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On the direct CP violation parameter ǫ′
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We review different definitions of the ǫ′ parameter describing direct CP violation in neutral kaon
decays, which was precisely measured in recent experiments, and point out the inconsistency of
some of them due to a CPT constraint. The proper comparison of the experimental results to the
theoretical computations is discussed.

I. INTRODUCTION

Among the important achievements of experimental physics in the past few years, the clarification of the long-
standing puzzle concerning the existence of direct CP violation in nature has an important place. The definitive
proof that CP violation is indeed present in the decay amplitudes of the long-lived neutral kaon to ππ final states
[1] [2], as expressed by the small but non-zero parameter ǫ′, is the culmination of an experimental program which
started 30-years ago, right after the discovery of CP violation [3], and was strongly pursued since then, with several
dedicated efforts in the past two decades (see e.g. [4] for a recent review).

The deep meaning of such a result lies in the indication that CP violation, being present also in its direct form
as expected from the current CKM paradigm, is truly an ubiquitous feature of weak interactions, not limited to the

peculiar K0 − K
0

system as the super-weak ansatz [5] would suggest. This fact was experimentally confirmed just
a few years after the definitive proof of direct CP violation, when CP violation in the neutral B meson system was
measured with significant statistics at the B-factories [6] [7].

While the main importance of the result is expressed by the fact that ǫ′ 6= 0 (with a significance which at present
exceeds 7 standard deviations), regardless of its exact value, one should not oversee the fact that this parameter is
now measured at the ∼ 15% level, and improvements on the precision are expected when the final result from the full
KTeV statistics and data from KLOE will be available.

Although the theoretical control of the ǫ′ parameter is still poor at present, the situation is expected to improve
in the future, particularly due to progress in lattice QCD computations, and the CP -violating parameters of the K
meson system could also acquire more value as quantitative tests of the Standard Model, as well as constraints on
models of New Physics.

In this perspective, it seems appropriate to establish a clean framework in which experimental measurements are
to be compared with the theoretical predictions and among themselves, while avoiding possible confusion which could
arise due to the existence of several alternative formulations of the phenomenological description.

The plan of the paper is as follows: in section II we briefly review a simple and consistent parameterization of
CP -violation in the K system, and in section III we compare it with other formulations appearing in the literature,
pointing out in section IV some inconsistencies which are usually overlooked. We then summarize in section V the
experimental knowledge on the ǫ′ parameter. Finally, section VI presents our conclusions.

II. CP -VIOLATING PARAMETERS IN THE NEUTRAL K SYSTEM

The phenomenological description of CP violation in the neutral kaon system has its roots in the classic seminal
papers by Wu, Yang and Lee [8] [9]. Such description involves the two complex parameters ǫ and ǫ′, intended to
parameterize respectively the so-called “indirect” CP violation, defined [10] as that occurring in the |∆S| = 2 virtual

transitions described by the effective Hamiltonian in the K0−K
0

sub-space, and the “direct” CP violation occurring
in the physical |∆S| = 1 decay amplitudes to real final states such as π+π− or π0π0.

In discussing CP violation, care should be taken in considering which parameters are unphysical because their value
depends on the arbitrary choice of the phase for the state vectors representing the different particles; indeed, there
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is a considerable amount of literature concerning the proper definition of rephasing-invariant parameters in the kaon
system (see e.g. [11] [12] [13]).

We now introduce some definitions [14] [15]; we will assume the validity of CPT symmetry in the following, unless
explicitly indicated otherwise.

The CP -violating measurable ratios of amplitudes for decays of neutral kaons into a final CP eigenstate |f〉 with
eigenvalue CP=+1 are

ηf
.
=

〈f |T |KL〉
〈f |T |KS〉

〈K0|KS〉
〈K0|KL〉

(1)

where T is the transition matrix of weak interactions, and the second factor makes the ηf parameter invariant under

rephasing of both the |K0〉, |K0〉 and |KS〉, |KL〉 state vectors [16]; such factor is often omitted, implicitly making the
choice of a phase convention in which its value is 1.

