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Abstract

A transverse damper system with an IIR-filter (infinite impulse
response filter) in the feedback circuit is proposed for the
LHC. It consists of one pick-up and one damper kicker in each
plane of beam transverse oscillations. The pick-up and the
kicker are connected by a feedback circuit including a delay and
a digital IIR-filter which removes the revolution frequency
harmonics from the pick-up signal. The Fourier transform 1is
used to study the coasting beam dynamics with resistive wall
instability. The analytical solutions for the damping time and
for the eigen frequencies have been obtained and the system

stability analyzed.
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1 INTRODUCTION

In this article the transverse damper system for LHC (1] will be
diécussed. For a 1large part this proposal 1is based on the
theoretical studies of the transverse damper system for the First
Stage of UNK [2-7]. The UNK damper system will be used to suppress
a very strong resistive wall instability. This fast instability is
caused by the large real part of the transverse coupling impedance
of the conventional (non superconducting) ring for the First Stage
of UNK [Z]). In order to suppress this fast resistive wali
instability a more effective system has been designed and
developed [4-7]). It consists of two pick-ups and two kickers in
each plane of beam transverse oscillations.

In the LHC case, where most of the ring is superconducting, the
real part of the transverse coupling impedance is not as large as
for the UNK conventional ring. For this reason a classical trans-
verse damper system is proposed for LHC. This system consists of
one pick-up and one damper kicker per plane connected by a feedback
circuit including a digital filter and delay. Similar systems have
been used in many accelerators (see, for example, (8,9]). To remove
the revolution frequency harmonics notch filters have been included
in the feedback circuits of the damper systems. They could be built
with the FIR-filter (finite duration impulse response filter) tech-
nology (8,9). But IIR-filters (infinite duration impulse response
filter) give better results for a damper system [7,10] and for this
reason an IIR-filter is proposed for the LHC. In this article the
system stability with a digital IIR-filter will be analyzed.

2 THE RESISTIVE WALL INSTABILITY PARAMETERS IN LHC
The resistive wall instability in large proton accelerators and
colliders is particularly important because of the low particle
revolution frequency. The real part of the transverse coupling
impedance RezT(w) increases at low frequency and so does the growth
rate (or increment) of the instability.vIt is known (2,11] that the
resistive instability rise time is given by:
T _—‘zc:?w B _Rez_ (@) ;e.z @) ’ (1)
av T

where C°= 26658.87 n, circumference of the closed orbit;



2
mcy - proton total energy; Bav= 82.5 m - average pB-function [1].
The total beam current I is
I = eKbNb/TO’ i’ (2)
where Kb= 4725, number of bunches; Nb= 107"~ number of particles
per bunch; To= 88.92 us, revolution period. Thus, I = 850 mA in the

LHC.
The real part of the transverse coupling impedance is (2,11]:

0
2nb?

ReZ, (w)=

c Zo §/b for 8«4,
{ o

52/bA  for 5»A.

Here Z°= HoC & 377 Q, impedance of free space; b - beam pipe radius
(we assume b = 1.3 cm, i.e. half of the full height of the elliptic
vacuum chamber); A = 2 mm, beam tube thickness. The skin depth &

for a tube with resistivity p is given by:

5 (w)= V-2 | (4)

How

It is easy to see that for high frequencies, when &«A, the real
part of the transverse coupling impedance is proportional to 1/vVa,
but for low frequencies, when &»A, we have ReZT~ l1/w. Hence, the
resistive instability is a very dangerous effect at low frequencies
when the electromagnetic field penetrates through the wall of the
beam tube [2].

The lowest frequency for the resistive wall instability is

I minlk ¢ ReQl, (5)
where k is an integer (positive or negative); Q is a complex
quantity, depending on w, the real part of which is equal the
machine tune. For LHC we have

(umin/Zn)u 0.3f°i 3.37 kHz.

It is assumed that about 90% of the machine circumference will
be at liquid-helium temperature (1). The resistivity P of copper
at this temperature is lower than at room temperature and, in the
presence of the injection magnetic field, the effective resistivity
determined by the magnetoresistance effect is p.= 0.8-107*%-m. For
this p. the skin depth Gc(wmin) is 0.08 mm.

About 10% of the beam tube will be at room temperature where the
resistivity is larger. At low frequency the skin depth of copper is
l1.1mm (p = 1.72-10"an-m) whereas the skin depth of stainless steel
with resistivity p= 9.1-107'Q'm is sr(umin)= 8.3 mm. It has been



proposed to use a stainless steel beam tube with a thickness
A =2 mm (1]. This means that st(wth will be greater than the
beam tube thickness.

Hence, for the LHC parameters we get from (3):

ReZ, (w 9.46-109(0.96c/b + 0.182/08)=

min) =

= 9.46-10%(5.4-107%+ 0.263)= 2.5-10%Q/m. (6)

It easy to see that the main part of the LHC transverse impedance
is determined by the beam tube at room temperature.

