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ABSTRACT: We propose an extension of the su(2,2|4) superalgebra to incorporate the
F1/D1 string charges in type IIB string theory on the AdSs x S° background, or the
electro-magnetic charges in the dual super Yang-Mills theory. With the charges introduced,
the superalgebra inevitably undergoes a noncentral extension, as noted recently in [If.
After developing a group theoretical method of obtaining the noncentral extension, we
show that the charges form a certain nonunitary representation of the original unextended
superalgebra, subject to some constraints. We solve the constraints completely and show
that, apart from the su(2,2|4) generators, there exist 899 complex brane charges in the
extended algebra. Explicitly we present all the super-commutation relations among them.
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1. Introduction and summary

D-branes have been the cornerstone to understand the non-perturbative aspects of string/M-
theory, and the “central” extensions of super Poincaré algebras provide a useful tool to
analyze the possible supersymmetric brane configurations. The identification of the cen-
tral charge with the magnetic charge of a monopole by Witten and Olive [J] was the first
crucial step in discovering many exact results in the supersymmetric gauge theories. Also
the celebrated Montonen-Olive duality conjecture [[f] received the first support from the
analysis on the central charges in four dimensional N' = 4 super Yang-Mills theory by
Osborn [[l]l. The method has been applied to the M-theory matrix model on the flat back-
ground [ff] by Banks et al. [fl], and further to the pp-wave matrix model [[J] by Hyun and
Shin [§] in order to identify all the extended objects. In the supersymmetric field theories
the central charges appear as surface integrals in the expression of the anti-commutator of
the supercharges, while in the matrix models they come as traces of a commutator.



Although much effort has been put to obtain the explicit expressions of the brane
charges in various theories, it seems that few questions have been addressed to their cen-
tral property, which can be, in principle, straightforwardly checked by investigating the
supersymmetry transformations of them. Historically, the central property was “proven”
in a more abstract way by Haag, Lopuszanski and Sohnius [fJ] studying the general struc-
ture of the Zs-graded symmetry algebras or the superalgebras. The proof was based on the
Coleman-Mandula theorem [[[(] on all the possible symmetry generators in the quantum
field theories not having trivial scattering amplitudes. Now the essential motivation to ques-
tion the central property of the brane charges comes from the fact that the brane charges
are not symmetry generators nor Noether charges. Rather, they are topological living
at the spatial infinity only, and hence free from the constraint by the Haag-Lopuszanski-
Sohnius theorem. In fact, some straightforward manipulations indicate that the generic
brane charges are not central.!

Recently, Peeters and Zamaklar considered some extensions of the AdS superalgebra
as well as the pp-wave superalgebra, and noticed that the brane charges are inevitably non-
central [} (see also [LT] for the related work). The AdS superalgebras are superconformal
algebras and bigger than the super Poincaré algebras. In particular, the anti-commutator
of the supercharges gives rotational generators, M, either for the anti-de-Sitter space
or for the internal space, under which the brane charges, say Z,, transform nontrivially.
The crucial observation made in [f]] follows from the Jacobi identity which contains two

supercharges and one brane charge,

{Q, @}, Z] ={Q, [Q, Zu]} +1{Q. Q. Zd]}. (1.1)

By contracting the spinorial indices of the supercharges properly, the left hand side can be
set to be an infinitesimal rotation of the brane charge, which do not have any prior reason
to vanish. Thus, from the right hand side, one can see the noncentral property of the brane
charge. Namely the brane charge do not commute with the supercharges in general.

In the mathematics literature, all the semi-simple superalgebras were classified by
Kac [[[2, [J] (see also a review by Nahm [[[4]), but the systematic study of the noncentral
extensions of them remains an open problem. The primary goal of the present paper is
to explore the possible noncentral extensions of the AdSs x S° superalgebra or su(2,2|4).

There are three types of BPS branes?

one can add to the anti-commutator of the super-
charges, as a starting point for the extension; F'1/D1 and D5/NS5 charges combine into
complex charges, while D3 charges are real-valued. After developing the general method
for the extensions, we focus on the electro-magnetic (F'1/D1) extension. We show that (i)
the corresponding extension is unique, (ii) apart from the su(2,2|4) generators, there are
899 complex brane charges in the extended algebra, (iii) the brane charges form a supermul-

tiplet of the original unextended superalgebra, and we present all the super-commutation

!Nevertheless all the known solitonic objects seem to have the vanishing values for the novel charges.
2For the discussion of the branes on the AdS space, see for example .



relations of them explicitly. Although in the paper we focus on the AdSs x S° superalgebra,
our method can be straightforwardly applied to other superalgebras.

The organization as well as the summary of the paper is as follows.

Section [ is to set up our notations to write down the su(2,2[4) superalgebra in a
su(2,2) @ su(4) covariant way. In section J, we analyze the root structure of the su(2,2[4)
superalgebra and discuss its representations in a self-contained manner. In particular, we
focus on a class of representations which are realized by the adjoint actions of the su(2,2|4)
generators. They are nonunitary and have finite dimensions.

Section [] contains our main results. Motivated by the super Yang-Mills analysis, we
define brane charges to be the space integrals of the total derivative terms or the surface
integrals. We argue then that the super-commutator involving a brane charge is also a
brane charge, and that all the brane charges super-commute with each other. Finally,
by investigating all possible Jacobi identities, we find out that the brane charges form a
“adjoint representation” of the original unextended superalgebra, su(2,2|4), and that it is
subject to some constraints. In subsection [L.2, the constraints are solved completely for
the electro-magnetic extension. We identify the explicit structure of the supermultiplet
and present all the nontrivial super-commutation relations.

In section [, we describe how to translate our result to the four dimensional language:
first for the extended N = 4 superconformal algebra and second for the extended N' = 4
super Poincaré algebra. We also comment how our extended superalgebra acts on the
quantum monopole states in the super Yang-Mills theory. For the purpose of the last
section, in Appendix we relate the twelve dimensional gamma matrices to the four and ten
dimensional ones.



2. AdSs x S® superalgebra - unextended

This section is to set up the notations in order to write the AdSs x S° superalgebra in
terms of the su(2,2) @ su(4) spinorial conventions. The main formulae are (2.13), (2.19),

(20, @:21), (222, £:23).

