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On the basis of existing observations (at the 4.5 o level) of TeV ~-ray outbursts from the Fanaroff-
Riley I (FRI) radio galaxy Centaurus A, we estimate the accompanying neutrino flux in a scenario
where both photons and neutrinos emerge from pion decay. We find a neutrino flux on Earth
dF,/dE, = 4.5x107'" (E,/TeV)™2 TeV~' cm™2 57!, equally spread in flavor as a result of maximal
mixing. Such a flux will trigger at the IceCube facility about 10 showers/burst, with negligible
background from atmospheric muons, and primary neutrino energies in excess of 100 TeV. The only
other FRI radio galaxy observed in the TeV photon energy range at the 40 level is M87. The burst
nature of this activity is not established; however, we show that the intrinsic neutrino luminosity
during the active period is the same as the Centaurus A burst. On the assumption that Centaurus
A typifies the FRI population, we show that IceCube should collect 10 showers (all neutrino flavors)
in 3 years, attaining a 95% CL sensitivity to the diffuse neutrino flux from FRI radio galaxies in

one year of observation.

PACS numbers: 13.85.Tp, 95.85.Ry, 95.30.Cq

Conventional astronomy spans about 18 decades
in photon wavelengths, from 10? cm radio-waves to
1074 cm y-rays of GeV energy. Because the universe
is opaque to photons of TeV energy and above, present
studies focus on hadrons, neutrinos, and gravitational
waves as messengers probing the high energy universe.
The best candidates to serve as messengers in a new as-
tronomy of the high energy behavior of distant sources
are neutral particles. This is because the orbit of a
charged cosmic ray can be substantially bent by the am-
bient magnetic field of our own galaxy, destroying the
possibility of locating the source. The most promising
messenger is the neutrino: it can be copiously produced
in cosmic beam dumps and can traverse unscathed dense
astrophysical environments. In this context, we recently
carried out a study of directional neutrino signals from
sources in the Galactic plane [l]. In this letter we ex-
tend this project to the extragalactic domain, and de-
lineate the prospects to identify Fanaroff-Riley I (FRI)
radio galaxies as high energy neutrino emitters. In our
discussion it will be seen explicitly how the neutrinos pro-
vide a signal precisely where photon signals are blocked
by interactions with the universal radiation backgrounds
permeating the universe.

At present, a handful of sources have been established
as TeV 7-ray emitters [2]. All of them are nearby BL
Lac objects characterized by strong rapid variability and
apparent superluminal motion. These extreme features
are generally interpreted as a consequence of dissipative
effects (non-thermal emission) from a relativistic jet ori-
ented at small angle with respect to the line-of-sight [3].

There are two principal mechanisms for TeV gamma
ray production: (i) Electrons undergo bremsstrahlung
in the magnetic field and/or inverse Compton scattering
in the ambient photon sea or (ii) the gamma rays are
directly traced to 7° decay. Only the second scenario

can accommodate baryonic cosmic ray production. Since
such cosmic rays are observed, it is reasonable to assume
that at least some gamma ray sources operate according
to the second mechanism.

In the context of unification models 4], BL Lac objects
are intrinsically the same as FRI. Though the jet emis-
sion from FRIs is not strongly Doppler boosted towards
us (and may even be de-boosted), in some cases the lack
of relativistic boosting can be partially compensated by
proximity to Earth. Therefore, some FRI radio galaxies
could be detectable in the TeV range. In what follows,
we examine the consequences of assuming that gamma
ray emission from FRI originates in 7% decay, and is nec-
essarily accompanied by a flux of high energy neutrinos
emerging from the 7* population.

