
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - SL Division

SL/Note 95-108 (BT)

BROADCASTING MACHINE TIMING EVENTS ON L YNXOS

A. Burton* and J. H. Dieperink

Abstract

Recently, the process controllers of the LEP separators have been migrated from
XENIX PCs and OS-9 VME systems to Lynx.OS PCs, now used in all SL/BT
applications. A new TG3-PC interface is being used to receive general machine timing
events . These are interpreted and broadcast over the MIL-1553B bus to the G-64
Equipment Control Assemblies (ECAs) by means of a new server program which is
the subject of this document. This facility is used in parallel to the existing timing
distribution system in the G-64 ECAs thus improving the reliability of the separator
system and simplifying fault diagnostics. This work has been performed in the
framework of the technical student program.

Geneva
24 October, 1995

(SL/BT/Notes. '95)

* Now at Bournemouth University, Dorset, UK.

Table of Contents

Page

1. Introduction ... 1
2. Overview of the timing system .. 2

2.1. GMT system ... 2
2.2. TG3-PC interface card .. 2

2.2.1. Receiver part ... 2
2.2.2. Process part ... 3
2.2.3. TG3-PC constraints .. 3

3. TG3-PC server program .. 4
3 .1. Program overview .. 4

3.1.1. Environment ... 4
3.1.2. A brief description .. 4
3.1.3. TG3 data structures ... 5

3.2. Initialisation .. 5
3.3. Event handling .. 6

3.3.1. Select phase .. 6
3.3.2. Read phase .. 7
3.3.3. Broadcast phase .. 8
3.3.4. Data packet ... 8

3.4. Closing the program ... 9
3.5. GMT 1 ms clock ... 9
3.6. Error reporting and event logging ... 11

3 .6.1. Print() utility ... 11
3.6.2. TSserver alarm .. 12

4. Installation 14
4.1. TG3 driver .. 14
4.2. TG3-PC server program ... 15

4.2.1. Automatic installation at system boot 15
4.2.2. Manual installation ... 15

5. Timing error reporting 16
6. Conclusion ... 17
7. Acknowledgements ... 17
8. References ... 18

Appendices

A. TG3-PC server program "zltg3.c" .. 19
B. Header and configuration files .. 33
C. Error log messages .. 35

1. Introduction

Machine timing events are used to synchronously start voltage changes on the LEP separator electrodes
in a selected number of collision points. They are generated on operator request by the General
Machine Timing (GMT) system and distributed in LEP in the form of messages over a twisted pair
multi-drop timing line.

At present in each collision point a TG3 interface card located in a G-64 Equipment Control Assembly
(ECA) receives and decodes these messages. The decoded messages are then broadcast to all other
ECAs on the MIL-1553B bus which control the operation of the separator equipment.

Until the shutdown 1994/95 the local host in each collision point was an IBM compatible 386 PC using
the XENIX operating system. This has been replaced by an industrial 486 PC running the LynxOS
operating system. This combination allows the use of the newly developed TG3-PC interface card [1]. It
is physically located in the LynxOS PC and has the same functionality as the original TG3-G64
interface card.

The advantages of using, in addition, the TG3-PC interface for the distribution of the timing events to
the separator equipment are:

• The possibility to improve the diagnostics in the day-to-day running of the separator systems. For
instance the post-mortem table in an ECA must contain two entries for the same event, one coming
from the TG3-PC and the other from the TG3-G64. Local timing problems can be isolated using the
entries in the post-mortem table.

• The possibility of logging of status and error messages to a log file provides a history of the
received events and the hardware status of the equipment.

• Alarms can be sent to the SL alarm system when errors occur, giving an early indication of possible
timing problems.

In order to profit fully from these new diagnostic tools a server application for the TG3-PC has been
developed. This document describes the design and operation of the server application 'zltg3'. Also it
describes the installation of both the TG3-PC interface driver and the 'zltg3' program.

2. Overview of the timing system

2.1. GMT system

The GMT distributes machine timing events and 1 ms clock timing events to all equipment in LEP and
SPS. Machine timing events are used to synchronise operations in LEP i.e. beam injection, start ramp,
stop ramp. The 1 ms clock timing events are used to synchronise the GMT system and to validate the
reception of the machine timing events.

These events are distributed as data packets to all buildings in LEP. Time compensation is used in the
GMT system to guarantee that the data packets arrive at all buildings simultaneously.

GMT timing event

Start of
transmission

2.2. TG3-PC interface card

Parity byte Parity byte Parity byte

End of
transmiss ion

The TG3-PC interface card consists of two parts, a Receiver part and a Process part.

2.2.1. Receiver part

The Receiver part of the TG3-PC interface card receives timing messages from the multi-drop timing
line of the GMT system. It checks the Manchester encoded data packets for transmission errors, which
are flagged in the Status register and Receiver error register.

The Receiver then converts and strips the data packet down to an Event Frame which is passed to the
Process part. The Event Frame contains four bytes:

Header Machine Event Name Cycle Type Cycle Type Number

• Byte 1: The Header byte which identifies the machine type SPS or LEP.

• Byte 2: The Machine Event Name is an 8 bit event code to represent machine timing events
in SPS or LEP.

• Byte 3: The Cycle Type labels the particle type i.e. electron, proton, positron.

• Byte 4: The Cycle Type Number identifies an individual cycle of a particular Cycle Type in
a supercycle.

2

2.2.2. Process part

The Process part of the TG3-PC interface card compares each incoming Event Frame with a set of pre­
loaded parameters in the event table. When a comparison is valid the requested action, relevant to that
particular condition, is initiated i.e. a hardware interrupt of the PC and/or the transmission of a trigger
pulse to some external equipment.

The Event table is an area of memory 245 bytes in size. It is partitioned into 49 lines and each line is
partitioned into 5 columns. The 49th line is called the Start Super-Cycle (SSC) line and is reserved for
actions that are triggered by the SSC frame.

The 48 remaining lines of the Event table are divided into 6 blocks of 8 lines The first 5 blocks are
programmable, with each block representing a different Event Type i.e. proton, positron, electron,
antiproton and heavy ion and the sixth block has been reserved for triggering on other types of frames
i.e. Super-Cycle Event, Calendar frame.

The 5 columns in each line are:

• Column 1: The Machine Event Number

• Column 2: The Cycle Type Number

• Column 3: The Control Word - Specifying the action carried out by the TG3-PC interface card
on valid comparison i.e.

• Column4:
• Column5:

Control Word

$81
$D9

Delay Word- MSB
Delay Word- LSB

Action

Bus interrupt and Timer One with millisecond clock delay .
Bus interrupt, Front panel output, and Timer One with
microsecond clock delay.

The Delay Word consists of two bytes and specifies the
length of time in milliseconds between reception of the
machine timing event and the initiation of the required
action.

On reception of an Event Frame only the block of 8 lines is checked, this ensures a fast response by the
hardware in the TG3-PC interface card. In LEP operation only the first block is used, as the particle
type is not relevant for LEP.

2.2.3. TG3-PC constraints

The TG3-PC interface card hardware is constrained in two main areas. The first is a design limitation.
The MTG system can send up to 3 machine timing events in a one millisecond interval. The TG3-PC
will only service the first machine timing event which gives a valid comparison with the event table. All
later machine timing events in the same one millisecond interval are ignored.

One practical example of this constraint is when the TG3-PC is used in the SPS. Then the SSC event
and the start SPS p+ injection cycle event (le) occur in the same one millisecond interval. One of both
gives a valid comparison and triggers an interrupt, the other event is lost. In LEP this constraint is not
applicable, machine timing events are generated on operator request, which means that they occur less
often and the time between them is considerably greater than one millisecond.

The second constraint is the possible degraded performance of the host platform. The complete cycle of
reception, hardware interrupt, reading, processing the data and then broadcasting it, must be completed
before the reception of the next machine timing event. If the host platform performance is degraded by
other processes then machine timing events will be lost (see also section 3.3.2).

3

3. TG3-PC server program

3.1. Program overview

3.1.1. Environment

The TG3-PC server program uses the SL Control Group library of pre-written routines to communicate
with the TG3-PC driver program [2, 3]. For the creation of the error logging tags the functions of the
TS Tool Kit [4, 5] are used.

This driver controls all access to the TG3-PC interface card. Application programs use the system
interface routines open, read, write, select, ioctl, and close to access the TG3-PC interface card. The
TG3-PC interface driver is the only supported driver for the TG3-PC interface card.

The library files used by the zltg3 program are TG3lib.a, libEquip.a and libprint.a and they are
located in /usrnocal/lib. The header files used are TG3.h, TG3driv.h, TG3tim.h, TSCglobal and
print.h and they are located in /usrnocal/include and /user/spsabt/btsoft/fS/include .

The location of the source programs , configuration files and header file are on the fileserver in the
following directories:

Source file
Header file
Makefile
Executable file
Configuration files

/user /spsabt/btsoft/prod/zltg3/zltg3.c
/user /spsabt/btsoft/prod/zltg3/tg3 _ tim.h
/user /spsabt/btsoft/prod/zltg3/Makefile
/user /spsabt/btsoft/prod/bin/LynxOS/zltg3
/user /spsabt/btsoft/prod/data/leptg3.cfg
/user /spsabt/btsoft/prod/data/spstg3.cfg

The TG3-PC server program is loaded from a central file server during the system boot (see section
3.2), it is designed to run as a background daemon process and requires no user interface during
operation.

During loading operator configurable program parameters specify :

-a path\filename
-b path\filename
-c hostname
-v

-1
-s

: The path and file name for the event configuration table.
: The path and file name of the error log file.
: The name of the TS server host.
: Verbose mode. The status and event messages are printed to the

screen of the host.
: LEP operation.
: SPS operation.

