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Abstract

We study the frequentist properties of confidence intervals computed by the

method known to statisticians as the Profile Likelihood. It is seen that the

coverage of these intervals is surprisingly good over a wide range of possible pa-

rameter values for important classes of problems, in particular whenever there

are additional nuisance parameters with statistical or systematic errors. Pro-

grams are available for calculating these intervals.
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1. Introduction

The calculation of confidence intervals (or setting of limits) on a parameter

of a theory is one of the most important problems an experimental physicist can

face. In the frequentist approach which we follow here, the main property which

confidence intervals have to fulfill is to have coverage. A method is said to yield

a 100(1− α)% confidence interval if, were the experiment to be repeated many

times, the resulting intervals would include (or cover) the true parameter at least

100(1 − α)% of the time, no matter what the true parameter is. Using a con-

struction method due to Neyman [1], Feldman and Cousins [2] in 1998 found

confidence intervals for the case of one nuisance parameter when its value is

known exactly. An alternative method used widely in high energy physics prior

to the publication of Feldman and Cousins is to extract confidence intervals by

finding the points where the -2log likelihood function increases by a factor de-

fined by the required confidence level (lnL+ 1
2 method). This method is also well

known in Statistics as the large-sample approximation to the likelihood ratio test

statistic. One major drawback of this method is that, because it is based on a

large-sample theory, its performance for small samples is in question. In fact, it

is known that the lnL+ 1
2 method has under-coverage in certain circumstances.

However, it does not suffer from the few practical drawbacks of Feldman and

Cousins. Firstly, it can be generalized to the case where there are many param-

eters of interest. Secondly (and more importantly here) it is easily adapted to

treat problems with several nuisance parameters which are not known exactly.

In this note we will combine the lnL+ 1
2 method with what is known in Statistics
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as the profile likelihood method in which the multi-dimensional likelihood func-

tion is reduced to a function that only depends on the parameter of prime inter-

est. The combination of the profile likelihood approach with the lnL+ 1
2 extrac-

tion of confidence intervals is well known to particle physicists from the program

MINUIT [3], [4] and to astrophysicists from SERROR [5] and is discussed at

http://www.sr.bham.ac.uk/asterix-docs/Programmer/Source/Algorithms/serror.html.

For the problem of setting confidence limits for the signal rate in the pres-

ence of background which is estimated from data sidebands or Monte Carlo,

this approach has previously been shown in Rolke and López [6] to have good

coverage. In this note the method will be generalized to the problem of a signal

with a Poisson distribution, a background with either a Poisson or a Gaussian

distribution and an efficiency with either a Binomial or a Gaussian distribu-

tion. We will establish the domain of validity, enabling comparison with other

methods. As we will show, this method, together with some minor adjustments,

has very good coverage even in cases when the parameters lie close or at the

physical boundaries.

Although this paper, and the corresponding routines, only deal with the

specific problems outlined above, the results show that the method of profile

likelihood is a viable technique for dealing with nuisance parameters, and it

should be useful for other problems as well.
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2. The Method

2.1. Profile Likelihood

The basic idea of the profile likelihood is rather straightforward: assume

we have a probability model for our data which depends on parameters π =

(π1, .., πk) of interest to the researcher but also on additional nuisance param-

eters θ = (θ1, .., θl). If we denote the probability mass function (or density) by

f(x|π, θ) and we have independent observations X = (X1, .., Xn), then the full

likelihood function is given by

L(π, θ|X) =

n∏

i=1

f(Xi|π, θ)

If, as is often done in Statistics, we decide to base our inference on the likelihood,

our challenge is to eliminate the nuisance parameters.