At a distance of 3.4 Mpc, Centaurus A (Cen A) is the
prototype of FRI galaxies [4]. It is the only GeV gamma
ray source with a confirmed large-inclination jet [6]. Data
collected in the early 70’s with the optical intensity in-
terferometer operated by Sydney University at Narrabri,
show a ~ 4.50 (time average) excess of 7-ray events from
the direction of Cen A [d]. The reported cumulative flux
averaged over 3 yr of observations is

F,(E, >300GeV)=44+1.0x10"" em 2 s7*. (1)

Based on a power-law spectrum oc EZ 2, this corresponds
to a luminosity at the source of £ ~ 7.5 x 10%° erg s
It is important to note that since the detector beam did
not include the radio lobes, it is likely that the source re-
sides in the compact nucleus of Cen A. The data reveals
two different periods of heightened activity in the TeV
range, each of about 1 year duration. Though data at
the upper end of the spectrum await confirmation, the
~v-ray bandwidth of Cen A could reach energies as high
as hundreds of TeV. There are specific hints in this di-
rection in data reported during the 1980’s and 1990’s by



the Buckland |§] and JANZOS [] collaborations. Several
items can be noted with respect to these measurements:
(i) The data are consistent with bursts of approximately
one year duration every decade. (ii) Both experiments
reveal an upper cutoff of ~ 200 TeV, which can be as-
cribed to absorption on the background radiation fields.
(#i) The reported flux in both cases is about 2 orders
of magnitude larger than that measured at the Narrabri
Observatory; the chance probabilities are 6 x 1073 and
2 x 1072 for Buckland and JANZOS, respectively. Al-
though these data are not at the discovery level, the ob-
servations of 100-TeV photons at the two facilities corrob-
orate one another. (iv) The emission of 100-TeV gamma
rays is supportive of their origin in pion production and
decay processes, as opposed to synchrotron and inverse
Compton scattering [10].

Additional relevant information about the source is
contained in these observations. The ~ 1-year duration of
the observed burst at Narrabri implies a coherent region
of activity » ~ 0.3 pc. Therefore, the recent discovery
of a sub-parsec radio counterjet in the nucleus of Cen A
is of interest [L1]. As a conservative estimate we adopt
the flux in Eq.([) as the photon excess characterizing the
Cen A burst, which corresponds to an integrated burst
energy Epurss = 2.3 x 10%® erg.

A high-energy neutrino flux emerges if the charged
pion decay length is smaller than the pion interaction
length in the source region. The latter, as well as the
pion production rate, depends on the gaseous hadronic
particle density. An estimate of the target nucleons can
be obtained by assuming that the gas density n near the
accretion disk of the supermassive black hole engine of
Cen A is similar to that near the center of our Galaxy.
This in turn is arrived at by assuming that the gas/star
density ratio near the center is the same as the one in
the Galactic disk, yielding n ~ 106 cm™3. Our estimate
is most likely a lower bound on the gas density, since
the Cen A black hole mass Mpy ~ 2 x 10% Mg, [12] is
about 2 orders of magnitude greater than SgrA* 13, [14].
With this in mind, the corresponding pion mean free path
(noxn)~! =~ 6.5 pc is much greater than the charged
pion decay length, which at 100 TeV is 5.6 x 10% cm.
(Here oxn =~ 50 mb is the pion-nucleon cross section.)
On the other hand, the mean free path for collision of
the ultrarelativistic accelerated protons on the gas is
(nopn)~t & 4.6 pe, where o,y ~ 70 mb [15]. Assum-
ing no significant deflections on the magnetic field, this
implies a probability of interaction in the coherent region
p=rnopn ~ 7%. The infalling mass Mingan required to
power the burst is found through the relation

Eburst =p G MBH Minfall/rs 5 (2)

where G is Newton’s constant and 7 is the Schwarzschild
radius. This gives Miptan ~ 3.6 x 1072 Mg. This is
about 100 times larger than the estimated infall rate for
the Galactic black hole [L6]. Because of the burst nature,
coupled with the much larger mass for the Cen A black
hole, we take this as a reasonable accretion rate, allowing

sufficient pion production.