Status and error logging is provided to aid problem solving in the installation and operation of the TG3-
PC server program. A user interface is displayed to help the user when incorrect program parameters
are entered.

3.1.2. A brief description

The TG3-PC server program is organised into two main parts i.e. Initialisation and Event handling.
These are further divided into functional modules of code which call the various library routines to
access the TG3-PC interface card.

The methodology of the server program is first to initialise the interface. This includes testing for
correct functionality and loading the event table with the required event data. Next the Event handling is
carried out in three phases, select, read, and broadcast. A brief description follows .

4

The program enters a forever loop and uses the select system call to wait on events. When a valid event
comparison occurs, the select call returns a positive integer. This then initiates the read call to get the
event number from the TG3-PC interface. The broadcast phase repackages the event number and sends
it to the MIL-1553B controller.

A time-out in the select call allows the program to check the hardware status of the TG3-PC interface
and if an error is present at this time an error message will be written to a log file. The select call is then
re-initialised and called again. This forever loop terminates correctly when the a safe_ exit routine is
called.

When the server program detects error conditions, an entry is made in the log file and an alarm is sent
to the SL alarm system. The event number is also written to the log file.

3.1.3. TG3 data structures

The data structures and definitions for the TG3 can be found in the LynxOS driver functional
description and user's guide. This outlines the main data structure for the driver which is the union iob,
and which is defined in the header tg3.h. The interface definitions are defined in the header tg3driv.h.

The header file tg3 _ tim.h defines the main TG3 server program data structure tg3 _ descriptors as seen
below.

struct alarm ft' TSserver alarm*/
{
unsigned char ServerHostName[32];
unsigned char Message[32];
};

struct tg3 descriptors

C
unsigned
unsigned
unsigned
char
char
char
struct alarm

};

3.2. Initialisation

F file descriptors*/

char fd;
char maxfd;
char tg3nb;
config_ file[128];
error_ file[128];
host_system _ name[32];
TSalarm;

The TG3-PC interface is initialised by the TG3-PC server program and is as follows:

• The error logging tags in the TSserver are created. These are the SystemAlarmName, the
ErrorValue, the SystemAlarmMessage, and the AlarmMessage.

• The print daemon is initialised for the error logging file.

• The file descriptors referencing the TG3-PC interface card in the LynxOS are initialised.

• The TG3-PC interface card is disabled synchronously i.e. the disable action is performed
immediately upon receiving the disable command. The process part will now ignore all Event
Frames passed by the receiver part.

• The TG3-PC interface card is tested for correct operation. This action also clears the event table,
Receiver Error register, and Interrupt Vector register.

5

• The Event Table is then loaded with event parameters, i.e. Machine header (LEP or SPS), event
name, cycle type, and cycle type number, from the Event Configuration file on the file server . The
Event Configuration files for LEP and SPS can be found in appendix B.

• The TG3-PC interface card is enabled synchronously i.e. the enable action is performed on
reception of the next Super cycle frame after receiving the enable command. The process part now
accepts Event Frames passed by the receiver part.

3.3. Event handling

Event handling in the host PC is carried out in three phases, Select, Read, and Broadcast.

3.3.1. Select phase

The Event handling is initiated by using the select call. The select call allows programs to wait for I/O
on a number of devices (file descriptors) at the same time.

The select call is only implemented for a read in the LynxOS driver.

The file descriptor for reading the TG3-PC interface card is declared by the typedef struct fd_set,
which is in the header file types.h. The structure is initialised in the server program by the declaration
fd _ set tg3fd _ set.

if((nfound = select(tg3_desc.maxfd, &tg3fd_set, 0, 0, &tg3_select_tmo)) == MINUS)

The select call in the TG3 server program is initialised using the following parameters:

• tg3 _ desc.maxfd

• &tg3fd _ set

• 0,0

• &tg3 _select_ tmo

The maximum number of file descriptors in the system. This gives the
maximum number of file descriptors that are examined by the select call.

The read file descriptor. The address of the I/O descriptor is set.

The write and except file descriptors are set to null. They are not used in
this application.

The address of the time out value held in the structure, struct timeval
tg3 select tmo. - -

The TG3 server program is placed on the wait queue until either an event occurs or the time out value is
reached.

The select system call returns the following values:

• MINUS (-1)

• ZERO (0)

• PLUS (>O)

The select call failed.

The select call time-out. A time-out value is set in case of no event within a
specified time, i.e. indicating a problem in the GMT. The tg3 _ select_tmo is
assigned a value of 20 seconds. This is larger than the expected super cycle
time for SPS, and provides a convenient period for error checking in LEP.

The select call tg3select() in the LynxOS Driver provides the system with a
value that is different from O when an event is available for read.

When a machine timing event is received and a valid comparison is made with the pre-loaded
parameters in the event table, the TG3-PC interface card generates a hardware interrupt in the LynxOS
PC. The LynxOS operating system calls the TG3-PC interface driver to handle the interrupt.

6

The TG3-PC interface driver uses an interrupt handler, tg3intr(), to check for errors and updates the
error values accordingly. The interrupt handler tg3intr() uses the Interrupt Vector register and Interrupt
Source register to locate the row number in the event table where the event name is stored.

The event buffer is loaded with the Event Frame and the routine new_ event() is called. This routine
checks the device table for waiting client processes, i.e. zltg3, which is waiting for specific machine
timing events. The client process zltg3 is then taken off the wait queue.

3.3.2. Read Phase

When the select call returns a positive non-zero value the read procedure is called.

The read procedure uses the function FD _ISSET() to check that the contents of the returned file
descriptor pointer tg3 _ desc->fd, are in the file descriptor set &tg3fd _ set. This ensures that this
procedure does not block the waiting for the event. The system call read is used to access the TG3-PC
interface card.

if(read(tg3_desc->fd,&iob.i_rbevent, sizeof(struct rb_event)) != sizeof(struct rb_event))

The read call passes the pointer &iob.i_rbevent of the data structure rb _ event, which is contained in
the union iob, to the TG3-PC interface driver. The TG3-PC interface driver ' s read routine reads the
event table in the TG3-PC interface card and returns the data structure rb_event which now contains the
last machine timing event.

The returned data structure struct rb _ event is checked using sizeof(struct rb _ event). If the
comparison fails the error is logged and the program is terminated using the routine safe_exit.

The data structures rb event and frame and the union iob contain:

struct rb event
[
struct frame
long
long
int
int

r_event;
r_ssc_num;
r_cylen;
r_time;
r_flags;

};

struct frame
{
unsigned char e _ head;
unsigned char e_name;
unsigned char e _ type;
unsigned char e _type_ no;

};

unioniob
{
struct hw stat
struct dr event
struct decl event
struct gs_ event
struct rb event
struct tab_ dump
struct tstamp
short
long
u char
};-

i_stat;
i_decl;
i_evdecl;
i_event;
i_ rbevent;
i_dump;
i_times;
i_modes;
i_value;
i_date[6];

7

The union iob is declared as a global union. The machine event number is referenced by
iob.i rbevent.r event.e name. - - -
The event buffer only contains the last received machine timing event. If the event buffer is not read
before the next machine timing event it will be over-written and the previous machine timing event will
be lost. The iob.i_rbevent.r_flags are checked with GS_MISSED for missed machine timing events.
This situation can occur if the host LynxOS PC is heavily loaded and the response to TG3-PC interface
card interrupts are delayed.

if(iob.i_ rbevent.r _ flags & GS_ MISSED) print(log_ all, 11 Missed event flag set 11
);

3.3.3. Broadcast phase

The machine event number is now held in the data structure struct rb _ event which is passed to the
broadcast function. The machine event number (iob.i_rbevent.r _ event.e _ name) is then repacked in a
new data packet for two main reasons:

• To be compatible with the format of the timing broadcast messages on the MIL-1553B interface.

• To swap the byte order of the integer which is different in the Motorola processor on the ECAs
compared with the processor in the host PC.

The library routine m_broad [6] sends the data packet to the MIL-1553B bus new bus controller
(NBC) which broadcasts it to the ECAs on the MIL-1553B bus.

3.3.4. Data packet

Packet Broadcast Remote Terminal Machine Event Time Error
Length Identifier Interface Number Number Delay Checksum
-·-------------------- --·------------------- ·----------------------- ----------------------

byte byte integer byte integer integer

The data packet contains:

• The Package Length is always $09 bytes, this tells ECA the position of the Error checksum, two
bytes less than the length of the package.

• The Broadcast Identifier byte is always $AA. It identifies that this data packet is a timing broadcast
message and not another message broadcast.

• Remote Terminal Interface Number (RTI) tells the receiver ECA which device sent the broadcast.
The code $00BB has been chosen for the new bus controller.

• The Machine Event Number identifies the current machine timing event.

• The Time Delay is not used by this application, the default value is $0000.

• The Error Checksum is used to verify the correct reception of the data packet by the ECAs.

The utility m_broad returns a non-zero value for broadcasting errors. This is recorded in the error log
file. The return value does not influence the program operation.

8

3.4. Closing the program

The TG3-PC server program can be terminated in a controlled manner for the following conditions:

1. Error conditions

The occurrence of a non-recoverable hardware problem, i.e. a failure when trying to access the TG3-PC
interface card or when trying to read the event configuration table. A list of error messages and possible
causes is included in appendix C.

2. Signal calls

Signal calls are used to close the program correctly when the system is shutdown or when the process is
manually killed. Signal calls which trap run-time hardware errors also close the program correctly. The
signal calls declared in this application and the signal calls declared in the TSserver program cause
conflicts . Therefore the position of these calls in the TG3-PC server program was changed, so that the
signal calls are reinitialised after every alarm message call to the TSserver.

signal(SIGINT, safe_ exit);
signal(SIGQUIT, safe_exit);
signal(SIGFPE, safe_ exit);
signal(SIGBUS, safe_ exit);
signal(SIGSEGV, safe_exit);
signal(SIGTERM, safe_exit);
signal(SIGKILL, safe_ exit);

The function safe_exit is used to close the server program zltg3, it carries out the following:

• The message "Program clean exit" is written in the error log file.
• The TG3-PC file descriptor is closed, this de-allocates system resources.
• The error log file is closed.
• The program exits.