In an analog way, rephasing-invariant amplitude ratios can be defined for other (non-observable) CP -even final
states, such as those with two pions in a definite isospin eigenstate with eigenvalue I:

ηI
.
=

〈(ππ)I |T |KL〉
〈(ππ)I |T |KS〉

〈K0|KS〉
〈K0|KL〉

(2)

and the usual ǫ parameter is defined as

ǫ
.
= η0 (3)

The quantity

ω
.
=

〈(ππ)I=2|T |KS〉
〈(ππ)I=0|T |KS〉

(4)

parameterizes the violation of the so-called (and poorly understood) ∆I = 1/2 rule. The modulus of such parameter
can be extracted from the ππ decay rates of K+ (which require ∆I > 1/2) and KS (see e.g. [15]), and is |ω| ≃ 0.045.

The direct CP violation parameter is finally

ǫ′
.
=

1√
2

[ 〈(ππ)I=2|T |KL〉
〈(ππ)I=0|T |KS〉

− 〈(ππ)I=0|T |KL〉
〈(ππ)I=0|T |KS〉

〈(ππ)I=2|T |KS〉
〈(ππ)I=0|T |KS〉

] 〈K0|KS〉
〈K0|KL〉

=
ω√
2
(η2 − η0) (5)

All the above parameters are explicitly invariant under rephasing of both |K0〉, |K0〉 and |KS〉, |KL〉, and agree with
those used in a significant number of papers describing the phenomenology of CP violation in neutral kaon decays.

CPT symmetry and the symmetry of strong interactions under time reversal (plus unitarity) allow to write the

decay amplitudes for K0, K
0

into ππ states of definite isospin as

AI
.
= 〈(ππ)I |T |K0〉 = aIe

iδI AI
.
= 〈(ππ)I |T |K0〉 = a∗

Ie
iδI (6)

factorizing the CP -even ππ scattering phase δI by the Fermi-Watson theorem.
It can be easily seen [10] that the parameter ǫ contains both indirect and direct CP violation, and the separation

of the two parts has no physical meaning, depending on the choice of phase convention:

ǫ =
ǫ + iξ0

1 + iǫ ξ0
(7)

where ǫ is the (phase-convention dependent) mixing parameter which describes the K0, K
0

components in the physical
eigenstates of the effective Hamiltonian contributing to indirect CP violation:

|KS〉 = 1√
2(1+|ǫ|2)

[

(1 + ǫ)|K0〉 + (1 − ǫ)|K0〉
]

(8)

|KL〉 = 1√
2(1+|ǫ|2)

[

(1 + ǫ)|K0〉 − (1 − ǫ)|K0〉
]

(9)

(having arbitrarily fixed the relative phase between |KS〉 and |KL〉), and ξI
.
= Im(aI)/Re(aI) is a measure of the

(unphysical) weak phase of the decay amplitude of K0 into a ππ state of isospin I. It should be reminded that the
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unphysical parameter ǫ can be very large even if CP violation itself is a small effect, i.e. one can choose a phase
convention in which |ǫ| ∼ 103 (see e.g. [11] and references therein).

On the contrary, the parameter ǫ′ is entirely due to direct CP violation, as can be seen explicitly by rewriting it as

ǫ′ =
i√
2
ω(1 − ǫ2)

ξ2 − ξ0

(1 + iǫ ξ0)(1 + iǫ ξ2)
(10)

which make evident that a (phase) difference of the weak decay amplitudes to two isospin channels is required to
have ǫ′ 6= 0 (we remark in passing that a difference in the strong phases δI is not required to have ǫ′ 6= 0, since this
parameter also gets a contribution from the interference of decays with and without mixing [4]).

In terms of the above parameters, the amplitude ratios for π+π− and π0π0 decays are written respectively as

η+− = ǫ +
ǫ′

1 + ω/
√

2
η00 = ǫ − 2ǫ′

1 − ω
√

2
(11)

III. ALTERNATIVE FORMULATIONS

Several other definitions of the CP -violating parameters for the neutral K system are used in past and recent
literature: most of those coincide when suitable approximations are done; some of these approximations are physically
justified in terms of small parameters, while others just depend on arbitrary phase convention choices.