Since 7%’s, 7t’s, and 77 ’s are made in equal num-
bers, one expects two photons, two v.’s, and four v,’s
per 7. On average, the photons carry one-half of the
energy of the pion, and the neutrinos carry one-quarter.
The energy-bins dE scale with these fractions, and we

arrive at

dF, dF,
E(Ev =FE:/2) = 4dE7r (Er),

dF,, . _dF,

dEUC (EVe - E7T/4‘) - 4 dETI' (ET") ’ (3)

dF,, dF,

aE (B, = Be/) = 8 5" (Bx),

for the fluxes at the source, where 7 denotes any one of
the three pion charge-states. Terrestrial experiments (see
e.g. [17]) have shown that v, and v, are maximally mixed
with a mass-squared difference ~ 10~3eV?2. This together
with the known smallness of |{v.|v3)|?, implies that the
v,’s will partition themselves equally between v,’s and
v;’s on lengths large compared to the oscillation length
Aose ~ 1.5 x 1073 (E,, /PeV) pc. Here v3 ~ (v, +v;)/V2
is the third neutrino eigenstate. From these remarks, one
finds a nearly identical flux for each of the three neutrino
flavors (j = e, i, 7), which is equal to

dF,, . dF,
ap (P, = By /2) = 2052 (B.). (4)

dE,

On the assumption of an £ 2 spectrum, we fix the nor-
malization using the cumulative number flux of Eq. ()
with an upper cutoff at 3 TeV [[]. From Eq. @) we then
obtain the neutrino flux on Earth

dF,,
dE,

E,
TeV

—2
=15x10"1 ( ) TeV 'em™2s7!. (5)

The observation of 100-TeV photons supports the extrap-
olation of the spectrum in Eq. (@) to those high energies.
The most promising prospect for detection of such a
low flux is the IceCube facility under construction at the
South Pole [18]. For energies above ~ 100 TeV, IceCube
will provide 47 detection of neutrinos since the atmo-
spheric muon flux is negligible. Moreover, at these en-
ergies the telescope will be able to resolve directionality
in all neutrino flavors. The total number of showers in a
single burst of duration ¢ ~ 1 yr is then
< dF,,
Nicecube = Na p t Vest zj:/ ﬁ ooy dE, , (6)

v,min

where N4 is Avogadro’s number, Vog ~ 2 km? is the ef-
fective volume of ice with density p, and 05 = 6.78 x
10735 (E, /TeV)%-363 cm? is the charged current neutrino-
nucleon cross section [19]. By substituting the flux given
in Eq.(), we find about 10 showers per burst, with pri-
mary neutrino energy > 100 TeV. Thus we arrive at the



first prediction of this paper: during a burst similar to
the 4.50 event detected by the Narrabri Observatory, Ice-
Cube will detect about one 100-TeV neutrino per month
pointing to Cen A. This signal persists even in the ab-
sence of the emitted photons which are absorbed on the
infrared and microwave radiation backgrounds.

Located in the Northern hemisphere at a distance of
16 Mpc, M87 is the FRI with the brightest optical jet [20].
It shows most of the characteristics of BL Lac objects,
with the jet oriented at 30° — 35° to our line of sight.
Data taken during 1998-1999 with the HEGRA stereo-
scopic system of 5 imaging atmospheric Cerenkov tele-
scopes show an excess of photons from the direction of
MB87 with significance level 4.10 above background [21]].
The observed cumulative flux is

F,(E, > 730 GeV) = 0.96+0.23x 1072 em™2 s~ . (7)

The data can be fit with a power law dF, /dE, ~ EZ ¢,
with a = 2.9 £ 0.84¢at £0.08gys. The large uncertainty in
the spectral index is not, however, reflected in obtaining
the source luminosity: with an upper cutoff of 5 TeV,
there is about a 25% variation as « varies between 2 and
2.9. Hereafter, we take o = 2 to reflect the conventional
Fermi engine emission spectrum. This corresponds to a
~-ray luminosity at the source £ ~ 6.8 x 100 erg s—!.
This is remarkably close to the y-ray source luminosity
of the Cen A burst obtained above.

