M1 is thus:

ρ2 =
P (M2|XN)

P (M1|XN)
(1)

Applying Bayes Theorem and simplifying this becomes:

ρ2 =
P (XN |M2)

P (XN |M1)

P (M2)

P (M1)
=

P (XN |M2)

P (XN |M1)
γ2 (2)

where, γ2 = P (M2)
P (M1)

is independent of the data XN itself,although it does depend on the

number of samples N .

If M2 is true, then M1 will be a good hypothesis for two subsets of the data, one

from sample 1 to j − 1, denoted X1,j−1 and another from j to N , Xj,N . Then we can

write:

ρ2,j = γ2
P (Xj|M1)P (XN−j|M1)

P (XN |M1)
(3)

ρ2 =
N−1
∑

j=1

ρ2,j (4)

To calculate ρ2 we thus need only be able to calculate P (XN |M1) for arbitrary time

series XN The probability that a given data set is drawn from a normal distribution

with unknown mean and variance is equal to:

P (XN |M1) =
∫

dσ

∫

dµ(2πσ2)−
N
2 P (µ, σ)

N−1
∏

k=0

e−
(x[k]−µ)2

2σ2 (5)

Where P (µ, σ) is the a priori probability that the mean takes on a value µ and the

variance a value σ2. With the usual uninformative priors for µ and σ (P (µ) ∝ α and

P (σ) ∝ βσ−1) the integral for P (XN |M1) can be evaluated in closed form:

P (XN |M1) =
αβ√
N

[2πN(x2 − x2)]−
(N−1)

2 IN−2 (6)

IN ≡ (N − 1)!!







1 N odd
√

π
2

N even
(7)

where α ≡ P (µ) an β ≡ σP (σ).

The value of ρ2 is therefore the odds that there is a change-point in Xn to there

not being any change-points, and the value ρ2,j is related to the odds that there is a

change-point at sample j to there not being one anywhere in XN . The calculated value

of ρ2 is compared to a threshold, ρT , and if greater than this threshold, a change-point

is considered to be at the sample with the largest value of ρ2,j.
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Figure 1. (top) A sample of simulated data consisting of blocks of white noise with

a mean of two between two and three seconds and zero elsewhere. (bottom) The

associated figure of merit, ρ2,j as a function of the hypothetical change point time.

Figure 2.1 shows some simulated data along with ρ2,j for that data. The two peaks

in the value of ρ2,j corresponds to where the mean of the simulated noise changes.

This process either leaves XN free of change-points, or it divides the data into

two subsets. In the latter case, the BlockNormal Pipeline repeats the change-point

analysis on these subsets and all subsequent subsets, until either no more change-points

are found, or the subset is less than 4 data points long. By this iteration method

BlockNormal breaks the data at these change-points into a set of blocks, each of which

is free of any change point. A final refinement step is taken where successive pairs of

blocks are analyzed to check that the change-point would still be considered significant

over the subset of the data that is contained within the two blocks.

2.2. Blocks, Events, and Clusters

BlockNormal identifies blocks — time series segments between successive change-points

— are well characterized by a mean, a variance, a frequency band, a start time, and
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a duration. To identify unusual blocks, the means and variances are compared to the

mean and variance, µ0 and σ2
0 of all the data in their band from the epoch in which they

were found. BlockNormal defines “Events” to be blocks in which the following condition

holds true for a value, C ≡ max(σ2, (µ − µ0)
2), that is used to characterize the block:

C > ET σ2
0 (8)

Here, ET , is called the event threshold and is a free parameter in the algorithm which

adjusts the sensitivity in defining what “unusual” means. There are a limited number

of reasonable other possible threshold requirements based on the three characteristics

of a block, µ,σ,D, however, at this time these have not been explored.

Once events have been identified, immediately adjacent events in the same

frequency band are clustered together, with a peak-time for the cluster defined by the

central time of the block with the largest value of C. A cluster “Energy” is a sum over

the i blocks that comprise it:

Energy =
∑

i

Diδt

[

(µ2
i − µ2

0) +
D − 1

D
(σ2

i − σ2
0)

]

(9)

where Di is the duration in samples.

2.3. Defining Triggers

A key factor in building confidence in any identification of gravitational waves is the

presence of a signal in different detectors. Using this “coincidence” as the basis for

further reducing the number of periods of interest, BlockNormal requires that there be

coincidence in time between events in the same band but different detectors before a

“trigger” is formed. Triggers from different bands are merged if they overlap in time

into a single trigger. Figure 2.3 illustrates how this coincidence and merging step works

using the three LIGO interferometers.

3. Conclusion

The BlockNormal event trigger generator is a time domain analysis in base-banded data

that identifies blocks in time which are well characterized by a mean and variance. blocks

with means and variances that are unusually large compared to the mean and variance

of the much longer data segment containing them are marked for consideration as being

unusual events. Several coincident events in different detectors together form a trigger

which can be used to define periods of interest that a more computationally intense

analysis can use to reduce the total computing time needed to search for unmodeled

gravitational wave events.
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