Ignoring definitions which differ from the one described above just for trivial factors of
√

2, the most frequent cases
found in the literature are the following [34]:

• A minor variation [17] is that in which only the definition of ǫ′ is changed to

ǫ̃′
.
=

ω√
2

(i ξ2 + ǫ) (12)

so that

η+− =
ǫ + ǫ̃′

1 + ω/
√

2
η00 =

ǫ − 2 ǫ̃′

1 − ω
√

2
(13)

• Another definition [18] is

ǫ̃′
.
=

1√
2

〈(ππ)I=2|T |KL〉
〈(ππ)I=0|T |KS〉

− i√
2

ξ0 ω (14)

to which the definition in eq. (5) reduces in the limit |ǫ| ≪ 1.

• Some authors [19] define the parameters in terms of the weak phases of K0, K
0

decay amplitudes into isospin
eigenstates, i.e.

ǫ̃
.
= ǭ + i ξ0 (15)

ω̃
.
=

Re(a2)

Re(a0)
ei(δ2−δ0) (16)

ǫ̃′
.
=

i√
2
ω(ξ2 − ξ0) (17)

The expressions for η+− and η00 read in this case

η+− = ǫ̃ + ǫ̃′−iǫ ǫ̃ (ξ0+ξ2 ω̃/
√

2)

1+ω̃/
√

2+iǫ (ξ0+ξ2 ω̃/
√

2)
(18)

η00 = ǫ̃ − 2ǫ̃′−iǫ ǫ̃ (ξ0−ξ2 ω̃
√

2)

1−ω̃/
√

2+iǫ (ξ0−ξ2 ω̃
√

2)
(19)

and reduce to the ones in (11) when terms of order ω ξI and ω2 ǫ′/ǫ are neglected.
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• Another widespread definition [20] [21] [22] is that in terms of the ratios of amplitudes for KS, KL decays into
physical states

ǫ̃
.
= (2η+− + η00)/3 (20)

ǫ̃′
.
= (η+− − η00)/3 (21)

which is obviously tailored to get exactly

η+− = ǫ̃ + ǫ̃′ η00 = ǫ̃ − 2 ǫ̃′ (22)

The definitions based on eqs. (22) are sometimes described as the “experimental” ones for the ǫ and ǫ′ param-
eters.

• Other definitions [23] are based on the decay amplitudes of the CP eigenstates K1 (CP = +1) and K2

(CP = −1):

ǫ̃′
.
=

1√
2

〈(ππ)I=2|T |K2〉
〈(ππ)I=0|T |K1〉

=
ω√
2

η2 − ǫ

1 − ǫ η0
(23)

This definition makes very explicit the meaning of ǫ̃′ as direct CP violation parameter, but its relations with
the observable quantities become more complicated. ǫ̃′ in eq. (23) reduces to eq. (5) in the limit in which CP
violation is small and |ǫ| ≪ 1; in this case the phase of ǫ̃′ (assuming CPT ) is exactly δ2 − δ0 + π/2, and eqs.
(13) are valid.

• The previous scheme can be generalized [24] introducing for each final state f the quantities

ǫ̃′f
.
=

1 − Af/Af

1 + Af/Af

=
ǫ − ηf

1 − ǫ ηf
(24)

in analogy to the expression

ǫ =
1 − q/p

1 + q/p
(25)

where

p
.
= 〈K0|KS〉 = (1 + ǫ) q

.
= 〈K0|KS〉 = (1 − ǫ) (26)

In any phase convention in which |ǫ| ≪ 1, the expression for ηf reduces in this case to

ηf ≃ ǫ + ǫ̃′f (27)

and for the ππ states, in the limit |ω| ≪ 1

ǫ̃′+− ≃ i ξ0 + ǫ′ ǫ̃′00 ≃ i ξ0 − 2 ǫ′ (28)

giving back eqs. (22).