By duplicating for M87 our Cen A discussion, we ob-
tain

dF,,
dE,

E,
TeV

-2
=7x107% ( > TeV tem 257, (8)

A rough estimate of the event rate at IceCube can
be obtained following the analysis of our previous pa-
per [l]. Using the terrestrial transmission probability
given in [22], and a conservative effective area of 1 km?,
we find about 2 events/yr during a period of TeV gamma
ray activity. This is similar to the v, atmospheric back-
ground. A more definitive assessment of sensitivity to
such a signal will await further refinement of angular and
energy resolutions via improved knowledge of the detec-
tor response. Additionally, the temporal profile of future
gamma ray observation will allow a better delineation of
the signal.

Although there are no other nearby FRIs of this magni-
tude which can potentially be detected as point sources,
one can integrate over the estimated FRI population out
to the horizon to obtain a prediction for the diffuse neu-
trino flux. This quantity is given by

S

Ju(By) = 47

R nFRI EV (9)
where R ~ 1 horizon ~ 3 Gpc, n.,, ~ 8 x 10* Gpc~? is
the number density of FRI [23], and £, = (dNy/dE,)/T
is an average neutrino luminosity (all flavors) of FRI ra-
dio galaxies. Here dNy/dE, is the differential injection
spectrum for a single burst and 7 ~ 10 yr is the period

between outbursts. Although the burst nature of the
HEGRA observation is not established, in what follows
we conservatively assume that the photon excess from
MBR87 is localized to an outburst period. Since both Cen
A and MS8T7 have almost the same luminosity, we adopt
this as the average for FRI radio galaxies. Thus, the
quantity dNo/dE, can be obtained from Eq. (@),

dNy dF,,
=4nd®> Ny t —~ 10
ae, ¢ N E, (10)
where Ny = 3 is the number of neutrino flavors and d

is the distance to the source. For long time averages we
find

Vi

1 dNy
T dF,

The diffuse flux observed on Earth then follows from
Eq. @
F?J,~12x107"TeVem 2 s srt. (12)

=57x 103 E;2 TeV ts7!. (11)

Note that this flux is about a factor of 2 smaller than
the Waxman-Bahcall [24] upper limit on the intensity
of neutrinos produced in sources which also emit bary-
onic cosmic rays. After 3 years of observation, the
90% CL sensitivity (corresponding to 2.44 events) of Ice-
Cube to the diffuse muon neutrino flux is E? Jy, =~
3x 1072 TeV cm=2 s7! sr=1 [18]. We arrive then at
the second prediction of this work: If the observations of
Cen A at Narrabri and HEGRA measurements of M87
characterize the outburst of FRI radio galazies, then Ice-
Cube will collect about 10 neutrino events (all flavors) in
three years.

It seems worthwhile to briefly examine the implications
of neutrino bursts of magnitude corresponding to the -
ray intensities reported by the Buckland and JANZOS
collaborations, with full knowledge that these observa-
tions are not at the discovery level. Such a powerful
burst implies a neutrino flux on Earth about 2 orders
of magnitude greater than that in Eq. @). In addition
to vastly increasing the event rate at IceCube, the v,
flux should be detected by 0.1 km? neutrino telescopes
under construction (ANTARES [25], NESTOR [2€]) and
a planned 1 km? facility [27], all in the Mediterranean.
The location of ANTARES at 43° North provides a 50
discovery sensitivity of 1.2 x 10710 (E, /TeV)~2 TeV~1
em~2 s7! (for muon neutrinos) in the direction of Cen
A |28]. We find that in the course of ~ 10 years of obser-
vation, ANTARES and NESTOR will measure a neutrino
burst an order of magnitude larger than the 50 detector
sensitivity.

In summary, we have analyzed the possibility of detect-
ing the neutrino counterparts of various TeV ~-ray obser-
vations in a model where gamma rays originate through
m9-decay at the source. We have found that Icecube will
attain sensitivity to observe neutrino bursts from Cen A.
Moreover, if the y-ray observations with the Narrabri Ob-
servatory and the HEGRA Cerenkov telescopes charac-
terize the emission behavior of the FRI population, then



IceCube should observe the diffuse v, flux with statis-
tical significance in several years. In light of this, we
conclude that observations at future neutrino telescopes
will permit a major advance in discriminating between
high energy astrophysical processes.
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