2.1 Gamma matrices and spinors

In order to make the SO(2,4) x SO(6) isometry of AdSs x S5 geometry manifest, it is
convenient to employ the twelve dimensional gamma matrices of spacetime signature (— —
++ +++ ++ + ++), and write them in terms of two sets of six dimensional gamma

matrices, {v*}, {7v*},
=@y  for p=1,23,4,56

(2.1)
I =1®~° for a =17,8,9,10,11,12.
The two sets of the six dimensional gamma matrices satisfy
PP AT =2 Ay byt =269 (2:2)
where n* = diag(— — + + ++). With the choice
YD =iy'y? -t =iy = (é _01> ) (2.3)

all the six dimensional gamma matrices are in the block diagonal form,

0 p 0 p°
’Y“:<pu%)’ fya:<ap), (2.4)

satisfying the hermiticity conditions,

Pu = Uuuﬁy = (pu)T ) pr = (pa)T, (2-5)

which ensure that I'', T'? are anti-hermitian and others hermitian.
If we further set all the 4 x 4 matrices, p*, p* p, p* to be anti-symmetric [[[q]

(P")ap = —(p") o » (P")*F = =5 (p)5,
(2.6)

o=~ () = e
the relations, su(2,2) =so(2,4) and su(4) = so(6), become manifest. That is, the indices
a,f=1,2,3,4 and &, = 1,2, 3,4 denote the fundamental representations of su(2,2) and
su(4), respectively.
It follows that {p"} and {p"} separately form bases for the anti-symmetric 4 x 4
matrices with the completeness relation,

(p5,) = 4%, (P)as(3u)® = 2(0a5057 — 65%027) (2.7)



On the other hand, the choice of chirality matrices in Eq.(2.J) implies that?

pIp? N = +ike TR ppy . e PN = =ik T B pe By (2.8)

so each of the sets pltp¥pr = pA or pltp¥ pN = p#¥A has only 10 independent components
and forms a basis for symmetric 4 x 4 matrices,
tr (P ) = —id e, — 245157 5N
(2.9)
(P ap (o)1 = —24(62705° + 65704°) -
Finally, {p" = %(p“ﬁ” —p'p)} or {p" = %(ﬁ“p” — p¥pH)} forms an orthonormal basis for
the general 4 x 4 traceless matrices,

tl“(p‘wp)\ﬁ) = 4(5ME5VA - 5Vn5uk) ) _%(pw/)aﬁ(puu)“/é + %51165 0 = 5046575 ) (2'10)
satisfying
(") == (") - (2.11)
Note that precisely the same equations as (2.7)-(B-11) hold for the so(6) gamma matrices,
{p®, p°} after replacing j,v, o, 8 by a,b, &, 3, etc.

In the above choice of gamma matrices, the twelve dimensional charge conjugation
matrices, C1, are given by

01 01
+HIMT —c.TMcl! M=1,2-.-.12 Cy = 2.12
( ) + + 5 4y 5 5 + +10 ® :':10 ) ( )

while the complex conjugate matrices, A4+ read

:I:(FM)]L = AiFM.A_l Ay = A0 ® 10 A= —ipjo = At = A1
=7 0 FA 041)"’
(2.13)
In particular, for 4 =1,2,---,6, we have
(p)T = —ApH Al = py,, (7)) = —A'ptA = p,. (2.14)
Now if we define the twelve dimensional chirality operator as T3 = () @ (7 then
{r@d) rMy—o, c_=rMc,, A_=17W4, . (2.15)

In 2410 dimensions it is possible to impose the Majorana-Weyl condition on spinors to have
sixteen independent complex components which coincides with the number of supercharges
in the AdSs x S° superalgebra, su(2,2[4). Up to the redefinition of the spinor by a phase
factor, there are essentially two choices for the Majorana-Weyl condition depending on the
chirality,

U=+4T0)Y | and ¥=Ut4d, =viC,. (2.16)

3We put €'2%4%6 = 1 and “[ ]’ denotes the standard anti-symmetrization with “strength one”.



2.2 The special unitary Lie superalgebra, su(2,2|4)

Using the twelve dimensional convention, the special unitary Lie superalgebra, su(2,2[4),
reads simply
{Q.Q} = Ry (il My, — iU My ) P (2.17)

where Q satisfies the Majorana-Weyl condition (R.1¢)) and B = %(1 4 1(13)),
Explicitly, the sixteen component supercharges, (J,4, carry only the chiral indices for
su(2,2) and su(4) so that the whole superalgebra, su(2,2[4), reads

{Qaa, Q7} = i66% (0" )" My, — 162" (p™)” Ma . (2.18)
{Qai . Qg5} =0, {Q*%, Q") =0, (2.19)
(M, Qaa = (i3p)a” Qpa (M, Q%) = Q%%(—igpp)p* (2:20)
[Map, Qaa) = (i%pab)dBQa57 [Map, Q9] = QQB(_i%pab)gda (2.21)
(M, M) = i Myx — muaxMys — Mo Mpx + muaMps) (2.22)
[Map, Med] = i(8ac Mpa — dadMpe — SpeMaa + SpaMac) (2.23)

where Q¢ = Ao‘ﬁ(QT)ﬁd, and all the bosonic generators are hermitian, (MH,,)T = My,

(M)t = My,. A few remarks are in order. The relative sign difference for the so(2,4) and
so(6) generators appearing in (R.1§) is crucial for consistency, as required from the Jacobi
identity involving [Qad,{Qﬁﬁ-,QW}]. However, the overall sign as well as the chirality
choices, namely whether p'2p34p°0 is +1 or —1, are solely matter of conventions.* Firstly
the over all sign can be flipped by rewriting the superalgebra in terms of the conjugate
supercharges, (Q' = Q', Q' = Q' = (Q")TA) [[7]. The equivalence between the different
50(2,4), so(6) chirality choices becomes clear when we rewrite the superalgebra by the
su(2,2), su(4) generators,’
,1?2,2) = _Z%ﬁ'uyM;u/ s T(ig) = A]zz,z)fh tr ,1?2,2) =0,

(2.24)

21—
Tsu(4) = —ZZP“bMab, Tt(@ = Tsu(4) s tr Tsu(4) =0.

s

From the completeness relation (R.1() which does not depend on the chiralities, we get the
following expression for the su(2,2|4) algebra regardless of the chirality choices,

[T ®ss Qyal = 0%Qp5 — 10%Qvi s [Ton®s s Ton)s] = 6% T2 5 — 0 3T % . (2:25)

4The freedom for different chiral choices reflects two different Majorana-Weyl conditions in 2 + 10 di-
mensions, (R.1€).

5 ) _ T . . . _

From (.1d), A = A". In fact, as explained in the next section (@), one can set A =
diag(—1,—-1,+1,+1).




Essentially the different chiral choices are equivalent to each other up to the redefinition
of the s0(2,4), so(6) generators through (B24), and (B10), ie. T, = —itp" M, =
_ 1 5 M

i7p -

3. u(1l)y extended superalgebra and its root structure

Before we proceed further to obtain the noncentral extensions of the AdS superalgebra,
here as an intermediate stage we consider the inclusion of an additional or “bonus” u(1)y
charge into the su(2,2|4) superalgebra which acts as an automorphism of the supergroup.
This u(l)y symmetry appears both in the IIB supergravity and in the analysis of the
four dimensional A/ = 4 superconformal group. In IIB supergravity the u(1)y symmetry
rotates the two chiral spinors (see e.g. [[§), while on superspace the superconformal
group is defined in terms of the superspace coordinate transformations so that the u(1)y
phase rotation of the odd coordinates is a part of the superconformal transformations [[9].
However the stringy o/ correction to the supergravity violates the u(1)y symmetry [Rd, 1,
and in A = 4 super Yang-Mills theory more than three-point correlation functions do not
respect the u(1)y symmetry generically B2, Rd, 4, RH]. Nevertheless, in our analysis of
the extended superalgebra, the u(1)y charge will always act as an automorphism to the
superalgebra either unextended or noncentrally extended, so that one can safely switch it
off any time. The main technical advantage to include the u(1)y charge is to reduce the
number of the fermionic simple roots from two to one. As the formers involve one chiral
as well as one anti-chiral, while the latter corresponds to one chiral only, the inclusion
will allow us to utilize the chirality of the superalgebra and simplify the study of the
representations of the superalgebra drastically.