The safe exit function

safe_ exit(struct tg3 _ descriptors *tg3 _ desc)
{
print(log_ all," Program clean exit");
close(tg3 _ desc-> fd);
sleep(2);
close_ IogfileO;
exit();
}

3.5. GMT 1 ms clock

An additional feature of the TG3-PC server program is to check the reception of the GMT 1 ms clock
data packets.

The Receiver part of the TG3-PC interface card monitors the 1 ms clock timing packets on the GMT .
When an error is detected the Receiver error register is flagged, the flags are:

• Bit 6:

• Bit 7:

The 1 ms clock missing flag indicates that the clock is no longer present. The flag
resets when the 1 ms clock is detected again.
The watch-dog flag indicates that one or more 1 ms clock packets have been missed
since last reset. This flag is reset by the function tg3intr() in the TG3-PC driver.

9

The Receiver error register cannot generate an hardware interrupt for an error condition. The Receiver
error register is therefore checked when either of two following conditions occur:

1. Select call time-out.

The TG3-PC Receiver's error register is read by the ioctl call TR_GETSTATUS and the returned byte
iob.i_stat.s_flags is checked for the 1 ms clock missing flag or the WATCH_DOG flag. When either
of these conditions is true an error message is logged and an alarm is sent to the TSserver.

I*
* Check TG3-PC Receiver's error register
* for one milli second 'WATCH DOG' and 'l\1ISS1MSCLK'
* after select time-out
* Note: iob.i _ stat.s _ flags is reset after the test
*I

int rec_ reg_ chk(struct tg3 _ descriptors *tg3 _ desc)
{
if(ioctl(tg3 desc->fd, TR GETSTATUS, &iob) < ZERO)

{ - -

else

print(log_ all," Unable to read Tg3-PC Reciever' s error reg") ;
strcpy(tg3 _ desc-> TS alarm.Message, "Cannot Read TG3");
return(l\1INUS);
}

.if((iob.i stat.s flags & WATCH DOG)ll(iob.i stat.s flags & l\1ISS1MSCLK)) { - - - -

}

strcpy(tg3_desc->TSalarm.Message, "GMT Clock Fail");
iob.i_stat.s_flags = OxOO;
return(PLUS);

return(ZERO);
}

2. On every SPS SSC event.

When an SPS SSC event occurs the hardware status of the TG3-PC interface card is read by tg3intr()
into the temporary buffers, ds->I _ wdterr, ds->t _ wdterr, ds->I _ ckon and ds->t _ ckon. The TG3-PC
Receiver error register is then cleared by tg3intr(). The ioctl call TR_ GETS TA TUS copies these
temporary buffers into the iob.i _ stat.s _ laperrs[] and iob.i _ stat.s _ triperrs[] arrays.

The iob.i_stat.s_laperrs[l] and iob.i_stat.s_laperrs[2] arrays are then checked for a NON-ZERO
condition, if this condition is true a 1 ms clock error has occurred since the last SSC event. The
hardware error message is sent to the error log file and an alarm is sent to the TSserver.

I*
* Check TG3-PC Receiver's error register
* for one millisecond 'WATCH DOG' and 'l\1ISS1MSCLK'
* after SSC event
* Note: SPS operation only
*I

{
if(ioctl(tg3 desc->fd, TR GETSTATUS, &iob) < ZERO)

{ - -
print(log_all,"Unable to read TG3-PC Reciever's error reg");
strcpy(tg3 _ desc-> TS alarm.Message, "Cannot Read TG3");
return(l\1INUS);

10

}
else

.if((iob.i stat.s laperrs[l] != ZERO) II (iob.i stat.s laperrs[2] != ZERO)) { - - -

print(log_all,"GMT one mill-sec clock fail");
strcpy(tg3 _ desc-> TSalarm.Message, "GMT Clock Fail");
return(PLUS);
}

return(ZERO);
}

3.6. Error reporting and event logging

The TG3-PC event timing program is designed to run as a background daemon process. Status and error
logging are provided to aid problem solving in the installation and operation of the TG3-PC program.
The machine timing events are logged in the same file as the error and status messages.

The name and location of the log file is specified by the TG3-PC program parameters:

-b /user/spsabt/btsoft/prod/log/errlog

In LEP, the TG3-PC program will run simultaneously on several LynxOS platforms. A log file directory
on the file server has been reserved for all of these LynxOS platforms. Each log file has a unique name
consisting of the host system name concatenated with errlog, i.e. errlog.zxls25.

The log file directory is: /spsabt/btsoft/prod/log/

A list of error messages and possible causes are included in appendix C.

3.6.1 Print() utility

The print package for the Error Log file consists of a library of pre-written C calls in libprint.a [7] and
a header file called print.h. The print package provides parameter for outputting to screen or logging to
file of any server or daemon program in the SL controls infrastructure.

The initialisation of the Error Log file is carried out by the init_print function. The use of this is
outlined below:

Where:

init_print(BOOLEAN screen_ output, BOOLEAN file_ output, char *filename,
char *product_ name, int size);

BOOLEAN screen_ output
BOOLEAN file_ output
char *filename
char *product_ name
int size

(P _ FALSE) (no screen output)
(P _ TRUE) (file output)

= Directory path and file name of the error log file
Host system name

= Maximum size of error log file

The message is time stamped and has an entry [----] to identify the host system.

The printing function is: print(log_all," Error message");

The print output in the 'Error Log file' for the above will be:

1995-01-26-15:13:03:[host system name]: Error message

The log file is closed by the function call: close _logfile();

11

Status messages will only be logged when the verbose (-v) option is used in the program parameters.
Error logging however is automatic.

The log file is to be limited in length to 50,000 bytes by the int size entry in init_print(). When the log
file reaches this length it will be renamed with the extension .old and the error log file will be restarted
with the original name.

3.6.2. TSserver alarm

The TG3-PC server program sends an alarm to the SL Alarm system via the Tsserver [8], when a fatal
error occurs in the TG3-PC timing system. This to notify the LEP operators, who monitor the operating
status of the LEP accelerator, that an error has occurred in the TG3-PC timing system.

The function call used to send an alarm is send_tg3alarm(). It uses the pre-written routines in
TSCglobal.h. The procedure to send an alarm to the SL alarm system is outlined below.

The declarations for the TSserver:

seq_ RTAG _ DEF
ERR MSG
int

long int

TagSet;
ErrMsg;
sid;

ErrNr;

Data structure defined in TSCglobal.h
TS server returns error/status messages
TSserver identifier is not used in this
application. It is used to identify individual
TSservers on multi-TSserver systems as foreseen
for the future [9].
Error value returned by TSserver

The example procedure to declare tag names in the TSserver is as follows:

1. First, allocate memory for the 2 tags.

TagSet.sequence = (RTAG_DEF *)malloc(2 * sizeof(RTAG_DEF));
TagSet.length = O;

2. Next, assign the alarm names for TagSet array (example for zxls25).

ProcName
HostName
SystemAlarmName
ErrorValue
SystemAlarmMessage
AlarmMessage 0

zltg3 _ zxls25
modena
ZL zxls25 TG3 ERROR - - -
0
ZL zxls25 TG3 MESSAGE - - -

3. Next, test the connection to TSserver.

if((ErrNr = TSconnect(HostName, ProcName, &sid, ErrMsg))!= TS_NO_ERROR)
print(log_all,"Unable to connect to send alarm to TSserver: Error msg is %s" ,ErrMsg);

4. Next, copy the names to the TagSet array.

FCSTRCPY(TagSet.sequence[TagSet.length].Name, SystemAlarmName);
FCSTRCPY(TagSet.sequence[TagSet.length]. Value, ErrorV alue);
TagSet.length++;
FCSTRCPY(TagSet.sequence[TagSet.length].Name, SystemAlarmMessage);
FCSTRCPY(TagSet.sequence[TagSet.length]. Value, AlarmMessage);
TagSet.length++;

5. Next, create the tags in the TSserver .

12

if((ErrNr = TScreTagsByName(&TagSet, ErrMsg)) != TS_NO_ERROR)
print(log_all,"Unable to create tags in TSserver: Error msg is %s" ,ErrMsg);

6. Last, disconnect and return memory allocated.

TSdisconnect(ErrMsg)
free(TagSet.sequence)

The example procedure to send an alarm to the TSserver is as follows:

1. First, allocate memory for the 2 tags.

TagSet.sequence = (RTAG_DEF *)malloc(2 * sizeof(RTAG_DEF));
TagSet.length = O;

2. Next, assign the alarm value and message for TagSet array (example for zxls25).

ProcName
HostName
SystemAlarmName
ErrorValue
SystemAlarmMessage
AlarmMessage

zltg3 _ zxls25
modena
ZL zxls25 TG3 ERROR - - -
1
ZL zxls25 TG3 MESSAGE - - -
Failed TG3 lnit

3. Next, test the connection to the TSserver.

if((ErrNr = TSconnect(HostName, ProcName, &sid, ErrMsg)) != TS_NO_ERROR)
print(log_all, "Unable to connectto send alarm to TSserver: Error msg is %s" ,ErrMsg);

4. Next, copy the names to the TagSet array.

FCSTRCPY(TagSet.sequence[TagSet.length].Name, SystemAlarmName);
FCSTRCPY(TagSet.sequence[TagSet.length]. Value, ErrorV alue);
TagSet.length++;
FCSTRCPY(TagSet.sequence[TagSet.length].Name, SystemAlarmMessage);
FCSTRCPY(TagSet.sequence[TagSet.length]. Value, AlarmMessage);
TagSet.length++;

5. Next, change the Tag values and message with TagsSetByName.

if((ErrNr = TSsetTagsByName(TagSet, ErrMsg))!= TS_NO_ERROR)
print(log_ all, "Unable to send alarm name to TS server: Error msg is %s" ,ErrMsg);

6. Last, disconnect and return memory allocated.

TSdisconnect(ErrMsg)
free(TagSet.sequence)

The above example can be checked by using the following command at the LynxOS prompt:

TSreadTags modena -p ZL _ z

• Examples:

After TScreTagsByName: ZL zxls25 TG3 ERROR - - -
ZL zxls25 TG3 MESSAGE - - -

After TSsetTagsByName: ZL zxls25 TG3 ERROR - - -
ZL zxls25 TG3 MESSAGE - - -

13

0
0

1
Failed TG3 Init

4. Installation

4.1. TG3 driver

The TG3 driver can be installed or de-installed dynamically. To check which driver is running on the
LynxOS system the following steps must be carried out.