We remind the reader that while both ǫ and the quantity in eq. (24) are not rephasing-invariant, the quantity

λf
.
=

1 − qAf/pAf

1 + qAf/pAf

(29)

commonly used in the phenomenological description of CP violation in the B system, has this property. In terms of
such parameter the quantities defined in eqs. (3, 5) are

ǫ =
1 − λ0

1 + λ0
ǫ′ =

√
2 ei(δ2−δ0)

a2

a0

λ0 − λ2

(1 + λ0)2
(30)

while the expressions for the quantities (20, 21) are more complicated and not very illuminating.
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The actual direct CP violation parameter which theorists have been trying to compute for a long time with different
approaches (see e.g. [25] for a recent review on the theoretical status of ǫ′ computations) is expressed by [26]:

ǫ′TH
.
=

i√
2
ei(δ2−δ0)

Im(a0)

Re(a0)

(

Im(a2)

Im(a0)
− Re(a2)

Re(a0)

)

(31)

Indeed, as CP violation is small, the definition in eq. (5) reduces to eq. (31) in any phase convention in which
|ǫ| ≪ 1 neglecting terms of order |ǫ ξI |, when

ω ≃ ei(δ2−δ0) Re(a2)
Re(a0)

(32)

ηI ≃ ǫ + i ξI (33)

ǫ′ ≃ i√
2
ei(δ2−δ0) Re(a2)

Re(a0) (ξ2 − ξ0) (34)

without any approximation based on the size of |ω| (in eq. (34) |ξI | ≪ 1 was also assumed).
When neglecting |ω| and adopting the phase convention in which the dominant amplitude a0 is real (the so-called

Wu-Yang phase convention), one recovers the original expression of ref. [8].
The PDG review on CP violation [27] adopts the definitions of eqs. (22) with eq. (15), noting that one obtains eq.

(31) when terms of order ǫ′ Re(a2/a0) are neglected.

IV. CONSISTENCY REQUIREMENTS

We would like to point out that not all the above definitions are consistent. In particular the so-called “experimental”
expressions in eqs. (22) can only be considered as the approximations of the exact eqs. (11) for |ω| ≪ 1, and cannot
be promoted to alternative definitions of the ǫ and ǫ′ parameters.

The reason is that there is an additional constraint that the amplitudes should satisfy, dictated by CPT symmetry
(which we have assumed throughout). Ignoring electromagnetic effects (consistent with our neglecting of isospin-
breaking effects), the ππ final states are not connected by strong interactions to other states: the 3π states for
zero total angular momentum have opposite parity (conserved by strong interactions), and the ππγ states require
electromagnetism. It follows that CPT symmetry by itself requires the equality of partial decay rates for particle and
antiparticle:

Γ(K0 → π+π−) + Γ(K0 → π0π0) = Γ(K
0 → π+π−) + Γ(K

0 → π0π0) (35)

This constraint can be expressed as a function of the physical decay amplitudes for KSKL and the mixing parameters:

|〈π+π−|T |KS〉|2
[

2Re(η+−) − 〈KS |KL〉(1 + |η+−|2)
]

+ |〈π0π0|T |KS〉|2
[

2Re(η00) − 〈KS|KL〉(1 + |η00|2)
]

= 0 (36)

which is explicitly invariant for rephasing of the |K0〉, |K0〉 states, since

〈KS |KL〉 =
2Re(ǫ)

1 + |ǫ|2 =
2Re(ǫ)

1 + |ǫ|2 (37)

Writing, without any loss of generality

η+− = ǫ + ǫ+− η00 = ǫ + ǫ00 (38)

and using the isospin decomposition of the decay amplitudes (neglecting |∆I| > 3/2 amplitudes and isospin-breaking
effects), the constraint equation reduces to

|1 + ω/
√

2|2
[

2 Re(ǫ+−) − 〈KS |KL〉|ǫ+−|2 − 2 |ǫ|2〈KS |KL〉Re(ǫ+−/ǫ)
]

+

|1/
√

2 − ω|2
[

2 Re(ǫ00) − 〈KS |KL〉|ǫ00|2 − 2 |ǫ|2〈KS |KL〉Re(ǫ00/ǫ)
]

= 0 (39)

Since we know experimentally that |ǫ| = O(10−3) and |ǫ+−|, |ǫ00| = O(10−6), we keep terms up to first order in |ǫ+−|
and |ǫ00|, obtaining

|1 + ω/
√

2|2 Re(ǫ+−) + |1/
√

2 − ω|2 Re(ǫ00) = 0 (40)
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Now, keeping only terms which are first order in |ω| and using the experimental fact that δ2 − δ0 ≃ −π/4, one is
finally led to