3.1 Inclusion of a u(l)y symmetry

The additional u(1)y charge assigns quantum numbers +1/2; —1/2 to the supercharges,
Qoeéu Qady

[Tu(1)7 Qad] = +%Qaa, [Tu(1)7 Qad] = _%Qada Tju) = Tu(l) ’ (3'1)

which reflect the u(1)y phase rotation of the chiral spinors. One of the bosonic subalgebras,
su(4), is now extended to u(4),

Tu(4)d5' = Tsu(4)dﬁ' + %5% Toy s (3.2)
satisfying
T, @il =0%Q.5,  [Tun™s: Tuw 5l = 04Taw 5 — 83 Tun s - (3.3)

The additional u(1)y charge commutes with all the bosonic generators so that the resulting
superalgebra is a semi-direct sum of su(2,2[4) and u(1)y, or su(2,2[4) ®.em; u(1)y.



3.2 The root structure of su(2,2(4) @ u(l)y
In this subsection we analyze the root structure of su(2,2[4) @, u(1)y. Our analysis is
meant to be self-contained and involves much detailed general discussions on the subject.

The experienced readers may skip to the next subsection and only refer to the present one
for complements.

We first start with the following 16 x 16 representation of the bosonic part, su(2,2) &
su(4) @ u(1l)y, acting on spinors,

(ROMuw) s R(Mw), R(Tuw)) = (= ibpw ©1, 1@ —ibpw, 185 ),  (34)
which are orthonormal and satisfy the reality condition,
Tr(RIRy) = 461, Ri=(A®1)R(A®1), I,J=1,2,---,31. (3.5)

The above representation for su(2,2) is nonunitary. This is unavoidable in order to have a
finite dimensional representation for the noncompact algebra, since any unitary represen-
tation of a noncompact algebra is always infinite dimensional.

Our choice of the Cartan subalgebra is
H = (Tyq), M2, M3y, Msg, Mrs, Mg10, Mi112) . (3.6)

Using the SU(4) symmetry, p, — Up,U T UUT = 1, which preserves the anti-symmetric
property (B.§) of p,,, we can take the representation of the Cartan subalgebra in a diagonal
form. Adopting the bra and ket notations we set

R(Muz) = 5 (=[1){1] = 22| + 3)3] + [ (4] ) @ 1 = 34 @1,
R(Msy) = 5 (—[1)(1] +[2){2] = [3)(3] + [4)(4]) ® 1,

R(Msg) = 5 (—[1){(1] +[2){2] + [3)(3] — [4)(4]) ® 1,

R(Mzs) =1@ 5 (=[1){1] —[2)(2] + [3)(3] + [4)(4]) ,
R(Mg10) =1@ 3 (—[1)(1] +[2)(2] — [3)(3] + [9)(4]) ,

R(Mii12) = 1@ 5 (=[1)(1] +[2)(2] + [3)(3] — [4)(4]) .



All the bosonic positive roots and their representations are then given by

R(&) =[2)(1 @1, z=(0,0,1,1,0,0,0),
R(ES) = ’3><2‘ ®1, §= (07 17_170707070)7
R(gy) = |4><3| ® 17 Yy = (0707 17 _1707070)7
(3.8)
R(55+$):|3><1|®17 8+ZE:(0,1,0,1,0,0,0),
R(Ey+s) =42l ®1,  y+s5=(0,1,0,-1,0,0,0),
R(&yrsia) =141 @1, y+s+2=(0,1,1,0,0,0,0),
R(gu):1®|2><1|7 U:(0,0,0,0,0,l,l),
R(gv):1®‘3><2’7 02(0707070717_170)7
R(&y) = 1@ [4)(3], w = (0,0,0,0,0,1, 1),
(3.9)
R(Evin) =1®|3Y1|,  v+u=(0,0,0,0,1,0,1),

R(5w+v) =1 ® |4><2| ) W+ v = (0707 0707 1707 _1) ’
R(gw—l-v—i-u) =1® |4><1| y WHUtuU= (07070707 1, 170) )

where z,y, s and u,v,w are respectively the su(2,2) and su(4) simple roots. For a given
root, x, the corresponding negative root and its representation follow simply from

£ =&, RE ) =(A2)RE) (A1), (3.10)

so that

—R(&)T for xe{s,s+z,y+s,y+s+z}
R(E_,) = . (3.11)
+R(E)T otherwise

Note that {s, s+ z, y + s, y + s + x} spans the noncompact directions of su(2,2).

Just like Ry in (B.5), R(ﬁ), R(&4), R(E-) are also orthonormal. This implies that
those two are related by the unitary transformation. In particular, the objects appearing



in the anti-commutator, {Q, Q}, read

TR(M"™)M,,, = £ R(M,,) M, = R(M2)Ms + R(Msz4)Mss + R(Mse) Msg

+ > (REVE+REDE).
xeA(;z)

TR(M™) Mgy, = R(Mup) My, =  R(Mzg) Mrs + R(Mg10) Mg 10 + R(Mi112) M1 12

+ Y (REgte+RrE-)E),
XGA;M)

(3.12)
where A}, and Af, ,, denote the sets of all the su(2,2) and su(4) positive roots respectively.

In fact, for the given set of orthonormal matrices, R(]?), R(Ey), R(EL), (B7), BI), (B9,
B.11]), the formulae above define all the roots, £1, in terms of the hermitian generators,
M, Mgy, and make sure that R(E+) are the representations for them.