• Type from any directory on the host system used: grep inst /etdtransfer.ref

This should give a list of installed drivers i.e.

#% /usr/local/bin/instdrvr -i TG3sdesc.320.i7
#% /usr/local/bin/instdrvr -i NBC PCdesc.bt
#% /usr/local/bin/instdrvr -i BBdesc

The TG3 Driver can have two configurations:

for the SPS: TG3sdesc.320.i7
or, for the LEP: TG3ldesc.320.i7

Note that the address of the TG3-PC interface on the PC internal bus is 320 and the number of the
hardware interrupt is 7.

• Type the following to install the TG3 driver: for the SPS: instdrvr -i TG3sdesc.320.i7
or, for the LEP: instdrvr -i TG3ldesc.320.i7

• Type the following to de-install the TG3 driver: for the SPS: instdrvr -u TG3sdesc.320.i7
or, for the LEP: instdrvr -u TG3ldesc.320.i7

• To confirm the that the driver is installed or de-installed use the command drivers. This will display
all current installed drivers, as the example below shows:

id type major devs. start size name

0 char 1 0 0 null
1 char 1 0 0 mem
2 char 1 0 0 ctrl drvr
3 char 1 0 0 Raw HD
4 block 1 0 0 HD
5 char 1 0 0 Raw floppy
6 block 1 0 0 Floppy
7 char 1 0 0 kdconsole
8 char 2 0 0 serial
9 char 16 0 0 pty

10 char 1 0 0 RRD
11 block 1 0 0 RD
12 char 1 0 0 hbtcpip
13 char 1 0 0 wd3e
14 char 1 0 0 unfs

⇒ 15 char 1 db311070 13356 TG3driv
16 char 1 db2ff9c0 4940 BBdriv

The number in the 'major devs' column should be either O (de-installed) or 1 (installed) for TG3driv.

14

4.2. TG3-PC server program

4.2.L Automatic installation at system boot

The following lines are included in the transfer.ref file used in the automatic system boot.

/user/spsabt/btsoftlprod/bin/LynxOS zltg3
/user/spsabt/btsoft/prod/bin/LynxOS zltg3 btexpert spsabt 0644 server -
%Jzltg3 -I -a /user/spsabt/btsoftlprod/data/leptg3.cfg

-b /user/spsabt/btsoft/prod/log/errlog -c modena %

4.2.2. Manual installation

The location of the executable file, configuration files and the error log file are:

Executable file
Configuration files

/user /spsabt/btsoft/prod/bin/LynxOS/zltg3
/user /spsabt/btsoft/prod/data/leptg3.cfg
/user /spsabt/btsoftlprod/data/spstg3.cfg
/user /spsabt/btsoft/prod/log/ Error log file

The user interface is displayed to aid the user when incorrect program parameters are entered.

Example for SPS:

Command line arguments for program parameters.

Valid options:

[-v] : Verbose
-a : Path/filename for Event configuration file
-b : Path/filename for error log file
-c : TSserver host name
-s : SPS TG3 intelface card descriptor
-1 : LEP TG3 interface card descriptor

zltg3 -s -a /user/spsabt/btsoft/prod/data/spstg3.cfg -b /user/spsabt/btsoftlprod/log/errlog
-c modena

Example for LEP:

zltg3 -I -a /user/spsabt/btsoftlprod/data/leptg3.cfg -b /user/spsabt/btsoft/prod/log/errlog
-c modena

The error log name is concatenated with the host system name to provide a unique log name. Only the
on-line LEP systems listed should use the log directory:

/user /spsabt /btsoft/prod/log.

A description of the error messages is include in the appendix C.

The host names of the operational LynxOS systems used for the LEP separators are: ztlsl5, zxls25,
ztlj33, zxls45, ztlj56, zxls65, ztlj76, and zxls85 .

15

5. Timing error reporting
The objective is to infonn the operators of LEP of a possible problem in the machine timing system by
means of the early detection of missing events. The initially proposed method was to check for the
absence of the 1 ms clock. Since this absence can not generate an interrupt to the host system, the TG3-
PC interface card has to be polled by the server program . This can be achieved by using the select call
time-out, which is 20 seconds, for checking the 1 ms clock missing flag and the watchdog flag. This
means that if one of them is true a timing error has occurred.

However, this method causes a problem because the TG3-PC interface card generates it's own 1 ms
clock when the externally received 1 ms clock is absent. Unfortunately this state is not correctly
reported to the Receiver's error register. This renders the above test method invalid and timing errors
could occur without being detected by the present method.

Alternative solutions for solving this problem are:

• Reading the one 1 ms clock counter and comparing the value with the length of the SSC.
• Comparing consecutive SSC numbers.
• Comparing the date and time recorded in the auxiliary table.

All the above solutions have been tested. There respective strengths and weaknesses are listed below.

For nonnal operation without missing 1 ms events the following information can be obtained:

1. The readlastssc(tg3 _ desc->fd) call [4] returns the last SSC number, so after every SSC the function
should return consecutive numbers (HEX).

2. The readcylen(tg3 _ desc->fd) call returns the number of milliseconds in the previous SSC.
3. The ioctl(tg3_desc->fd, TG3_DATE, &iob) call returns the date and time in 6 bytes. This shows

the date and time incrementing after every read.

For normal operation with missing 1 ms events the following fault indications were obtained :

1. After a transitory error the readcylen(tg3_desc->fd) call returns a number that differs from the
number of 1 ms ticks in the currently used SSC. This error will be trapped.
However, if the duration of the absence of lms ticks is a multiple of the SSC length then the error
will not be trapped.

2. If the error is permanent the readcylen(tg3_desc->fd) call returns the number of 1 ms clock ticks in
the last complete SSC before the error occurred . This number will be the same as the expected SSC
length. This error will thus not be trapped.

3. After a transitory error the readlastssc(tg3_desc->fd) call returns the last SSC number before the
error. However , if the duration of the absence of 1 ms ticks is less than length of the SSC then the
SSC number will be incremented. This error will not be trapped.

4. If the error is permanent the readlastssc(tg3_desc->fd) call returns the last SSC number before the
error. The SSC number will not be incremented. This error will be trapped.

5. After a transitory error the ioctl(tg3 _ desc->fd, TG3 _ DATE, &iob) call returns the date and time
after the error. This will be different from the old time and the error will not be trapped.
However , if the duration of the absence of 1 ms ticks is greater than length of the select call time-out
the date and time will not be incremented. This error will be trapped.

6. If the error is permanent the ioctl(tg3_desc->fd, TG3_DATE, &iob) call returns the date and time
before the error occurred, the time will be the same as the old time. This error will be trapped.

These results lead to the conclusion that each method can detect either fatal errors or transitory errors,
but not both. A combination of the tests on the SSC length and the SSC number allow also the detection
of fatal non-recoverable errors.

16

However, the weakness of using the SSC event tests in LEP is that, once in colliding mode, the SSC
events are absent. The generation of a synchronous SSC event in LEP is impossible because just this
absence of the SSC event determines the operating mode of LEP. Thus, it is not possible to capture
timing system problems with tests on the SSC events.

Therefore the date and time check in the TG3-PC interface card is only option left for early detection of
machine timing errors in LEP . This check has thus been implemented in the TG3-PC server program.

6. Conclusion

The TG3-PC server program zltg3 is designed to be easily maintainable and robust during normal
operation. However due to the wide variety of possible system conditions that can occur outside the
control of the program, it remains possible that an external processes can interfere with the timing
distribution system i.e. TG3DIAL.

The server program is designed to detect conditions that could interfere with its normal operation. The
hardware is monitored for errors, each access to the TG3-PC interface card is validated on return. Each
time data is transferred to or from the hardware or a file, the sizeofO routine checks that the size of the
transfer is correct. The server program logs errors and status as they occur in an error log file, which is
outlined in Appendix C.

The server program was extensively tested with other concurrent processes in the LynxOS host. This
confirmed that under normal system operating conditions, the TG3-PC timing system can capture
machine timing events from the GMT and broadcast them to the ECAs on the MIL-1553B bus. Entries
in the diagnostic post mortem tables of the ECAs confirmed the reception of the timing broadcasts.

Since the start of the LEP run in April 1995 the server program has been in operation and fulfils its task
to great satisfaction.

7. Acknowledgements

The support provided during the development and test phases by many members of the CERN-SL
Controls Group is gratefully acknowledged. We are indebted to E. Carlier and V. Mertens for their
contributions and to P. Bobbio for his help with the tests.

8. References

[l] B. Puccio, G. Beetham, and P. Nouchi, "TG3-PC User Manual", January 1993, CERN SL/CO
Note (Draft '93).