A standard technique for constructing confidence intervals is to find a corre-

sponding hypothesis test, and then to invert that test. Here the hypothesis test

is H0 : π = π0 vs Ha : π 6= π0 and a test can be based on the likelihood ratio

test statistic given by

λ(π0|X) =
sup {L(π0, θ|X); θ}

sup {L(π, θ|X); π, θ}

The supremum in the denominator is found over the full parameter space,

whereas the supremum in the numerator is found only over the subspace with

π = π0. Notice that λ is a function of π0 (and the data) only, but does not

depend on the nuisance parameters θ. In the context of nuisance parameters the

function λ is also called the profile likelihood. One of the standard results from
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Statistics (see for example Casella and Berger [7]) is that −2 logλ converges in

distribution to a chi-square random variable with k degrees of freedom. This in

fact is the theoretical basis for the lnL + 1
2 method for extracting limits from

the likelihood function.

We illustrate the method of profile likelihood using the example of a search

for a rare decay where the expected background is known only approximately.

We will need the following notation. Assume that we observe x events in a suit-

ably chosen signal region and a total of y events in the background region. Here

the background region can be chosen fairly freely and need not be contiguous.

Furthermore, the probability that a background event falls into the background

region divided by the probability that it falls into the signal region is denoted

by τ . For example, if we use two background regions of the same size as the

signal region and assume the background distribution is flat we have τ = 2. If

the background rate is estimated from Monte Carlo, τ is the size of the Monte

Carlo sample relative to the size of the data sample. Then a probability model

for the data is given by

X ∼ Pois(µ + b), Y ∼ Pois(τb)

where µ is the signal rate, b is the background rate and Pois is the usual Poisson

distribution. We will use large caps letters X, Y to denote random variables and

small caps letters x, y to denote realizations (observed values) of these random

variables. We can assume X and Y to be independent and so

f(x, y|µ, b) =
(µ + b)x

x!
e−(µ+b) ·

(τb)y

y!
e−τb
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The likelihood function is given by L(µ, b|x, y) = f(x, y|µ, b). Maximizing

over both µ and b we find the usual maximum likelihood estimators (µ̂, b̂) =

(x − y/τ, y/τ). Fixing µ and maximizing over b alone yields

b̂(µ) =
x + y − (1 + τ )µ +

√
(x + y − (1 + τ )µ)

2
+ 4(1 + τ )yµ

2(1 + τ)

For other models it may not be possible to find b̂(µ) analytically, in which case

numerical methods need to be used. Now the profile likelihood function is given

by

λ(µ|x, y) =
L(µ, b̂(µ)|x, y)

L(µ̂, b̂|x, y)

and according to the theory −2 logλ has an approximate χ2 distribution with

1 degree of freedom.

For more details on the likelihood ratio test statistic see Casella and Berger

[7]. For information on the profile likelihood see Bartlett [8], Lawley [9] and

Murphy and Van Der Vaart [10].

For the studies conducted here, the maximizations leading to −2 logλ have

mostly been done analytically, but we have also verified that the program MI-

NUIT (which does this numerically) produces the same results when using MI-

NOS errors if x ≥ y/τ . The case of x < y/τ is discussed in detail in section

2.3.

There are a number of refinements known in Statistics for the profile likeli-

hood. We had to make a judgement call here: keep the method very simple and

easy to implement for different types of problems, or include further refinements

which might improve the method. Given that it works as well as it does any
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improvement would be very slight, at least for the problems studied in detail.

We consider it a definite strength of our method that it should be very easy to

apply to other problems, and this advantage would be lost if we advocated such

refinements.

2.2. The Treatment of Efficiency and Systematic Errors

The general nature of the profile likelihood technique for dealing with nui-

sance parameters can be illustrated by considering several modifications and

extensions of the problem as laid out in the previous paragraphs. For example,

say we want to include the efficiency e into our limits. Assume that we are

Monte Carlo limited and therefore have to deal with the error in the efficiency

estimate. Specifically, say we run m events through our Monte Carlo (without

background) and find z events surviving. Then we can model the efficiency Z

as a binomial random variable and find the complete model to be

X ∼ Pois(eµ + b), Y ∼ Pois(τb), Z ∼ Bin(m, e)

where Bin is the binomial distribution. To find the profile likelihood we fix µ

and differentiate the loglikelihood:

∂

∂b
log l(µ, b, e|x, y, z) =

x

eµ + b
− 1 +

y

b
− τ

.
= 0

∂

∂e
log l(µ, b, e|x, y, z) =

x

eµ + b
− µ +

z

e
−

m − z

1 − e

.
= 0

This system of nonlinear equations can not be solved analytically but we can

do so numerically, and again we have the profile likelihood curve as a function

of the signal rate µ alone.
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As a second example, suppose that the background and the efficiency are

better modeled as Gaussians rather than using the Poisson and the Binomial,

for example, to allow the inclusion of systematic errors. Then we have the

probability model

X ∼ Pois(eµ + b), Y ∼ N(b, σb), Z ∼ N(e, σe)

where N indicates the Gaussian (or normal) distribution and σb and σe are the

standard deviations or errors on the estimates of b and e, respectively. Now we

find the derivatives of the loglikelihood to be

∂

∂b
log l(µ, b, e|x, y, z) =

x

eµ + b
− 1 +

(y − b)

σb

.
= 0

∂

∂e
log l(µ, b, e|x, y, z) =

x

eµ + b
− µ +

(z − e)

σe

.
= 0

This system can actually be solved analytically.

All combinations of the above models, such as the background modeled as

a Poisson and the efficiency modeled as a Gaussian as well as the cases where

one or the other or both are known without error, are equally easily treated.

2.3. Extracting Limits

As was discussed above −2 logλ has approximately a chi-square distribution,

and this can be used to extract limits. Other methods also exist, for example,

using information from the second derivative of the log profile likelihood. How-

ever, for the specific problem of rare decays, this does not yield a method with

correct coverage.
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Figure 1 shows −2 logλ for the case x = 8, y = 15, τ = 5.0. To find a

100(1−α)% confidence interval we start at the minimum, which of course is at

the usual maximum likelihood estimator, and then move to the left and to the

right to find the points where the function increases by the α percentile of a χ2

distribution with 1 degree of freedom. For example, if we want to find a 90%

confidence interval, the increase will be 2.706.

Some care must be taken in the cases where the maximum likelihood estima-

tor is small or negative. If it is positive but sufficiently small, −2 logλ might not

increase enough to the left within the physical region (µ ≥ 0). In that case, we

set the lower limit to zero. (All our techniques produce physically valid limits.)

In the cases where fewer events are observed in the signal region than are

expected from background, the log profile likelihood curve, just like the regular

log likelihood, is no longer parabolic. Rolke and López [6] dealt with this prob-

lem by using a hypothesis test based on the null hypothesis H0 : µ = µ0, b = b0,

deriving the corresponding two-dimensional acceptance region and then finding

the values of µ where the profile likelihood
(
µ, b̂(µ)

)
enters and leaves the ac-

ceptance region. Rolke and López [6] also extended this method to a problem

with two nuisance parameters but this becomes computationally very demand-

ing because it requires searching for boundary points of a highly irregular object

in two (or more) dimensions.

In this paper we consider two methods for treating these cases. In the first,

referred to as the unbounded likelihood method, we proceed just as described

above. This is possible because for the problems studied here we can always
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find the maximum likelihood estimators analytically and therefore the value of

−2 logλ at that point. The maximum likelihood estimator for the signal rate is

negative but we set the lower limit to zero. As an example consider the left panel

of figure 2. Here we have x = 2, y = 15, τ = 5.0, so the maximum likelihood

estimator of the signal rate is µ̂ = −1.0. Using the method of unbounded

likelihood we find a 95% upper limit of 3.35.

In the most extreme case when we observe many fewer events than are

expected from background alone, the profile likelihood curve at µ = 0 might

already be higher than the increase from the minimum. Rather than quoting a

negative (and non-physical) upper limit we will find the upper limit by increasing

the value of x by 1 until we find the first positive upper limit. This will yield a

legitimate upper limit because our limits are monotonically increasing in x.

A special treatment is also necessary for the cases x = 0 and/or y = 0. This

is due to the fact that here the loglikelihood function is linear and therefore does

not have a minimum, that is, the maximum likelihood estimator does not exist.