In terms of the Cartan subalgebra and su(2,2) @ su(4) roots, x € A(ngg)u A:,(4), the
u(1)y extended AdSs x S° superalgebra, su(2,2|4) Gy u(1)y, reads

[H7 5}(] = ng 9 [H7 g—x] = _Xg—x )
—x'l?l for xe{s,s+z,y+s,y+s+az} (3.13)
[gx,g—x] = 5
+x-H otherwise
[587 596] = gs—i—x ) [5y7 gs] = 5y-‘,—s )
[5y’gs+w] = [gy+375m] = 5y+s+m, [gw,gy] =0,
(3.14)
[51), gu] — gv+u 5 [gwa 51}] — gw—i—v )
[gwa gv—i-u] - [gw—i-vy gu] - 5w+v+u 5 [gzu gw] - 07
[H, Qoa] = Qa3 RIH) o [H.Q°%) = —R(H)* ,,Q%
(3.15)

[‘Sﬂ:xa Qad] = QﬁBR(gix)BBad, [gixa Qad] = _R(gix)adgﬁ'c?ﬁﬁ.,

and

— 10 —



«

fl gx gs-l—:c gy—i-s—i-x
E_, f2 Es  Eyys
- g—s—x - 5—5 f3 gy
_g—y—s—:c - 5—y—s 5—y f4

{Qad7 Qﬁﬁ} = 26aﬁ

B
. (3.16)
f5 gu gv-l—u 5w+v+u “
o 5—u f6 51) gw—i—v
—20% )
5—v—u 5—1) f7 &U
g—w—v—u g—w—v 5—w f8 5
where the Cartan subalgebra is organized as
fi = 2(=My — M3y — Msg), fo=2(—Ma + Msy + Msg),
fs = 3(Mia — My + Msg), f1=3(Miz + Msy — Msg),
(3.17)
fs = 3(=Mzs — Mg1o — Mi112),  fo = 3(—Mzs + My1o + Mi112),
fr=3(Mzg — My1o + Mi112) fs = 3 (Mrs + Mg19 — Mi112).
In particular from (B.I5), Q11 corresponds to the unique fermionic simple root,
[Hlel]:quly q:(+%7_%7_%7_%7_%7_%7_%)7
(3.18)
€, Q1] =0 for all x € AL, U AL, .
Other fermionic positive roots are {g+ x, ¢+ X, ¢+ x+ X' | x € A(;Q), X € A:;M) .
The second order Casimir operator, Caq4g, reads
CAdS — C(2,2) - Csu(4) - %Qad@ada (319)

where C,,) and C,,.) are the su(2,2) and su(4) Casimirs respectively. With the su(2,2)
roots for the noncompact directions, Al = {s,s + x,y + s,y + s + x}, they are

1
C(g’g) == EM'U'VMMV

= M7y + M3, + M3 +{&, Eu} +1{&y, €y} — Z {&, €x},
XEAj (320)

Cosy = 5 M Moy = Mg + Mg + M7y 15 + Z {&, Ex}-

xeAf{

— 11 —



3.3 Nonunitary finite representations

Starting with an eigenstate of T,,,, by acting the negative fermionic roots, Q*%, as many
as possible - maximally sixteen times surely - one can obtain a state which is annihilated
by all the Q**’s. Now under the action of the bosonic operators, the state opens up an
irreducible representation of u(1)y @®su(2,2) @ su(4) or the zeroth floor multiplet. Further
from (B.1§), any state in the multiplet is annihilated by all the fermionic negative roots.
Generic unitary representations of the noncompact Lie algebra, su(2,2), are infinite
dimensional. However unitary representations are not of our interest. In the present paper
we focus on the nonunitary finite representations of su(2,2[4) ®..m; u(1)y, denoted by R,
satisfying
Rﬁ = (Rﬁ)T )
—(Ry)T for ye{s,s+x,y+s,y+s+z} (3.21)
R\ =
+(Ry)1 otherwise

Namely, just like R(Ey) (B-11]), the representations of the roots for the su(2,2) noncompact
directions are anti-hermitian. This makes the su(2,2) and su(4) Casimirs (B.2(0) nonneg-
ative definite and ensures finiteness of the representation. Essentially, one can regard
{Ry, (R x € AL, UAL L} as a unitary representation of su(4) @ su(4), since, as an
alternative to (B.13), we have

[RFI’RX] = Xva [Rﬁ, (RX)T] = _X(RX)T’ [RX7 (Rxm = X‘RFI- (3'22)

Consequently for any such irreducible representation there exists a unique superlowest
weight, |Ar), being annihilated by all the negative roots,

Qad’AL> =0, g—x’AL> =0, x€ A(—g,z) U A:‘;(z;) . (3'23)

The superlowest weight vector is specified by an arbitrary real number, r and six non-
negative integers or the Dynkin labels, J;, Js, Jy, Ju, Ju, Juw,

AL = (r, LTt 20 4 Jy), =5+ ), AT — 7)),

(3.24)
L+ 20+ Ty =30+ Tu)s =3 = )
satisfying for the su(2,2) @ su(4) simple roots, x = , s, y,u,v,w in (B.§) and (B.9),
o XAL _ (&) AL) =0 3.25
- Y2 = JIx» X L) =0. ( 25)

All the other states are generated by repeated applications of the positive roots on
|Ar), and without loss of generality one can safely work with the simple roots only, Q11,
&, X = x,8,y,u,v,w. Using the commutator relations, [£,,Q] ~ @ in (B.1), one can
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always move all the Q11’s appearing to either far right or far left allowing other fermionic
positive roots. Therefore the whole supermultiplet is spanned by

Exm €1 Qandm * Qarar [AL) (3.26)

or equivalently

Qandn e Qa1d1€X7n e 5Xl ’AL> . (327)

The latter form makes clear that the whole multiplet is built on the zeroth floor by repeated
application of the fermionic positive roots. As the zeroth floor multiplet has dimension [RG]

do = | (o + V(s + Dy + D)o+ Js + 2)(Js + Iy +2)(Jo + T, + Jy +3)]

x [%(Ju +1)(Jy 4+ D (o + D (o + o+ 2) (o + Ju +2)(Ju + Ty + Ju + 3)] ,
(3.28)
Eq.(B-27) implies that the supermultiplet has a finite dimension, dj,

ds < 2% x dy. (3.29)

The application of a Q,q changes the u(l)y @ su(2,2) @ su(4) multiplets, jumping
from one irreducible representation to another. In particular, the number of the applied
fermionic positive roots determines the floor number, zero to sixteen at most. Each floor
is specified by the u(1)y charge,

rn=r+3N, N=0,1,2,---,16. (3.30)

Each of the zeroth and the highest floors forms an irreducible representation of u(1)y @
su(2,2) @ su(4), while other floors are in general reducible and decompose into irreducible
ones. All the irreducible representations for u(1)y & su(2,2) @ su(4) are specified by their
own lowest weights, Az, annihilated by all the bosonic negative roots,

AL = (r + AN, —L(io + 255 +5y) s —50a +dy) s =50 — dy)

(3.31)
~3Gu+ 2+ Ju) s —3Gu + ) s ~30u = )
The corresponding highest weight is then [R7]
A= 1+ 5N, 30y + 24 + o) s 30y +30) s 30y — o).
(3.32)

Lw + 2o+ ju) s 3G+ u) s 36w = )
while the dimension is given by (B.2§) with J < j.

In general, different orderings in the multiplications of the positive roots on the su-
perlowest weight may result in degeneracy for states of the same weight vector. To verify
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the possible degeneracy one should check whether a state can be rewritten as the other
through changes of orderings using the super-commutation relations of the superalgebra.
Especially for irreducible representations, if a state is annihilated by all the negative simple
roots - hence by all the negative roots - the state must be either the superlowest weight or
trivial. This provides an alternative criteria to distinguish or identify any given two states
of the same weight vector in a representation.