[2] H.P. Christiansen, "LynxOS Driver for the TG3 Card, Functional Description and User's Guide",
November 1993, CERN SL/CO-Note 93-56 (REV), World-Wide Web URL http://genova.cem.ch
/ ~hpchr/tg3 _doc.html.

[3] D. J. Cameron, "Documentation on Software for the TG3 and PTS Modules", 12 August 1992,
CERN SL/CO/TI.

[4] A. Aimar, E. Carlier and V. Mertens, An User-Friendly Approach to Process Control Software in
the Framework of a Generic Tool Kit for Distributed Applications, Workshop on Workstation &
Software Tools for Automatic Control, Prague, Czech Republic, October 26 - 27, 1993, CERN
SL/93-50 (BT), World-Wide Web URL http://dxbtOO.cern.ch/ts/ts_papers/prague_art.html.

[5] V. Mertens, A. Aimar and E. Carlier, A Simple Generic Software Tool Kit for Distributed
Controls Applications, Proc. International Conference on Accelerators and Large Experimental
Physics Control Systems, Berlin, Germany, October 18 -22, 1993, Nucl. Inst. Meth .
A352(1994)427, CERN SL/93-49 (BT), World-Wide Web URL http://dxbtOO.cern.ch/ts/ts_papers
/berlin93 .html.

17

[6] A. - K. Brignet, "NBC Lynx.OS Driver (draft)", 5 December 1994, SL/Note 93-58 Revision 3
(CO), World-Wide Web URL http://genova.cem.ch/~abl/lynx /NBC_driver.html.

[7] P. Charrue, "Making outputs and logging from Servers and daemon", 8 July 1994, World-Wide
Web URL http://genova.cem.ch/~chamie/print.html.

[8] A. Aimar, E. Carlier, C. Cameron, A. Ferrari, B. Goddard, M. Laffin, V. Mertens and M. Tyrrell,
Centralised Equipment Surveillance Using a Configurable Software Tool Kit as Front-End to the
CERN Alarm System, CERN SL/Note 95-71 (BT).

[9] Carlier SL/BT, private communication.

18

Appendix A

TG3-PC server program "zltg3.c"

/*
* Program name zltg3.c

*
*
*
*
*
*
*
*
*
*/

General Machine Timing Program

for TG3-PC Interface Card

Andrew Burton

SL/BT

/*
*
*
*
*
*
*
*
*
*
*
*
*/

Modification History

REL 01 APR 95

Modification History

REL 02

REL 03

#include <errno.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/sched.h>
#include <signal.h>
#include <string.h>
#include <print.h>
#include "TSCglobal.h"
#include "sysconfig.h"
#include "tg3 .h"
#include "tg3_tim.h"

/*global declarations*/

union iob iob;
fd_set tg3fd_set;
unsigned int verbose;

int old_date_time[6];
/*

*

JUN 95

OCT 95

* disable tg3 interface card

*
*I

SPS mode, H/W status check at Start Super Cycle
Completed error log and alarm messages

Date/Time check introduced

/*data structure in tg3.h*/
/*structure in types.h */

int disable_tg3(struct tg3_descriptors *tg3_desc)
[

l

if(en_disable(tg3_desc->tg3nb,TG3_ASYDIS) -- MINUS)
[

}

print(log_all,"Unable to disable TG3-PC interface card");
return (MINUS) ;

return(ZERO);

/*
*
* enable tg3 interface card

*
*/

int enable_tg3(struct tg3_descriptors *tg3_desc)

19

{
if(en_disable(tg3_desc->tg3nb,TG3_SYNENA) -- MINUS)

{

J

print(log_all,"Failed to enable TG3-PC interface card ");
return (MINUS) ;

return (ZERO) ;
J
/*
*
* Check TG3-PC date and time
* after select timeout

*
*/

int date_time_chk(struct tg3_descriptors *tg3_desc)
[

int i;

if(ioctl(tg3_desc->fd, TG3_DATE, &iob) < ZERO)
[
print(log_all,"Failed to get date and time from TG3-PC interface card");
return(MINUS);

else
[
if((iob.i_date[0] & 0xff) <- (old_date_time[0] & 0xff))

if((iob.i_date[l] & 0xff) <- (old_date_time[l] & 0xff))
if((iob.i_date[2] & 0xff) <- (old_date_time[2] & 0xff))

if((iob.i_date[3) & 0xff) <- (old_date_time[3] & 0xff))
if((iob.i_date[4) & 0xff) <- (old_date_time[4] & 0xff))

if((iob.i_date[5) & 0xff) -- (old_date_time[5) & 0xff))
{

strcpy(tg3_desc->TSalarm.Message, "date/time error");
return (PLUS) ;

for(i - 0; i < 6; i++)
{

old_date_time[i) - (iob.i_date[i) & Oxff);
J

return (ZERO);
J

/* not used due to hardware problem

*
* Check TG3-PC Reciever's error reg
* for one millisecond 'WATCH_ DOG' and 'MISSlMSCLK'
* after select timeout

* * note

*
iob.i_stat.s_flags and Reciever's error register
is reset after test

*
*
*/

int rec_reg_chk(struct tg3_descriptors *tg3_desc)
[
static int log_once;

if(ioctl(tg3_desc->fd, TR_GETSTATUS, &iob) < ZERO)
[
print(log_all,"Unable to read TG3-PC Reciever's error reg");
strcpy(tg3_desc->TSalarm.Message, "Cannot Read TG3");
return(MINUS);

J
else

if((iob.i_stat.s_flags & WATCH_DOG)I I (iob.i_stat.s_flags & MISSlMSCLK))
[
strcpy(tg3_desc->TSalarm.Message, "GMT Clock Fail");

I*
* Reset Receiver error register
*/

if(ioctl(tg3_desc->fd, TG3_RESREC, &iob) < ZERO)
if(log_once -- ZERO)

[
print(log_all,"Unable to reset TG3-PC Reciever's error reg");

20

}

log_once PLUS;

}

iob.i_stat.s_flags
return (PLUS) ;

log_once - ZERO;
return(ZERO);

0x00;

/*
*
* Check TG3-PC Reciever's error reg
* for one millisecond 'WATCH_ DOG' and 'MISSlMSCLK'
* after SSC event

*
*
*I

note SPS operation only

int get_SPS_status(struct tg3_descriptors *tg3_desc)
[

if(ioctl(tg3_desc->fd, TR_GETSTATUS, &iob) < ZERO)
[

}

print(log_all,"Unable to read TG3-PC Reciever's error reg");
strcpy (tg3_desc->TSalarm. Message, "Cannot Read TG3") ;
return (MINUS) ;

else
if ((iob. i_stat. s_laperrs [1] I - ZERO) I I (iob. i_stat. s_laperrs [2] ! - ZERO))

[

l

print(log_all,"GMT one mill-sec clock fail");
strcpy(tg3_desc->TSalarm.Message, "GMT Clock Fail");
return (PLUS) ;

return (ZERO) ;
}

/*
*
* Test TG3-PC interface card

*
*/

int auto_test(struct tg3_descriptors *tg3_desc)
[

l

int status;
if(self_test(tg3_desc->tg3nb, &status) -- MINUS)

[

}

print(log_all,"Unable to test TG3-PC Interface Card");
return (MINUS) ;

if(status & BAD_STATUS
[

}

print(log_all,"TG3-PC Interface Card failed self test");
return (MINUS) ;

return(ZERO);

/*
*
* Initialise file descriptors
*
*/

int get_tg3desc(struct tg3_descriptors *tg3_desc)
[

if((tg3_desc->fd - get_tg3fd(tg3_desc->tg3nb)) < ZERO)
[

}

print(log_all,"Could Not Open TG3-PC Interface Card");
close(tg3_desc->fd);
return (MINUS) ;

else

}

FD_SET(tg3_desc->fd, &tg3fd_set);
tg3_desc->maxfd - tg3_desc->fd + FILE_DESCS;
return(ZERO);

21

/*
*
* Write event table in tg3 interfac e card

*
*/

int write_event_table(struct tg3_descriptors *tg3_desc)
{

FILE *fp;
char line[LINE_MAX], *cp;
int n,ret;

/ *
*
* Open and Read Event Configuration file

*
*/

if ((fp - fopen (tg3_desc->conf ig_f ile, "r"))
{

if(verbose)

NULL)

printf("Unable to open event config f ile:­
print(log_all,"Unable to open event config file
return (MINUS) ;

%s \n ", tg3_des c ->config_file);
%s ", tg3_desc->config_file);

l
for(;;)

[
cp-fgets(line,LINE_MAX, fp);
if(cp--NULL)

[

}

if(verbose)
printf("events from %s initialised\n", tg3_desc->config_file);

fclose(fp);
return(ZERO);

line[24] • 1 \ 0'; /*sscanf does not read comments* /

/*
*
* Ass i gn values

*
*/

n-sscanf(line,"%x %x %x %x %x %x %x %x",
&iob.i_evdecl.d_event.e_head,
&iob.i_evdecl.d_event.e_name,
&iob.i_evdecl.d_event.e_type,
&iob.i_evdecl.d_event.e_typeno,
&iob.i_evdecl . action,
&iob.i_evdecl.delay,
&iob.i_evdecl.row,
&iob.i_evdecl.sig _ no);

if(n -- ZERO)
{
print(log_all,"Unable to read Event Configuaration file

>config_file);
%s",tg3_desc-

return(MINUS);
l

if(((iob.i_evdecl.d_event.e_head & 0xf0)
MINUS))

[

tg3 _ desc->tg3nb) && (tg3 _ desc->fd

print(log_all,"Compare failed when writing the Event Configuration file to the
TG3-PC Interface card");

return(MINUS) ;
l

else
if(write(tg3_desc->fd, &iob.i_evdecl, sizeof(struct decl_event))

table");