2 (1 + |ω|)Re(ǫ+−) + (1 − 2|ω|)Re(ǫ00) = 0 (41)

It seems that such a constraint was not discussed in this context in the literature.
Clearly, this equation is trivially satisfied in absence of direct CP violation, when ǫ+− = ǫ00 = 0.
In the stronger approximation in which all terms containing |ω| are neglected, the constraint becomes

2 Re(ǫ+−) = −Re(ǫ00) (42)

which is satisfied by the choice

ǫ+− = ǫ′ ǫ00 = −2 ǫ′ (43)

so that one gets back the approximate eqs. (22).
Using instead the relations in eqs. (11), consistent with the definitions in eqs. (3,4,5), one has

ǫ+− =
ǫ′

1 + ω/
√

2
ǫ00 =

−2 ǫ′

1 − ω
√

2
(44)

for which the constraint of eq. (40) is equivalent to

Re(ǫ′ω∗) = 0 (45)

which is indeed satisfied at the level of approximation considered here: writing the phase of ǫ′ (defined in eq. (5)) in
terms of the phase of ω as

φ(ǫ′) = φ(ω) + π/2 + δφ (46)

the constraint (45) requires δφ = 0 (mod π). Since the exact expression for ǫ′ is

ǫ′ =
iω√
2

[

(ξ2 − ξ0)
1 − ǫ2

(1 + i ǫ ξ0)(1 + i ǫ ξ2)

]

(47)

δφ is the phase of the term in square brackets in the above expression (47), which can be seen to be indeed small
by using the phase convention |ǫ| ≪ 1, since it is an invariant quantity under rephasing as can be easily verified. Its
value is δφ ≃ 0.6 · 10−5.

It should be mentioned that a phase space correction factor is required to account for the difference in the π± and
π0 masses when expressing the partial decay rates in terms of the amplitudes:

aPS =

√

m(K0)2 − 4m(π±)2
√

m(K0)2 − 4m(π0)2
≃ 0.9855 (48)

Strictly speaking, this 1.5% effect should be neglected consistently in the exact isospin limit; partially accounting for
isospin-breaking in this way, the constraint equation (40) is modified into

aPS |1 + ω/
√

2|2 Re(ǫ+−) + |1/
√

2 − ω|2 Re(ǫ00) = 0 (49)

The expressions in eqs. (11) still satisfy this constraint at the same level of approximation as before: in this case
instead of eq. (45) one gets

(aPS − 1)Re(ǫ′) +
2 + aPS√

2
Re(ǫ′ω∗) = 0 (50)

but the left-hand side of eq. (50) can be seen to be still proportional to δφ ≃ 0.
Summarizing, the expressions in eqs. (22) are approximations which are valid in the limit in which the parameter

|ω| parameterizing the violation of the ∆I = 1/2 rule is neglected, and cannot be considered as consistent alternative
definitions of parameters describing CP violation in the kaon system. It should be noted, furthermore, that the
approximation in which |ω| is neglected is - strictly speaking - not a consistent one in this context, since if ω = 0 the
absence of ∆I = 3/2 amplitudes would imply that no direct CP violation is possible for neutral kaons decays into
ππ,due to lack of an amplitude interfering with the dominant (∆I = 1/2) one.
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V. EXPERIMENTAL RESULTS

In the experiments performed so far with neutral K mesons, the information on direct CP violation is extracted
from the experimental measurement of the so-called “double ratio” R of partial decay widths:

R
.
=

Γ(KL → π0π0)

Γ(KS → π0π0)

Γ(KS → π+π−)

Γ(KL → π+π−)
=

∣

∣

∣

∣

η00

η+−

∣

∣

∣

∣

2

(51)

This quantity is related to ǫ′/ǫ by the following approximate expression

R ≃ 1 − 6Re(ǫ′/ǫ) − 3
√

2Re (ω∗ ǫ′/ǫ) (52)

in which second order terms in ǫ′ or ω were neglected. It is well known that the ǫ′/ǫ ratio is close to being real, since
[28] [2] (see also [29])