The particular representation we have in mind for the noncentral extension of su(2, 2|4)
superalgebra to be carried out in the next section is a kind of adjoint representation where
su(2,2|4) generators act in the adjoint manner on brane charges which carry finite number
of su(2,2) @ su(4) spinor indices, e.g. Zal...akdl...dlﬁl"'ﬁMﬁl"'B”. Naturally the dimension
of the representation is finite and Rﬁ, R+, satisfy the condition (B.21), since they are

—

essentially given by R(H), R(E+y), —R(]?I)t, —R(E+y)!, depending on whether the spinor
indices are lower or upper ones. Acting the fermionic positive roots, Qng, on the ground
floor as in (B.27), all possible states in the supermultiplet are built up, which in fact by
definition gives representations of the fermionic positive roots, R,e. On the other hand,
the representations of the fermionic negative roots, R®®, should be read off from explicit
manipulation of their actions on all the existing states utilizing the anti-commutation
relation of the superalgebra until it hits the superlowest weight to terminate the procedure.
For the adjoint representation we have®

«

Rl R:c Rs-{—:c Ry+8+u’v
R Ry Re Ryis
Ri+m Rl Rs Ry

RL—I—s—l—x RL—!—S RL R4

{RO4 Ry} = 28%

(3.33)

R5 Ru Rv+u Rw+v+u ¢
Ri Rs Ro Ruso
Rl +u /Rj) R? Rw
Rlyiotu Rlyw Rl Rs

Note that, compared to (B.1), there is no minus sign for the generators of the noncompact
directions in su(2,2).

As usual, for some small irreducible representations of the su(4) algebra, we may denote

5Note that if we assumed R*¢ = "RL 4 then our representation would coincide with the unitary represen-
tation of the su(4|4) superalgebra. However, then, from {R** R,s} = 0 and its positive definite property,
the representation should have been trivial. In fact, the precise relation of R* to Rld can be obtained
only when we complete the vector space of the representation by the complex conjugate.
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them simply by their dimensions, instead of the Dynkin labels,

4~ (1,0,0), i~(0,0,1), 6~ (0,1,0), 10 ~ (2,0,0),
15~ (1,0,1), 20~ (3,0,0), 20~ (1,1,0), 20"~ (0,2,0),

(3.34)
35~ (4,00,  36~(20,1), 45~(2,1,0), 60~ (1,2,0),

70 ~ (1,0,3), 84~ (3,1,0).
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4. Noncentral extensions of the AdS; x S° superalgebra

One possible way to obtain the noncentral extension of the su(2,2|4) superalgebra is to
perform the Witten-Olive type analysis on the four dimensional N' = 4 super Yang-Mills
theory [B, f. Namely starting with the explicit expressions for the supercharges, including
the special superconformal charges too, one may evaluate the anti-commutators of them
to see what kinds of surface terms appear. In principle, one gets

{Q, QﬁB} = 45d5722,2)a5 - 45&6TS“(4>dB + HQ%B ’
(4.1)
{Qacs Qppt = 2455 -

Here H* 85 and Z_, 83 correspond to the possible surface integrals or the brane charges,
and they can further decompose into (15,15) @ (1,15) @ (15,1) & (1,1) and (6, 6) & (10, 10),

3 _ Yo, 1sa, 1 Y, 1 Y
Haaﬁﬁ — Haa,@ﬁ 4 Z50451'_[(3:5 _ Z(5(1[61’_[0:5 4 Eaaﬁaaﬁz&r,

(4.2)
(6,6 (10,10)
Zadﬁﬁ - ZaBdB * ZaBdB ’
satisfying the traceless and symmetric properties,
H% =0, H%=0, H* ;=0, H4=0,
(4.3)
(6,6) _ 7(66) (10,10) _ (10,10)
afaf [aB][e5] aBap (aB)(@p)
Using the 4 x 4 matrices, p*, p®, they can be rewritten as
Hag — _Z'%([)MV)QBHHV ’ HdB — _i%(ﬁab)dg'Haba Hadﬁﬁ — i(ﬁw)aﬁ(ﬁab)dﬁ'lfwab,
6,6) _ (10,10) __ 1 A b -
Za,@aﬁ _ (pu)aﬁ(pa)aﬁzua7 Zaﬁaﬁ - m(pl“’ )Oé,B(pa C)dBZuyAabc7
(4.4)
where H,yqp, Hy .y, Hap, H are all hermitian, and from .9), Z o rabe 18 anti-self-dual for
each s0(2,4) and so(6) indices,
Zuu)\abc - _ZGEMV)\KUTZKJTabc = —tgCabe efZ/u/)\def : (45)

Physically, H,vab, Zyas Z;:V)\abc correspond to the D3, F1/D1, D5/NS5 branes. A simple
way to see this is to begin with a single probe brane orthogonally intersecting with a stack
of D3 branes in flat space and to take the ‘near horizon limit’ for the D3 branes in the
sense of Maldacena’s original approach to the AdS/CFT correspondence [P§]. The brane
configurations preserve eight supercharges in flat space, which is enhanced to sixteen in the
AdS limit, as they have four Neumann-Dirichlet directions for the D-branes (NS branes
are related by S-duality). More specifically, a brane charge with p indices for so(2,4)
and ¢ indices for so(6) corresponds to the (p + ¢ — 1) brane wrapping an AdS,3 x S77*
subspace maximally embedded in AdSs x S° [[5]. This result implies that there is no brane

configuration corresponding to H,,, H,, H charges.
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The brane analysis also agrees with the field theory result obtained by Osborn [[f] who
showed that there appears no H,,, Hy, H terms in the expression of the anti-commutator
between the two ordinary supercharges. This indicates that, at least, some components
of H,,,Hy, are identically vanishing in the extended superalgebra. Then the covariance
under the so(2,4) @ so(6) rotation makes sure that all of them are indeed absent. Hence
we conclude

Huy =0, Hyp=0, H=0, H¥;5=H,;. (4.6)

As noted by Peeters and Zamaklar [fl], due to the Jacobi identity involving Q, Q
and a brane charge, the commutators between the brane charges and supercharges should
not vanish, e.g. [Huuap, Qaal # 0 if Hypey # 0. Naturally this leads to a noncentral
extension of the superalgebra, su(2,2|4). In the rest of the present paper, we study the
noncentral extension in a group theoretical manner, rather than pursuing the Witten-Olive
type analysis on the four dimensional ' = 4 super Yang-Mills theory.

4.1 Generic features of the extended superalgebra

In our terminology, brane charges are, by definition, the space integrals of the total deriva-
tive terms or the surface integrals. In particular, they are not symmetry generators of
the corresponding field theory, and hence they are not forbidden by the Coleman-Mandula
theorem [[LQ]. Some immediate important consequences are as follows. Firstly the super-
commutator involving a brane charge is also a brane charge, since whatever comes
out should remain as a surface integral. Furthermore, all the brane charges super-
commute with each other, since one can take the two radii of the spatial infinite spheres,
52, to be finitely different so that the two surfaces have no contact point.” As a result all
the bosonic brane charges can be diagonalized simultaneously and provide good quantum
numbers. Schematically we have®

[Oa, Op} =cap®Oc + dap!Br,
[Br,Bj} =0, (4.7)

[Oa, Br} = far’By,

where O 4 denotes the old generators in the unextended superalgebra, su(2,2|4), with the
structure constant, ¢4, while B corresponds to the brane charges.