I- sizeof(struct decl_event))

print(log_all,"Unable to write Event Configuration file to TG3-PC Event

return (MINUS) ;

22

/*
*
* Switch byte order in integer

*
*/

unsigned int change_pos(unsigned int tempbyte)
(
unsigned int temp_byte,i;
unsigned int temp_byte_00,temp_byte_0l;
unsigned int temp_byte_l0,temp_byte_ll;

temp_byte ~ tempbyte;

temp_byte_00
temp_byte_0l
temp_byte_l0
temp_byte_ll

temp_byte & 0x000f;
temp_byte & 0x00f0;
temp_byte & 0x0f00;
temp_byte & 0xf000;

for(i~0; i<~7; i++)
(

temp_byte_00
temp_byte_0l
temp_byte_l0
temp_byte_ll

temp_byte_00 <<
temp_byte_0l <<
temp_byte_l0 >>
temp_byte_ll >>

1;
1·
1;
1;

temp_byte ~ temp_byte_00 + temp_byte_0l + temp_byte_l0 + temp_byte_ll;

return temp_byte;
}

/*
*
* Broadcast Event to MIL-1553B Bus Controller

*
*/

int send_event()
[
struct m_broadcast

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned short
unsigned short
broadcast ;

length;
send_id;
fifth_byte;
rti;
sixth_byte;
event _num;
int delay;
int chksum;

int be~ MIL_BUS_CONT;
int status;
unsigned int temp_byte;
unsigned int addition;

BROADCAST_LENGTH;
BROADCAST_TX_ID;
BROADCAST_PAD;
BROADCAST_RTI;

broadcast.length
broadcast.send_id
broadcast.fifth_byte
broadcast.rti
broadcast.sixth_byte
broadcast.event num
broadcast.delay
if(verbose)

BROADCAST_PAD;
iob.i_rbevent.r_event.e_name;
BROADCAST_DELAY;

printf(" \n Event number is %x \n", broadcast. event_num);

addition broadcast.send _ id
+ broadcast.rti
+ broadcast.event _ num
+ broadcast.delay;

broadcast.chksum ~ addition;
temp_byte ~ broadcast.delay;
broadcast.delay~ change_pos(temp_byte);
temp_byte ~ broadcast.chksum;
broadcast.chksum ~ change_pos(temp_byte);
print(log_all,"Event number is %x",broadcast.event_num);
status~ PLUS;

changes*/

23

/*ensures status

I

if(m_broad(bc, &broadcast, sizeof(struct m_broadcast), &status) != 0) /*Broadcast*/
(
print (log_all, "Unable to broadcast Event, status is %x", &status);

l
return(ZERO);

I*
*
* Read Event Table and Broadcast Event

*
*/

int read_event(struct tg3_descriptors *tg3_desc)

int ret;
if(FD_ISSET(tg3 _ desc->fd, &tg3fd_set))

(
if(read(tg3_desc->fd,&iob.i_rbevent,sizeof(struct rb_event))!=sizeof(struct

rb_event))
(

I

print(log_all,"Unable to read Tg3 after an Event");
return(MINUS);

if(send_event(&iob.i_rbevent)
return(MINUS);

MINUS)

if(iob.i_rbevent.r_flags & GS_MISSED)
print(log_all, "Missed event flag set");

if(tg3_desc->tg3nb == MACHINE_SPS)
if(iob.i_rbevent.r_event.e_head SPS_H)

if((ret - get_SPS_status(tg3_desc)) · MINUS)
return (MINUS) ;

else
if(ret == PLUS)

return (PLUS) ;

return (ZERO) ;
I

/*
*
* close tg3 timing program
*
* close all open files
*/

safe_exit(struct tg3_descriptors *tg3_desc)
(

l

print (log_all, "Program clean exit");
close(tg3_desc->fd);
sleep(2);
close_logfile();
exit();

/*
*
* initialise tg3 interface card

*
*/

int initialise_tg3(struct tg3_descriptors *tg3_desc)
[

if(verbose)
printf("initialising\n ");

/*
* init TS server Tags
*/

send_tg3alarm(tg3_desc);

if(get_tg3desc(tg3_desc) I= ZERO)
return(MINUS);

if(disable_tg3(tg3_desc) I= ZERO)
return (MINUS) ;

24

if(auto_test(tg3_desc) !- ZERO)
return (MINUS) ;

if(clear_table(tg3_desc->tg3nb) < ZERO)
{

l

print(log_all, "Failed to clear TG3 Event table");
return(MINUS);

if(write_event_table(tg3_desc) I- ZERO)
return (MINUS);

if(enable_tg3(tg3_desc) !- ZERO)
return(MINUS);

if(verbose)
printf("end of initialising \n");

return(ZERO);

user_mess ()
{

l

printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(

Command line arguments for program parameters

valid options

[-v] Verbose

printf(
printf(
printf(
printf(
printf(example
printf(
printf(example
printf("
printf("
printf("

-a
-b
-c
-s
-1

for SPS

Path/filename for Event configuration file
Path/filename for error log file
TSserver host name
SPS TG3 interface card descriptor
LEP TG3 interface card descriptor

zltg3 -s
for LEP

-a path/spstg3.cfg -b path/errlog -c modena

zltg3 -1 -a path/leptg3.cfg -b path/errlog -c modena

int send_tg3alarm(struct tg3_descriptors *tg3_desc)
[
seq_RTAG_DEF
ERR_MSG
int
long int

static int

unsigned char
unsigned char

TagSet;
ErrMsg;
sid;
ErrNr;

init_TSserver;

ProcName[32] - "zltg3_";
HostName[32];

unsigned
unsigned

char
char

ErrorValue[32];
SystemAlarmName[32] - "ZL_" ;

unsigned char SystemAlarmMessage [32] "ZL_"
unsigned char AlarmMessage[l6];

/*
* build strings for Alarm names and message
*/

int len - 32;
unsigned char strl[32];
unsigned char str2[32];
int hostlen - 16;
int messlen - 16;
unsigned char charnull - '\0';

strncat(ProcName, tg3_desc->host_system_name, len);

strcpy(strl,
strcpy(str2,

"_TG3_ERROR") ;
"_TG3_MESSAGE") ;

strcpy(HostName, tg3_desc->TSalarm.ServerHostName);
strncat(SystemAlarmName, tg3_desc->host_system_name , len);
strncat(SystemAlarmName, strl, len);
strncat(SystemAlarmMessage, tg3_desc->host_system_name, len);
strncat(SystemAlarmMessage, str2, len);

25

\n");
\n");
\n");
\n");
\n");
\n");
\n") ;
\n");
\n") ;
\n");
\n");
\n");
\n");

Iii \n");
\n")i

Iii \n");
\n");
\n");

/*
* Connect to TSserver and Declare Tags in TSserver
*/

/*
* malloc
*/

TagSet.sequence - (RTAG_DEF *)malloc(2 * sizeof(RTAG_DEF));
TagSet.length - 0;

/*
* Connect and declare Tags

*
*
*/

if(init_TSserver ~~ 0x0)
[

if((ErrNr ~ TSconnect(HostName, ProcName, &sid, ErrMsg)) 1~ TS_NO_ERROR)
print(log_all,"Unable to connect and declare Tags: Error msg is %s",ErrMsg);

else

strcpy(AlarmMessage, "TG3_TAG_DEC");
strcpy(ErrorValue, "0");
FCSTRCPY(TagSet.sequence[TagSet.length] .Name, SystemAlarmName);
FCSTRCPY(TagSet.sequence[TagSet.length] .Value, ErrorValue);
TagSet.length++;
FCSTRCPY(TagSet.sequence[TagSet.length] .Name, SystemAlarmMessage);
FCSTRCPY(TagSet.sequence[TagSet.length] .Value, AlarmMessage);
TagSet.length++;

if((ErrNr ~ TScreTagsByName(&TagSet, ErrMsg)) !~ TS_NO_ERROR)
print(log_all,"Unable to create tags in TSserver: Error msg is %s",ErrMsg);

I*

l

* Disconnect from TSserver
*/

if(ErrNr ~ TSdisconnect(ErrMsg))
print(log_all,"Unable to TSdisconnect: Error ErrNr is %s",ErrNr);

}/* end of init tags*/

free(TagSet.sequence);

/*
* malloc
*/

TagSet.sequence
TagSet.length

(RTAG_DEF *)malloc(2 * sizeof(RTAG_DEF));
0.