We solve this problem by computing the ”neighboring” limits (x = 1, 2 and/or

y = 1, 2) and doing a linear extrapolation. This is a reasonable “adjustment”

because the limits are nearly linear in x and y, and as we shall see in the next

section the resulting confidence intervals have good coverage properties.

A second possible solution to the problem of fewer events in the signal region

than are expected from background is to use the physical limits on the param-

eters. So instead of using the increase from the maximum likelihood estimator

µ̂ we instead use the increase from the point µ = 0 if µ̂ < 0. This is equivalent
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to finding the minimum using MINUIT with a lower bound for the signal rate

of 0. We will refer to this as the method of bounded likelihood. It is illustrated

in the right panel of figure 2. Using this method we find a 95% upper limit of

3.6.

The adjustment for the cases x = 0 and/or y = 0 described above is also

necessary for the bounded likelihood method because without it the method

does not have coverage; for example, a nominal 90% confidence interval has a

true coverage of less than 68% for some parameter values.

The adjustments described here are rather ad-hoc, and their only theoret-

ical justification is that they make the limits larger, therefore can not make

the coverage worse. Their practical justification is of course the fact that the

resulting limits have coverage. Such ad-hoc adjustments are not at all unusual

in Statistics. Certainly one would prefer a method that deals uniformly with all

possible values in data space, but such methods are actually very rare.

The treatment here deals only with the statistical aspect of the problem of

having fewer events in the signal region than are expected from background.

In such a situation we recommend to also quote the experimental sensitivity

which is defined as the mean upper limit for an ensemble of experiments with

the observed background and efficiency levels but no signal. In the case where

there are fewer events in the signal region than expected from background,

the experimental sensitivity gives a better idea of the experimental precision

than the upper limit. An even better way to proceed in such cases is to use a

”bootstrap procedure”, described in Rolke and Lopez [11], to reduce the effects
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of statistical fluctuations in the background. However, such considerations are

outside the scope of this paper. Sensitivity determinations and the bootstrap

procedure require what we provide here, a method for calculating limits given

any set of observations.

Finally, the method does not return limits for some cases where the Gaussian

model for the efficiency is suspect, that is, cases where z/σe is small. One

example is shown in figure 3 where we have x = 5, y = 2.5, σb = 0.4 and

z = 0.2. Then for σe = 0.1 the curve rises sufficiently so we can quote an upper

limit (85.9) but if σe = 0.15 it does not. It is impossible to give a precise value

for the ratio below which no limits are returned since it also depends on the

values of the observations and the confidence level desired. In practice, if the

method returns limits, coverage studies (discussed in Section 3) show them to

be reliable. If it does not, alternative models for the efficiency distribution will

need to be considered.

3. Performance of this Method

In the case of confidence intervals, performance means first of all “coverage”,

that is, a nominal 90% confidence interval should cover the true value of the

parameter at least 90% of the time for all parameter values. Because in the

specific problem discussed here at least one of the observations has a discrete

distribution, it is not possible to achieve the nominal coverage for all parameter

values. Some overcoverage is unavoidable, although less overcoverage is of course

preferable and is a measure of the quality of the method.
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Coverage studies for the case of a Poisson model for the signal and a Poisson

model for the background have previously been published in Rolke and López

[6]. For the case of an added efficiency modeled as a Binomial (discussed above),

consider the following coverage study: We have τ = 3.5, the efficiency is e = 0.85

and m = 100. We vary the signal rate µ from 0 to 10 in steps of 0.1 and the

background rate b from 0 to 10 in steps of 2. For each of these 600 combinations

of the parameters we find the true coverage of nominal 90% confidence intervals

based on 10000 Monte Carlo runs and for each of the methods described above.

The results are shown in figure 4. As a second example we model both the

background and the efficiency as Gaussians, with σb = 0.5 and σe = 0.075.

Again we have e = 0.85 and vary µ and b as above. The results are shown in

figure 5.

In both figure 4 and figure 5 we included the case b = 0 to show that our

method is capable of dealing even with such an extreme case with values at the

boundary of parameter space.