φ(ǫ) ≃ 2∆m/∆Γ = (43.46 ± 0.05)◦ (53)

φ(ǫ′) ≃ δ2 − δ0 + π/2 = (48 ± 4)◦ (54)

(here, as usual, ∆m
.
= m(KL)−m(KS) > 0, ∆Γ

.
= ΓS −ΓL > 0) where the first approximate equality becomes exact

in the limit in which the ππ decay amplitude dominates (always assuming CPT symmetry), while the second one
only depends on the smallness of CP violation. Equation (52) therefore reduces to [30]

R ≃ 1 − 6 Re(ǫ′/ǫ)
[

1 + Re(ω)/
√

2
]

(55)

which is commonly approximated to

R ≈ 1 − 6 Re(ǫ′/ǫ) (56)

by neglecting |ω|. Equation (56) is the one routinely used in the experimental papers.
Since |ω| is of order 5%, the difference between using eq. (55) and (56) amounts to a reduction of the value of

Re(ǫ′/ǫ) by 2.2%, which is small when compared to the current precision of the theoretical computations, and also to
the present experimental error (but not to the size of the systematic corrections applied by the experiments to obtain
the central value). Extrapolating to a final experimental precision of 1 · 10−4 on Re(ǫ′/ǫ) in a few years from now,
the use of the correct expression eq. (55) will be appropriate.

Averaging the most precise results on Re(ǫ′/ǫ) at face value one obtains Re(ǫ′/ǫ) = (16.7 ± 2.3) · 10−4 where the
error has been inflated by a factor 1.44 according to the procedure adopted by the PDG [28], due to the poor χ2 value
of 6.2 (with 3 degrees of freedom).

Using eq. (55) one obtains instead:

Re(ǫ′/ǫ) = (16.3 ± 2.3) · 10−4 (57)

as the value to be compared to theoretical computations, and the χ2 improves only marginally to 5.9, without affecting
the scaled error in a significant way. A graphical depiction of the present data is shown in figure 1. The probability of
the four most precise measurements to be consistent is 11%, varying between 9% and 22% when a single measurement
is ignored.

It should also be noted that the uncertainty on the value of |ω| hardly affects any comparison with theory in
itself, since in any case the empirical value of such parameter is used both in the computation (due to the theoretical
difficulties with the ∆I = 1/2 rule) and in extracting the value of Re(ǫ′/ǫ) from the experiments.

The similarity of the phase of ǫ′ with that of ǫ is an accidental fact which hinges on the validity of the CPT
symmetry, without which the phase of ǫ would be different from the “super-weak” value 2 ∆m/∆Γ; for this reason the
smallness of Im(ǫ′/ǫ) is considered a test of such symmetry. The difference of such phases is however experimentally
constrained [2] to be tiny: φ(ǫ′)− φ(ǫ) = (−1.2± 1.5)◦, and therefore the use of eq. (52) is not required; experiments
usually assume CPT symmetry explicitly [2] or implicitly [1] in the extraction of ǫ′/ǫ.

It should be reminded that Im(ǫ′/ǫ) can be measured using kaon interferometry [32] [20], and would be therefore
accessible to the KLOE experiment [33] when a sufficient statistics will be accumulated.
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Re(ε’/ε)

Average: (16.3 ± 2.3) 10-4

E731
(7.2 ± 6.0) 10-4

NA31
(22.5 ± 6.5) 10-4

KTeV
(20.2 ± 2.8) 10-4

NA48
(14.4 ± 2.2) 10-4

0 0.002 0.004 0.006

FIG. 1: Ideogram of recent published Re(ǫ′/ǫ) measurements as corrected according to eq. (55). The curves show (unnormalized)
probability distributions according to the PDG procedure [28] (solid line) or a Bayesian “skeptical” approach [31] (dashed line).

VI. CONCLUSIONS

In view of the recent and future progress, in both experiment and theory, in the determination of the parameter ǫ′

measuring direct CP violation in neutral kaon decays, the use of a common definition for it is advisable. We reviewed
some of the choices present in the literature, showing that the simple so-called “experimental” one is necessarily an
approximation, which is still good at the present level of accuracy but would have to be abandoned in the future to
allow an accurate comparison of theory and experiment.
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