/*
* Connect to TSserver and send Alarm
*/

if((ErrNr ~ TSconnect(HostName, ProcName, &sid, ErrMsg)) !~ TS_NO_ERROR)
print(log_all,"Unable to connect to send alarm to TSserver: Error msg is

%s" ,ErrMsg);
else

tg3_desc->TSalarm.Message[15] ~ charnull;
strcpy(AlarmMessage, tg3_desc->TSalarm.Message);
strcpy(ErrorValue, "l");

/*
* The initialise OK message is written to the TSserver
* on the first pass to over write any previous error message .
*/

if(init_TSserver ~~ 0x0)
[

strcpy(AlarmMessage, "TG3 init OK");
strcpy(ErrorValue, "0"); '
init TSserver ~ 0xl;

FCSTRCPY(TagSet.sequence[TagSet.length] .Name, SystemAlarmName);
FCSTRCPY(TagSet.sequence[TagSet.length] .Value, ErrorValue);

26

TagSet.length++;
FCSTRCPY(TagSet.sequence[TagSet.length] .Name, SystemAlarmMessage) ;
FCSTRCPY(TagSet.sequence[TagSet.length] .Value, AlarmMessage);
TagSet.length++;

if((ErrNr ~ TSsetTagsByName(TagSet, ErrMsg)) !~ TS_NO_ERROR)
print(log_all,"Unable to send alarm name to TSserver: Error msg is

%s", ErrMsg);

/*
* Disconnect from TSserver
*/

if(ErrNr ~ TSdisconnect(ErrMsg))
print (log_all, "Unable to TSdisconnect: Error ErrNr is %s", ErrNr);

free(TagSet.sequence);

/*
* Clean exit

*
* note possible conflict with TSserver 'signal()', The signal()
* function is reinitialised after every alarm message.
*I

signal(SIGINT, safe_exit);
signal(SIGQUIT, safe_exit);
signal(SIGFPE, safe_exit);
signal(SIGBUS, safe_exit);
signal(SIGSEGV, safe_exit);
signal(SIGTERM, safe_exit);
signal(SIGKILL, safe_exit);

J /* end of send_tg3alarm */

/*
*
* main

*
*/

main(int argc, char *argv[])
[

/*
*
* * define variables

*
*
*/

struct tg3_descriptors tg3_desc;
struct timeval tg3_select_tmo;

int nfound, c, result;
int sel_tim_out_flag, SPS_tim_out_flag, log_once_flag;
int cntl_flag, a_cntl_flag, b_cntl_flag, c_cntl_flag;
extern int optind, opterr;
extern char *optarg;
char buffer[128];
int ch;
char *pos;
char tg3name[32];
unsigned char charnull;

/*
*
*
* init variables

*
*
*/

tg3_select_tmo.tv_sec ~ TG3_SELECT_TMO;
tg3_select_tmo.tv_usec ~ ZERO;
verbose~ ZERO;
optind ~ ONE;
opterr ~ ZERO;
cntl_flag MINUS;
a_cntl_flag ~ MINUS;

27

/*tg3 descriptors*/
/*for time out on select*/

/*limits error logging*/
/*optarg parameter checking*/

/*optarg*/

/*gethostname*/
/*gethostname*/

/*terminates string*/

/* select timeout*/

/*optargs*/

b_cntl_flag = MINUS;
c_cntl_flag MINUS;
charnull = '\0';
ch='.';
sel_tim_out_flag = ZERO;
SPS_tim_out_flag = ZERO;
log_once_flag = ZERO;
FD_ZERO(&tg3fd_set);

set*/

strcpy(tg3_desc. error_file, "Default_log");
name*/

/*
* Gets command line arguments

*
*
*
*
*
*
*
*
*
*
*
*

- v
- a
-b
- c
-s
-1

for program parameters

valid options

Verbose
Event configuration file
Event error log file
TSserver host name
SPS TG3 interface card descriptor
LEP TG3 interface card descriptor

* default Illegal entries

*
*
*/

while ((c = getopt(argc, argv, "a:b:c:lsv")) != EOF)
[
switch (c)

{
case 'v'

verbose
break;

case ' a'

PLUS;

a_cntl_flag = 1;
sscanf(optarg, "%s", buffer);
strcpy(tg3_desc.config_file, buffer);
break;

case 'b'

b_cntl_flag = 1;
sscanf(optarg, "%s", buffer);
strcpy(tg3_desc.error_file, buffer);
break;

case 'c'

c_cntl_flag = 1;
sscanf (optarg, "%s", buffer);
strcpy(tg3_desc.TSalarm.ServerHostName, buffer);
break;

case's'

if(cntl_flag != 2)
[

tg3_desc.tg3nb
cntl_flag = 1;

break;

case 'l'

if(cntl_flag I= 1)
{

tg3_desc.tg3nb
cntl_flag = 2;

break;

MACHINE_SPS;

MACHINE_LEP;

28

/* empty file descriptor

/*default error file

default
printf("default argument: incorrect program arguments entered\n\n");

I*
*
*
*
*I

Get host name

gethostname(tg3_desc.host_system_name, sizeof(tg3_desc.host_system_name));

pos - strchr(tg3_desc.host_system_name,ch);
tg3_desc.host_system_name[pos-tg3_desc.host_system_name]

strcat(tg3_desc.error_file, ".");
strcat(tg3_desc.error_file, tg3_desc.host_system_name);

;-.
*
*/

init error logging

'\0';

if(init_print(P_FALSE,P_TRUE,tg3_desc.error_file,tg3_desc.host_system_name,50000)
-1)

/*

[
sprintf(stderr,"Cannot initialise errorlogging

}

* Log start of program
*/

print(log_all,"Start of ZLTG3 Program");

/*
* Check program options
*/

if(cntl_flag -- MINUS)
[

init_print failed \n");

print(log_all,"Program arguments incorrect, enters for SPS or L for LEP");
user_mess();
safe_exit(&tg3_desc);
l

if((a_cntl_flag I I b_cntl_flag) - - MINUS)
[
print(log_all,"Program arguments incorrect, enter Configuration and/or Errorlog

file arguments");
user_mess();
safe_exit(&tg3_desc);

if(c_cntl_flag -- MINUS)
[
print(log_all,"Program argument incorrect, enter TSserver argument");
user_mess();

/*
*

safe_exit(&tg3_desc);

* Initialise TG3 Interface Card

*
*/

if(initialise_tg3(&tg3_desc) -- MINUS)
[

strcpy(tg3_desc.TSalarm.Message, "Failed TG3 init");
send_tg3alarm(&tg3_desc);

I*
*

safe_exit(&tg3_desc);

* Enter forever loop

*

29

*/

for(;;)
[

/*

/*
*
* Select waits for event, until time out

*
*/

if((nfound = select(tg3_desc.maxfd,&tg3fd_set,0,0,&tg3_select_tmo))
{
print(log_all," Select Failed ") ;
if((result = initialise_tg3(&tg3_desc)) I= ZERO)

safe_exit(&tg3_desc);

if(nfound ZERO)
{

if((result = date_time_chk(&tg3_desc)) < ZERO)
safe_exit(&tg3_desc);

else
if(result == PLUS)

if(log_once_flag =~ ZERO)
[

print(log_all,"TG3-PC date time error");
send_tg3alarm(&tg3_desc);
log_once_flag = PLUS;

if((result = rec_reg_chk(&tg3_desc)) < ZERO)
safe_exit(&tg3_desc);

else
if(result == PLUS)

if(log_once_flag == ZERO)
{

MINUS)

print(log_all,"TG3-PC Reciever's Error Reg, 'WATCH_ DOG' or
'MISSlMSCLK' is true");

*/

send_tg3alarm(&tg3_desc);
log_once_flag = PLUS;

/*
* Restricts the logging of Select time out
*/

if(sel_tim_out_flag == ZERO)
{

/ *

print (log_all, "Select Timed Out");
sel_tim_out_flag = PLUS;

* Log timeout error for SPS operation
*/

if(tg3_desc.tg3nb == MACHINE_SPS)
if(SPS_tim_out_flag == ZERO)

{
print(log_all,"Select Timed Out: SPS Timing Failed");
strcpy(tg3_desc.TSalarm.Message, "SPS TimedOut");
send_tg3alarm(&tg3_desc);
SPS_tim_out_flag = PLUS;

* Empty and reload file descriptor set
*/

FD_ZERO(&tg3fd_set);
FD_SET(tg3_desc.fd, &tg3fd_set);

if(nfound > ZERO)
{

/*end of nfound ZERO) */

if((result = read_event(&tg3_desc)) =- MINUS)
[

send_tg3alarm(&tg3_desc);
safe_exit(&tg3_desc);

30

else
if(result -- PLUS)

send_tg3alarm(&tg3_desc);

log_once_flag - ZERO;
sel_tim_out_flag ZERO;
SPS_tim_out_flag - ZERO;

/* End of nfound */
/* End of for*/

/* End of Program*/

31

32

Appendix B

Header and configuration files

Header file "tg3_tim.h"

I*
* tg3_tim.h - definitions for Timing Event Distributio_n program
* Creation Andrew Burton CERN/SL/BT 13.12.94
*/

struct alarm
{
unsigned char
unsigned char

l;

ServerHostName[32];
Message[32];

struct tg3_descriptors

char fd;
char maxfd;

[
unsigned
unsigned
unsigned
char
char
char
struct alarm

} ;

char tg3nb;
config_file[l28];
error_file[l28];
host_system_name[32];
TSalarm;

/* event configuration file*/

#define MINUS
#define ZERO
#define PLUS
#define ONE
#define TG3_ SELECT_ TMO
#define BAD_ STATUS
#define FILE _DESCS

#define LINE_MAX
#define BROADCAST_ LENGTH
#define BROADCAST_ TX_ ID
#define BROADCAST_ PAD
#define BROADCAST_ RTI
#define BROADCAST_ DELAY
/*#define MIL_BUS_CONT
#define MIL_ BUS_ CONT
#define MACHINE_B PS
#define MACHINE_ LEP

-1
0
1
1
20
0x40
1

100
0x09
0xAA
ZERO
0xBB
ZERO
2 */
1
SPS_ H
LEP_ H

33

. /* TSserver alarm*/

/* file descriptors*/

/* return value */
/* return value */
/* return value */
/* CONST value */
/* longer than SPS supercycle
/* status check */
/* number of additional file

descriptors*/
/*length of line*/
/*length of data*/
/*transmit identity*/
/*padding message with zero*/
/*RTI */
/*delay value zero*/

*/

/* original controller address*/
/* new controller address*/
/*TG3 program for SPS*/
/*TG3 program for LEP*/

LEP Configuration file leptg3.cfg

12 11 01 FF 81 00 01 00 ti LEPZL stop squeeze
12 15 01 FF 81 00 01 00 ti LEPZL start squeeze
12 16 01 FF 81 00 01 00 # LEPZL continue squeeze
12 40 01 FF Cl 00 01 00 # LEPZL close sync switch
12 43 01 FF 81 00 01 00 # LEPZL validate default values(coast)
12 45 01 FF 81 00 01 00 # LEPZL next vector
12 46 01 FF 81 00 01 00 # LEPZL previous vector
12 4e 01 FF 81 00 01 00 ti LEPZL test