For consistency, it is necessary and sufficient to require the extended superalgebra to
satisfy the Jacobi identity, as the structure constants which are ordinary c-numbers will
then realize a representation or the adjoint representation. In our case, the Jacobi identities

"One exceptional case is the square of a fermionic brane charge, which diverges in general. Either we
can take again two different radii at spatial infinities and set it vanish as a kind of regularization scheme,
or leave them undetermined. In any case, our main results are not affected by this subtlety.

8The super-commutator is defined to be [Oa, O} = OO0 — (—1)#A#B OpOa, where # 4 is zero or
one depending whether O 4 is bosonic or fermionic.
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involving more than one brane charges are trivial so that there exist essentially two types
of Jacobi identities to consider :

[04,[0B,B}} — (-1)#A#B[0g ,[04, B}} = [[Oa,08}, B}, (4.8)

[OA ) [OB ) OC}} - (_1)#A#B [OB ) [OA ) OC}} = HOA ) OB} ) OC} . (49)

The first identity clearly shows that the brane charges form a representation realized
by the adjoint actions of the generators in the original unextended superalge-
bra, while the second one indicates that the adjoint representation is subject to
some constraints. In particular, the dimension of the adjoint representation is finite,
meaning that there are only finitely many brane charges.

Requiring that the brane charges transform covariantly for the su(2,2) & su(4) gener-
ators, as described in subsection (B.J), any Jacobi identity involving the su(2,2) & su(4)
generators holds automatically. Therefore the only nontrivial constraints come from Jacobi
identities containing either three Q’s or two Q’s and one Q,

[Qada Zgﬁk,a,] + [Qgﬁ'a Z’y"yad] + [Q’Y’W Zadﬁg'] = \I’agfydg';y = 07 (4'10)

[Qada Hﬂwﬁg] + [Qﬁg’a Hﬁwad] + [Q'y"yj Zadgg] =0. (4'11)

To obtain the extended superalgebra, one needs to look for adjoint representations of the
original unextended superalgebra such that it contains Z &8 Ha 84 and satisfies the
constraints above. However, this group theoretically well defined problem does not lead
to a unique solution, essentially because the relevant superlowest weights are not specified
yet, and due to the nonunitary property of the adjoint representation, the states which
can decouple may not decouple. In fact, we expect the “correctly” extended superalgebra,
which can be in principle uniquely obtained from the Witten-Olive type analysis on the
N = 4 super Yang-Mills theory, leads to a reducible adjoint representation for the brane
charges, containing more than one irreducible supermultiplets. The physical reason is that
the D1, D3, D5 branes should be able to exist separately, not necessarily weaved by one
another.

The filtering of the reducible representation into each irreducible one can be done by
restricting the full Hilbert space of the Yang-Mills theory in a suitable way, and this will
enable us to obtain the physically relevant noncentral extensions.

Firstly we raise the question, ‘what is the relevance of the strictly unextended superal-
gebra, su(2,2[4), to the Yang-Mills theory, if the “correct” superalgebra of the theory is an
extended one not the unextended one?’ The answer is simple. Consider a subspace of the
full Hilbert space which is annihilated by all the brane charges. Clearly such a subspace
forms an invariant subspace for the extended superalgebra, and on the subspace the brane
charges have the trivial representations. In other words, the unextended superalgebra is
only for the elementary particles in the theory not for the branes, as one can naturally
expect.
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Now we consider a less restricted subspace of the full Hilbert space. Namely, we focus
on the subspace, V', which satisfies the following two properties. First it is annihilated
by the D3 brane charges, H,,q, and second it is invariant under the action of all the
supercharges,

HyaV =0, QusV CV, Q¥V CV. (4.12)

It follows that V' is in fact an invariant subspace for the fully extended superalgebra, since
all other generators can be constructed from the supercharges. Furthermore, we get

[Qaa s H' 5] V = 0. (4.13)

Clearly on the subspace, V, the representations of H¢ 85 and [Qaq, HYY ﬁﬁ-] are trivial,
and Eq.(f.11)) gets simplified to show that Z &80 forms the ground floors of the adjoint
representations we are looking for,

[Q"7, Z,4p5] = 0. (4.14)

Moreover, as it decomposes into (6,6) and (10,10), there exist two superlowest weights,
and hence two irreducible adjoint representations. They can be treated separately, and we
only need to impose the remaining constraint, ¥ ey = 0 (E10).

Direct calculation, using ([.1]) and (f.14) only, shows that
{Qr*, Y osaiy }=0, identically . (4.15)

Surely this is a necessary condition for the consistent decoupling of ¥ in the adjoint

afyaBy
representation.

4.2 Electro-magnetic extension

The aim of the present subsection is to obtain the noncentral extension of the superalgebra,
su(2,2|4), which contains the F'1/D1 or the electro-magnetic charge, Z,,, in the anti-
commutator of the supercharges,

{Qad > Qﬁg} = ieaﬁ’ydedg;yngw ) {an‘z’ Qgﬁ} = 450.{6'122,2)(15 - 45agTsu(4)d5, (4'16)

where, for the later convenience, we have raised the spinor indices of the electro-magnetic
charge by the totally anti-symmetric four form tensors,
W31 8 B4 7(6, = ~a\&f
B = Jexi it 700 = ()0 (0" Zya (4.17)
As the brane charge, Baﬁdﬁ, can not be central, the superalgebra, su(2,2|4), gets a noncen-
tral extension inevitably. The extension will be uniquely determined, and the corresponding

extended superalgebra can be regarded as the superalgebra of the N' = 4 super Yang-Mills

: ¢ e ad | — (10,10) _
theory restricted on the ‘D3, D5 free’ Hilbert space or H 85 = 0, Zaﬁdﬁ' =0.
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From the decomposition of the tensor product,
(4,4) ® (6,6) = (20,20) @ (4,20) & (20,4) P (4,4), (4.18)
we write, for the first floor of the adjoint representation,

[Qaa, BOPI] = NooP7P7 4 L6250 Ny — %555;/]\[75 — 1836 NPV 4 %5&/53]\[66
(4.19)
_%5537(.16*/ + %5336(.16*/ _ %5(535%& + %533675(1 7

where each tensor belongs to different su(2,2) @ su(4) irreducible representation as they
are traceless and anti-symmetric,

Ny @787 =0, Noo2P7 = N, B3 (20,20)
B8 =0, BV = B89 : (4,20), (4.20)
Bory"ya =0, Bﬁ’Y"Ya — B[ﬁ’YHa , . (20’ Zl) .