The coverage of the method is quite good, with only some very small accept-

able undercoverage due to the fact that we are using a large-sample approxima-

tion. We have some overcoverage for small µ because the upper limit can not be

too small in this case but this is unavoidable. Finally we see that these coverage

graphs are considerably smoother with much less overcoverage than those shown

in Rolke and López [6] for both the unified method by Feldman and Cousins as

well as the method described there. This is because of the higher randomness

due to the extra random variable Z for the efficiency. The overcoverage of the
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unbounded likelihood method is generally a little smaller than for the bounded

likelihood method. This is as expected because in the cases where they differ

the unbounded likelihood method yields lower upper limits than the bounded

likelihood method. Extensive coverage studies of over 25000 parameter combi-

nations and for all the models discussed above have shown these results to be

quite general.

In our coverage studies we do not include simulation runs for which our

method does not return limits. To have “coverage” is to make sure a fixed (and

known) percentage of published intervals actually contain the true parameter

value. The cases where no limit is returned will not lead to incorrect intervals

but rather to a reevaluation of the efficiency model. Such cases should occur

very rarely in practice and, in fact, this is so for the coverage studies in figures

4 and 5. A coverage study where the percentage of such cases is substantial is

presented in table 1. Here we have µ = 5, b = 2.5, σb = 0.4, σe = 0.1 and we

find 90% confidence intervals. The method has coverage for all values of the

parameters, even the extreme value where e/σe = 1. Although it does overcover

under these circumstances, it does give conservative limits. Even for values of

e/σe as small as 3 where the percentage of cases that do not return a limit is

8%, the degree of overcoverage is small. However, the Gaussian model should

be reconsidered for such small ratios.

Table 1: Percentage of simulation runs that do not return limits and coverage

for cases where e/σe is small:
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e (e/σe) No Limits Coverage

0.5 (5.0) 0.04% 90%

0.4 (4.0) 0.8% 90%

0.3 (3.0) 8% 92%

0.2 (2.0) 35% 96%

0.1 (1.0) 73% 98%

In figure 6 we show the behavior of the limits as functions of the uncertainties

in background (left panel) and efficiency (right panel). The limits are for the case

x = 5, y = 3, z = 0.5, and we model both the background and the efficiency as

Gaussians. In the left panel we vary the uncertainty in the background rate from

0.0 to 1.0 with the uncertainty in the efficiency fixed at 0.1. In the right panel

we vary the uncertainty in the efficiency from 0.0 to 0.15 with the uncertainty

in the background fixed at 0.75. As we can see the behavior of the limits here

is what one expects: the larger the uncertainty the higher the limit. We also

see that the limits found using this method are self-consistent, that is, as the

uncertainty becomes small the limits smoothly approach a limiting value.

As the coverage graphs show, the unbounded likelihood method generally

has less overcoverage than the bounded likelihood method. This is due to the

fact that when they differ the upper limits of the unbounded likelihood method

are always smaller. This can be seen as an advantage and a reason to prefer the

unbounded likelihood method to the bounded likelihood method.

Based on our coverage studies we recommend to use the presented method for

Poisson statistics when the uncertainties in nuisance parameters can be modeled
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as one of the seven cases we studied here. For problems other than these the

profile likelihood method should be useful as well, but then additional coverage

studies need to be carried out.

4. Comparison with other methods

An alternative to the method described in this paper is based on integrating

over the nuisance parameters, see for example Cousins and Highland [12] and

Conrad et. al. [13]. There the full confidence interval construction is performed,

but the probability density function is obtained from folding the primary PDF

with the one describing the distribution of the nuisance parameters. Treating

nuisance parameters in this way is based on Bayesian statistics with a flat prior.

The coverage of this method has been studied in Tegenfeldt and Conrad [14].

It appears that treating nuisance parameters in a Bayesian way generally intro-

duces a modest amount of overcoverage, though it has to be emphasized that

this has been shown only for the assumed flat prior distribution. In general

so-called credible intervals found via Bayesian statistics do not have the prop-

erty of coverage, and the frequentist properties of such intervals will have to be

studied for each problem and each prior anew.