SPS Configuration file spstg3.cfg

21 le 03 01 81 00 01 00 # SPS e- injection.1 e-
21 le 03 02 81 00 01 00 # SPS e- injection.2 e-
21 le 04 01 81 00 01 00 # SPS e+ injection.1 e+
21 le 04 02 81 00 01 00 # SPS e+ injection.2 e+
21 89 01 01 81 00 01 00 # SPS p+ beam.out.l p+
21 89 03 01 81 00 01 00 # SPS e- beam out cycle 1
21 89 03 02 81 00 01 00 # SPS e- beam out cycle 2
21 89 04 01 81 00 01 00 ti SPS e+ beam out cycle 1
21 89 04 02 81 00 01 00 ti SPS e+ beam out cycle 2
2f 05 ff ff 81 00 01 00 ti SPS p+ end flat top cycle 1
00 Of ff ff 81 00 01 00 ti SPS End of supercycle -5 ms

(to be used for start of cycle)
20 ff ff ff 81 00 01 00 # SPS SSC TEST

Note: The next line over writes the SSC TEST

21 le 01 01 81 00 01 00 ti SPS p+ injection cycle 1

34

Appendix C

Error log messages

The description of the error log messages is split into 5 categories:

• Program parameters
• Initialisation phase
• Logging to alarm system
• Event handling
• During read calls

1. Program parameters

These are the errors reported when incorrect program parameters are passed:

• Local print to screen "Cannot initialise error logging :- init_print failed"

The init_print call failed due to missing parameters which are error log
name, the directory path, host system name and file size. The default
parameters used ensure that the error should be external to the TG3-PC
server program. The default error log filename is default_log.host name
which is normally written to the local directory.

• "Program arguments incorrect, enter 's' for SPS or 'I' for LEP"
• "Program arguments incorrect, enter Configuration and/or Error log file arguments"
• "Program arguments incorrect, enter TSserver argument"

2. Initialisation phase

The prompts "Program arguments incorrect, enter ... " are user errors when
the program checks the command line parameters. The help screen
provided shows the correct format of the command line. The program only
checks that the switches have been used. The contents of the parameters
will be checked when they are used in the TG3-PC server program, i.e.
path and file names.

Errors reported during the initialisation of the TG3-PC interface card. They are shown in the order they
could occur. If the error reported is fatal to the operation of the TG3-PC server program the program
halts with the safe exit routine.

• "Could Not Open TG3-PC Interface Card"

Hardware problem:
Software problem:

TG3 interface card not installed or incorrectly jumpered.
Incorrect version of driver installed. Use procedure in installation section
to check that the driver is configured correctly.

• "Unable to disable TG3-PC Interface Card"

Hardware problem:
Software problem:

TG3 interface card not installed or incorrectly jumpered.
Incorrect version of driver installed. Use procedure in installation section
to check that the driver is configured correctly. The TG3 interface card
may be in use by another server program. The TG3-PC server program is
not designed for multiple usage on the same Lynx OS host.

35

• "Unable to test TG3-PC Interface Card"
• "TG3-PC Interface Card failed self test"
• "Failed to clear TG3-PC Event table"

Hardware problem: Errors reported when testing TG3-PC interface card. A test can only be run
when the TG3-PC interface card is not being used by another server
program.

• "Unable to open Event Configuration file:- 'path/filename"'

Software problem: Incorrect path and/or configuration file name, re-enter program parameters.

• "Unable to read Event Configuration file:- 'path/filename"'

Software problem: Event Configuration file may be corrupt or zero bytes long.

• "Compare failed when writing the Event Configuration file to the TG3 Interface Card"

Configuration problem: Error caused when comparing declared header information and file
descriptor. The program should not load a LEP configuration table into a
SPS initialised TG3-PC interface card or an SPS configuration table into a
LEP initialised TG3-PC interface card.

• "Unable to write Event Configuration file to TG3 Event table"

Hardware problem:

Software problem:

A hardware problem should have been isolated before this point i.e. unable
to access the TG3-PC interface card.
Configuration problem: Failure when trying to write Event Configuration
file to TG3-PC Event table. May be caused by contents of file being
rejected by the TG3-PC interface card, i.e. an illegal entry in the action
word.

• "Failed to enable TG3-PC Interface Card"

Hardware problem:
Software problem:

A hardware problem should have been isolated before this point.
Incorrect version of driver installed. Use procedure in installation section
to check that the driver is configured correctly. The TG3 interface card
may be in use by another server program. The TG3-PC Server program is
not designed for multiple usage on the same Lynx.OS host.

3. Logging to Alarm System

Errors reported when connecting to TSserver, declaring or sending a tag and disconnecting from
TSserver.

• "Unable to connect and declare Tags: Error msg is 'ErrMsg"'
• "Unable to create tags in TSserver: Error msg is 'ErrMsg"'
• "Unable to TSdisconnect: Error ErrNr is 'ErrNr'"
• "Unable to connect to send alarm to TSserver: Error msg is 'ErrMsg'"
• "Unable to send alarm name to TSserver: Error msg is 'ErrMsg'"

The TSserver can return "Unable to create tags in TSserver: Error msg is 'ErrMsg'" if the tag already
exists. This is not an error message. Use the TSreadTags modena -p ZL_z command to check the
TSserver tag names.

For all other TSserver error/status messages contact E. Carlier.

36

4. Event Handling

• "Select Failed"

Hardware problem:

• "Select Timed Out"

Status message:

Software problem:

Unable to make select call, the TG3-PC interface card is re-initialised. An
hardware fault should be found during the re-initialisation and be reported
by the failing test.

This is a normal occurrence in LEP, there are a small number of machine
timing events per day in LEP. This test is used to check the hardware status
of the TG3-PC interface card. The interval is every 20 seconds, only the
first occurrence is recorded.

A possible cause is that the event table in the TG3-PC interface card is
empty, so no interrupts from machine timing events occur. An external
program can interfere with the configuration of the TG3-PC interface card.
Use the TG3DIAL program to read the event table and confirm the correct
configuration of declared machine timing events.

• "Select Timed Out: SPS Timing Failed"

Hardware problem:

Software problem:

No SPS machine timing events within an SPS supercycle, the hardware is
checked by the reading the Receiver's error register, read below.

A possible cause is that the event table in the TG3-PC interface card is
empty, so no machine timing events interrupts occur. An external program
can interfere with the configuration of the TG3-PC interface card. Use the
TG3DIAL program to read the event table and confirm the correct
configuration of declared machine timing events. An external cause could
be no machine timing events on GMT. Use TG3DIAL to wait for SSC
event.

When a "Select Time Out" occurs the TG3-PC Receiver's error register is checked.

• "Unable to read TG3-PC Receiver's error reg"

Hardware problem: Unable to access the TG3-PC interface card. Hardware fault in TG3-PC
interface card. Use TG3DIAL and run self test option, this will read a error
and status registers in the TG3-PC interface card.

• "TG3-PC Receiver's Error Reg 'WATCH_DOG' or 'l ms clock is missing is true'"

Hardware problem:

5. During read call

The one millisecond clock as failed. The fault may be in the GMT system.
The first check is to see whether this condition is also reported by the other
TG3-PC interface cards in LEP, thus showing a system wide fault. The post
mortem table of the local TG3-G64 Interface card will show if the there is a
mismatch in the reported machine timing events, showing a possible local
timing problem in the LynxOS host or the local link in the GMT system.

• "Unable to read TG3 after an Event"

Hardware problem: Unable to access the TG3-PC interface card, possible hardware fault. Use
TG3DIAL to wait for an event.

37

• "Missed event flag set"

Status message:

Note: SPS mode only.

The response of the Lynx.OS host PC was not quick enough and the
machine timing event was overwritten in the TG3-PC interface card. This is
not a fault. External processes could be slowing the system down
sufficiently to delay the interrupt handling. Check system usage and errors
reported by the other interface drivers and message handler. It is possible
that another process could hang the system. Unable to access the TG3-PC
interface card, possible hardware fault.

When a machine timing event occurs the TG3-PC interface card hardware status is checked.

• "Unable to read TG3-PC Receiver's error reg"

Hardware problem: Unable to access the TG3-PC interface card. Hardware fault in TG3-PC
interface card. Use TG3DIAL and run self test option. This will read the
error and status registers in the TG3-PC interface card.

• "GMT one mill-sec clock fail"

Hardware problem: The one 1 ms clock has failed since the last read. The fault may be in the
GMT system. The first check is to see whether this condition is also
reported by the other TG3-PC interface cards in LEP, thus showing a
system wide fault. The post mortem table of the local TG3-G64 Interface
card will show if the there is a mismatch in the reported machine timing
events, showing a possible local timing problem in the Lynx.OS host or the
local link in the GMT system.

• "Unable to broadcast Event, status is 'status message'"

The utility m _ broad returned a status message when sending the broadcast
data packet to the MIL-1553B Bus Controller. This is only a status
message. It as no influence on the operation of the TG3-PC Server
program.

38

Distribution:

SL/BI SL/CO
A.Bums G. Beetham

A. Bland

SL/BT P.Charrue

B. Balhan R. Lauckner

P. Bobbio P. Nouchi

A. Burton V. Paris

E. Carlier B. Puccio

J.P. Deluen P. Ribeiro

J. H. Dieperink M Tyrrell

N. Garrel M Van den Eynden

B. Goddard
W. Kalbreier SL/DI
R. L. Keizer K. H. Kissler

M. Laffin S. Myers

A. Marchand
V. Mertens SL/OP
H. Verhagen R. Bailey

E. Weisse A. Faugier
M. Jonker
M.Lamont

SL/PC
J. Pett

SL/RF
E. Ciapala