In terms of the decomposition, the six form tensor reads

R . pepe 4 1 . cpepe 1 N .pepE L . g€
Y opyvapy = 1€aBpeCappe N+ 3€8v0e€ 35 pe Naa™ "+ 36vape€yape N+ g€apre€spse N

(4.21)
In particular,
No& = Leatdedbiog oo .. (4.22)
Hence the constraint, ¥ = 0, is equivalent to
N9 =0, Ned =0, (4.23)

which imply only the (4,20) and (20, 4) tensors survive and others decouple.

Consequently the commutation relation for the first floor, ({.19), becomes simplified,
and other higher floors can be constructed recurrently. It turns out that the construction
terminates on the fourth floor, and the resulting adjoint representation is of the following
unique form,
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(10, 10)

dBaﬁ
/ AN
(36,4) (4,36)
B%apy Bsgla
/ N / N
(45,1) (15,15) (1,45)
Boaﬁ_y(S aﬁ_dﬁ Bdﬁfyé
N / AN /
(20,) (,20)
Baﬁdw Badﬁ."y
N /
(6,6)
Ba,@o’z,@

where the diagonal lines link the two neighboring su(2,2) @ su(4) multiplets which are
connected by the supercharges. The complex dimension of the supermultiplet is 899. Below
we explicitly present all the super-commutation relations of the extended superalgebra,

(Qui, BY9S) = _l5aph,ah 4 150 pa & _ 15apass 4 156 papa,

{Quin B71} = 360 B30 — 307 B0 — L0[BoiH + 0] B + 150 Bis™
{Qui, B9} = —362B5 8 + 367 Bo%, + 169B%: %, — $67 B4 + 1684B°.,.,
(@nies B* 5% 8] = 1505 B3 — 1505 By — 1505 B jop + 1505 Bns -

[Qrss Bdg'w] = %533,515’&% - %5,319@555-% %@BRB%-F 1—105g3m55 - %5&;3,@5%— 1—10553;%@%,

_ 2 B8 2508 1 B8 1 B8 158 158
[Quins B*P5] = =202 By s + 204 Bk 5 + 1505 Bis + 1005 Biw — 1094 Bise — 1005 B

R KoK RYK
{Qm%y Badﬁfy} - 1_%5;?Bkdﬁ~/ - %55{-3&@57 - 1_18570[B/@d1£6 5

{Q’f’%’ Bdﬁwa} = %6gBdﬁﬁa B %5073/%,[.3/40{ B %(5ng@,€0‘ ?
[Qm’m Bdﬁaﬁ] =0.
(4.24)
All the brane charges are traceless, anti-symmetric for the upper indices, and symmetric
for the lower indices if they belong to the same species. The statistics of the brane charges
depends whether the number of the upper indices is even or odd. Furthermore, the upper
index can be lowered and converted to the different species using the positive supercharges,
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Qaa, from right to left. For example,

Q ‘s Baﬁde’ — Baﬁd — B[a,@]d , Qa' 7 BaedB — Ba,c’u,@ — Ba'[d’g],
¥ gl ¥ ¥ ¥ ¥
{Q., B35} =By, {Qea, B} = B,y7° = By 1,
(4.25)
{@qe B%s} = Baﬁvé = Blo7 (v0) » [Qears B*py] = By = B%(ay) »
[Qeas B7g7al = Bag'a = Bag) o {Qeas B pag} = Bagap = Biapy(an) -

Note that the tracelessness follows from (f.23).

The super-commutators between the negative supercharges and the brane charges can
be also obtained recurrently, floor by floor, using the above expressions for the brane charges
and the superalgebra itself, (f.14). They are

[Q", Baﬁaﬁ] 725K Baﬁ g+ 725H Baﬁ a ?533'{5’&5 - %%Bﬁdaﬁv
{Qr%, B%aipy} = 105’23“0‘&, — 155’%B0‘(5/"€V — 155’;30‘@’%5 + 35%B“d’% + 309 g,
{Q™, By g7a} = 1065 B, ;¥% — 1565 BX 17, — 155“ Bralo+ 300, B 0 + 352.3%%,
[Qm%’ Baﬁ'dﬁ] —_ —%5%306&&5 _ 3_325%3015@/@ + %5%3&5&6 + gé%Ban/ﬁ’
(@™, By = —160% B 510 —165% B4 10 —48, B¥ ;7% — 487 B 35% 4 485 B" 1%+ 46%, B
[Q%, B 5] = 168% B 5 + 168 B 0%, — 452 BrOFs — AS3 B, + 467 Bro%s 1 465 Bres.
{Qm&, Ba;yo'zﬁ} — _125/;@.YBaHdﬁ. _ 45%Banﬁ.k + 46€Baﬁdi@7
{Qﬁl.i’ Baﬁdﬁ{} —_ 125’2{306556’% + 45(3;36&@/{ _ 45%Boméu%,
[Qm%’ Baﬁdﬁ] =0.
(4.26)
Note that the D1 brane charge, Z,,,, as well as the top floor brane charge, Baﬁ'aﬁv are

annihilated by eight real supercharges, which shows that the adjoint supermultiplet formed
by the brane charges is “8/32 BPS multiplet”.
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5. Comments

5.1 Translation to the N = 4 superalgebra in four dimensions

In terms of the twelve dimensional conventions introduced in Section P, the fully extended
AdSs5 x S° superalgebra, (1)), reads

{Q7 Q} = P13|: iIWVM;u/ - Z‘Fab]\4ab + %Puyabr(’?)H;wab + BP“aZua - PHGBZ/MLT
(5.1)

+ ﬁBFuuAabcz— 1 F,uu)\abcgz—

_ 1L T
pvabe 144 pvAabe HS’

where T'(7) = 47123456 and P = s(1+ ).

In order to translate our results to the four dimensional language, we need to write
all the higher dimensional objects in terms of the four dimensional conventions. For the
gamma matrices we refer (A1) in Appendix. For the so(2,4) generators we decompose
them into the four dimensional Lorentz generators, an, momenta, P,,, special conformal
transformation generators, K, and Dilation, D, with m,n =0,1,2, 3,

Myin = Maymain, Pn=—Mimiz+ Mui26, Km = Mimi2+ Mniz6, D= M.
(5.2)
The twelve dimensional Majorana-Weyl supercharge, Q, consists of the four dimensional
ordinary supercharges, ¢, ¢ = ¢', and the conformal supercharges, s, 5§ = sf. As they have
the opposite mass dimensions, each of them can be singled out by the projection operator,
%(1 F I'ig). In our choice of the gamma matrices (A.T]), Q14, Q2a, Q>Y, Q** correspond to
the ordinary supercharges so that

Qoa = (Q16 5 Qi > —15'a, —i8%a )", Q% = (s, 8* iqp®, ip”). (5.3)

Provided the above dictionary, our extended AdSs x S° superalgebra, (f.16), ({.249),
(.26), leads to a noncentral extension of the four dimensional ' = 4 superconformal
algebra.”