Feldman [15] suggested to use the profile likelihood in the ratio ordering of

the unified approach in an effort to extend that method to the case of background

uncertainty. Coverage studies for this method have not been presented yet.

A standard method for finding errors, and therefore limits, is based on the

second derivative of the log likelihood function. For the problem described here,
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though, this method can have a true coverage of less than 50% for a nominal

90% confidence interval, and is therefore not a viable option.

As discussed above our method is very similar to MINUIT/MINOS; in fact

for the case x > y/τ the two yield identical limits. MINUIT/MINOS alone,

though, does not have coverage because it does not include the adjustments

described in section 2.3.

In figure 6 we have included the limits from Feldman and Cousins unified

approach in the case of zero uncertainty in the background rate. Those limits

are slightly different from ours. That different methods yield different limits

is very common in Statistics because the requirement of coverage is in fact a

rather general one and does not uniquely determine the limits.

5. Implementation

A stand-alone FORTRAN routine for calculating these limits is available at

http://charma.uprm.edu/˜rolke/publications.htm. It is also available as TRolke

which is part of ROOT [16]. Both routines also calculate the experimental

sensitivity described above. Finally, at least for the cases x > y/τ , one could

use MINUIT/MINOS to carry out the calculations, though in this case care

needs to be taken to set the limits on the parameters correctly.

It is to be hoped that the profile likelihood method yields good results also

in situations other than the ones discussed here. Because it is already available

as part of MINUIT, its implementation for different problems should be quite

straightforward. It needs to be emphasized, though, that the profile likelihood

17
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method can not be assumed to yield good results in all cases and that it might

require some adjustments to the general method as we have done here. It is

therefore strongly recommended that a thorough check of its performance be

done whenever it is applied to a new problem. In the case of setting limits,

this means a coverage study as described above, at least for the range of likely

parameter values.

6. Summary

We have discussed the method of profile likelihood as a general treatment of

nuisance parameters within a frequentist framework. For the case of a Poisson

distributed signal with a background that has either a Poisson or a Gaussian dis-

tribution and an efficiency that has either a Binomial or a Gaussian distribution,

we have carried out an extensive coverage study and shown that the method

yields confidence intervals with good coverage throughout the parameter space,

even at its boundaries.
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Figure 1: Example of the −2 log λ curve. This is the case x = 8, y = 15 and τ = 5.0. We find

the 95% confidence interval to be (0.28, 12.02).
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Figure 2: The case x = 2, y = 15 and τ = 5.0. In the left panel we use the unbounded

likelihood method and find a 95% upper limit of 3.35. In the right panel using the bounded

likelihood method the 95% upper limit is 3.6.
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Figure 3: An illustration of why the profile likelihood method does sometimes not return a

limit. Here x = 5, y = 2.5, σb = 0.4 and z = 0.2. If σe = 0.1 the curve moves above the

required level ( for a 90% confidence interval) and the upper limit is 85.9 but if σe = 0.15 the

curve stays below the level and no limit is found.
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Figure 4: 90% coverage graphs when the signal and the background are modeled as Poisson

and the efficiency is modeled as a Binomial with τ = 3.5, e = 0.85 and m = 100. The empty

circles show the coverage using the unbounded likelihood method and the solid squares show

the coverage using the bounded likelihood method.
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Figure 5: 90% coverage graphs when the signal is modeled as a Poisson and the background

and the efficiency are modeled as Gaussians with σb = 0.5, e = 0.85 and σe = 0.075. The

empty circles show the coverage using the unbounded likelihood method and the solid squares

show the coverage using the bounded likelihood method.
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Figure 6: Upper limits as a function of the uncertainties. In both graphs the background and

the efficiency are modeled as Gaussians. In the left panel we have the case x = 5, y = 3,

z = 0.5, σe = 0.1 and the uncertainty in the background goes from 0.0 to 1.0. In the right

panel we have the case x = 5, y = 3, z = 0.5, σb = 0.75 and the uncertainty in the efficiency

goes from 0.0 to 0.15. We have added the limits derived from Feldman and Cousins unified

method which ignores the uncertainties.
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