5.2 On super Yang-Mills theory and more

In the standard approach to the NV = 4 super Yang-Mills theory, different vacuum ex-
pectation values (vev) of the Higgs correspond to the different theory. Especially for the
nonzero values, the conformal symmetry is spontaneously broken, and the Hilbert space
parameterized by the Higgs vevs is not invariant under the conformal generators.'® The
truncation of our extended su(2,2|4) superalgebra to an extended four dimensional N' = 4
super Poincaré algebra can be achieved by the projection operator, %(1 —I'ig). Essen-
tially the extended super Poincaré algebra reads, in terms of the ten dimensional gamma

90Our conventions have been chosen to agree with [@] for the unextended sector.
108¢trictly speaking, this is for the super-Yang-Mills theory on R>!. For the theories on compact spaces,
one should integrate over different vevs of the Higgs due to the normalizability of the zero modes.
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matrices, (A.H), and Majorana-Weyl supercharge, (A.9),

{Q,Q} = 2Py | TPy, + 41 (5) [ Hypgy + DT + 15y D07
(5.4)

mnabc mnabc

+ 2_14fwmnabc Te— + ﬁf@)fmnabc T~ P 7

where é = Q'ly, Py = %(1 :l:f‘(ll)), f(5) = ['o123, and all the brane charges are real having
the origin,

Zia+ Zea = 2(Tag - ZT;) ) 1_m+2 n+2abe — Z(Tgl;abc - iT;l:LabC) ’

(5.5)
Hpap = %(H1m+2ab + H6m+2ab) .

In particular, Osborn identified 7 and T¢ as the electric!! and magnetic charges
by investigating the supersymmetry transformation of the super-current in N/ = 4 super
Yang-Mills theory [f]

T = [ dS-tr(Bd,), T¢ = [dS-tr(Ed,). (5.6)

Straightforward manipulation can show that the ordinary supersymmetry transformation
of the electro-magnetic charges do not vanish even at the on-shell level.'? Our results,

({.24) and (4.24), also confirm this, since the brane charges on the ground floor of the ad-

joint supermultiplet are annihilated by eight real supercharges out of 32. Surprisingly this
means the noncentral property of the electro-magnetic charge, in contrast to the conven-
tional wisdom due to the Haag-Lopuszanski-Sohnius theorem [fJ]. The original argument
for the electro-magnetic charge to be central is based on the Coleman-Mandula theorem [[L(]
on all the possible symmetry generators in the quantum field theories. The point for the
brane charges we discuss in the paper is that they are not symmetry generators nor Noether
charges. Rather, they are topological living at the spatial infinity only, and hence free from
the constraint by the Haag-Lopuszanski-Sohnius theorem.

Nevertheless, for the ordinary supersymmetric monopole configurations, our new brane
charges, at least for those coming from the ordinary supercharges, annihilate the corre-
sponding quantum states as follows. Although the classical monopole or solitons are given
by the bosonic configurations only, at the quantum level the fermions act nontrivially on
the quantum states essentially to respect the second quantization of them. In other words,
there is no quantum state which is annihilated by all the fermions, and one should always
keep in mind the fermions. Now for the supersymmetric monopoles, the fermionic zero
modes are given by the broken ordinary supersymmetry transformations of the gauginos,

HThis electric charge should not be confused as the gauge symmetry Noether charge. The latter is given
by the Gauss’ law or the equation of motion for Ag.

2Even Eq() does not hold in general. This seems to imply that the expression of Z,, further de-
composes into several sectors which belong to different irreducible representations corresponding to various
configurations, (D1, D3), (D1, D3, D5), (D1, D3, D3), etc.
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A ~ Fapl'4Be. The expressions for the new brane charges coming from the ordinary su-
percharges contain the gauginos, the field strengths, and the derivatives of the Higgs, but
not the Higgs itself, so that, from the asymptotic behavior, one can expect that the corre-
sponding new brane charges annihilate the monopole states.

It will be very interesting to find out novel configurations which have nontrivial realiza-
tion of the new brane charges, either on the super Yang-Mills side or on the supergravity
side. In the former case, the full expressions for the brane charges coming from all the
ordinary as well as the conformal supercharges are desirable, which deserves a separate
analysis. Certainly, nonvanishing vevs of any brane charge imply the dynamical breaking
of supersymmetry 9. Another thing to be done is to classify the representations of the
extended AdS superalgebra as in [B(, Bll]. More detailed study of the extended superalge-
bra may shed light on the nonperturbative aspects of the string/M-theory on the AdSs x S°
background.

Acknowledgments

JHP would like to thank N. Dorey, S. Krusch, A. Losev, N. Nekrasov and H. Osborn for
the helpful comments and the enlightening discussions.

— 925 —



A. Decomposition of the gamma matrices for lower dimensions

A.1 For the four dimensional N = 4 superconformal algebra

In order to translate our results to the four dimensional language, we need to write all the
higher dimensional objects in terms of the four dimensional conventions. First we let the
six dimensional gamma matrices satisfying (R.3) and (R.5) be

(0 +1 (om0 (0 -1
1= +1 0 ) Pm+2 = 0 &, 3 P6 = +1 0 )
(0 (&m0 (0 41
P11 = 10 ) Pm+2 = 0 Om ) P6 = 10 )

where the 2 x 2 matrices, o, = (+1,7), 7, = (—1,7), m = 0,1, 2,3, satisfy the Clifford
algebra of the four dimensional spacetime on which the super Yang-Mills exists,

(A1)

OmOn + OnOm = 277mn > 77 = diag(_ + ++) . (AQ)

The four dimensional gamma matrices are then

'AYm = <_0 Jm) = B4_1(’3/m)*B47 B4 = ( 0 E) ) (A'?’)

om O e 10

where € is the usual 2 x 2 anti-symmetric matrix satisfying of, = 0, = €€, €, = 1.

The above p,, matrices are not anti-symmetric, and to make them so one needs to take

some transformations such as

0 e 0 ¢ " [T

The first transformation makes p,’s anti-symmetric, while the next similarity transforma-
tion involving the unitary matrix, U, further ensures that the representation of the Cartan
subalgebra is diagonal, exactly as (B.7).
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A.2 For the four dimensional super Poincaré algebra

For the truncation of our extended AdSs x S® superalgebra to an extended super Poincaré
algebra in four dimensions, we write the twelve dimensional gamma matrices in terms of

the ten dimensional ones, I'4, A = m, a,

MN=e®1, =71,
(A.5)
2 = 3 m, re=r3gle,
Further the 10D gamma matrices decompose into the 4D and 6D ones,
P = 4m ey, B = 1@, (4.6)
satisfying
o Yy _ 01
(FM)* = _BlorMBlo 17 BIO = B4 & B67 BG = (1 O> . (A'7)
10D chirality matrix reads
pay _ (10 (7)
r <0—1>®7 . (A.8)

Majorana-Weyl supercharge carries the 4D and 6D chiral indices of the same chirality,

A 3 A —1 A% —1-t\1e —1-t\24\t
Q=TM"Q=B7'Q" = (q14, @4, ('), (¢7'7)*)" . (A.9)
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