For the resistive instability rise time we have from (1):

T.= 0.45 ms. '
Hence, the imaginary part of Q equals
|ImQ|m= To/znr s 0.03. (7)

If we use a beam tube made of thick copper, the electromagnetic
field will not penetrate through the wall. In this case we have for
6r= 1.1 mm:

9 - 108
ReZ (w ., ) = 9.46:10°(0.93 /b + 0.18 /b) = 1.3-10°0/m.
In the case of a stainless steel beam tube with a thickness

A > sra 8.3 mm, we obtain:

ReZ,(w_ 9.46-109(0.96c/b +0.15_/b) = 6.6-10°/m.

)™

To cover these cases where Rezr is approximately 20 or 4 times

smaller than in (6) we propose another estimate for the imaginary
part of Q:

[ImQ| = 0.01. (8)

These two values for ImQ (1ImQl = 0.03 and [ImQ|l = 0.01) will

be used for the simulation of the transverse damper system for LHC.

2 THE STRUCTURE OF THE DAMPER S8YSTEM
The transverse damper system will be used:

- for damping the injection oscillations of bunches immediately
after injection from the SPS,

- for suppression of the transverse resistive wall instability of
the intense beams in LHC,

- for damping of other coupled bunch transverse instabilities
which might be induced by narrow band impedances.



A schematic diagram of the damper system for one beam is shown
in Figure 1. The damper includes one pick-up (PU) and one damper

kicker (DK) connected by negative
feedback circuit with delay. The
signal V., from the PU is propor-
tional to the beam displacement X,
at the PU location. The PU sensi-
tivity is S,= Vin/xP. The signal
from the PU is transmitted to the preamplifier with gain K, and to
the filter with gain K,. The filter is used to suppress the
revolution frequency harmonics. The signal from the filter is

Fig.1

amplified through the power amplifier with gain LS and sent tc
the kicker DK with a transfer characteristic Sg- After the kicker
the angle of the beam is changed by Ax% = S,V ,. but the bean
deviation will be the same (it is true for a short damper kicker).
The kicker should change the angle of the same fraction of the beam
that was measured by the PU. The delay T is adjusted to provide
such a synchronization. Thus, the damper kicker corrects the beam
angular error according to the beam deviation from the PU
electrical center at the pick-up location every turn.

The Fourier components of the signals can be written:

V e (@)= K (0)exp(=3wT)V,_(w),
where K, (w)= K KK . and t is the delay in the feedback circuit.
For the Axi and x. Fourier.components we have:

P
~ l ~
Ax = K_(w)exp(-jwt)x,; K (w)= vB_B, S S K (w), (9)
K ,——-—BPBK T P T PK K'PV

where BP and ﬁx are the g~-functions at the PU and DK locations. The
gain factor xr(“) will be used further in all formulas.

The problem is now to define the region of K. (w) in the complex
plane where the particle motion is stable.

3 THEORY OF A CLASSICAL TRANSVERSE DAMPER SYSTEM

WITH A FILTER IN THE FEEDBACK PATH

In this part of the article we shall use the theory of a
transverse damper system with a filter in the feedback path
developed in [7]. There the Fourier transform approach is used to
study the damper system for a coasting beam. After complete



injection from §ps to LHC the beam almost fully occupies the
machine circumfefence, and therefore the model of a coasting beam
will also be used in LHC.

For the beam dynamic equation of the transverse coherent motion
we shall use the equation from [3,7]. Let X_(t,s) be the coasting
beam deviation from the closed orbit at the time t and at the point
s of circumference. The deviation xc(t,s) is understood in the
hydrodynamics sense. This means that at a certain time ¢t the
different values of s correspond to different particles for this
particular t and the function xc(t-const,s) describes the particle
distribution at the moment t. If 8 = const then at this position we
shall see the deviation of different particles as time proceeds.
Due to the periodicity of s in the circular accelerator we can
write

xc(t,s+co) = xc(t,s); x;(t,s+co) = x;(t,s). (10)

In accordance with [3,7] we can write for xc(t,s)
2
139 a =
[[;; 3t + 5;] + K(s)]xc(t,s)-
= g AKB(t-t’)xc(t’,s)dt’+ F(s)+ Fx(t)s(s-sx), (11)

where K(s)=K(s+co) is the focusing strength; Vo~ the particle
longitudinal velocity on the closed orbit. The space charge forces
and the effects of the walls on the coherent beam motion are
described by an integer operator with kernel Axa(t-t'). Such a
description of the Lorentz force corresponds to the gquasi static
approximation for the electromagnetic field. This model is usually
applied for the description of the resistive wall instability of a
coasting bean.

The perturbation function F(s) describes the influence of the
errors in the magnetic guide field on the closed orbit. The
function Fx(t) characterizes the feedback effect on the particle
motion at the DK location s_ and at the time t. For the feedback in

K
Fig.1l we can write

t
- -t ' i 12
F (%) g Kep(E=t)x (t',s;)dt’, (12)
where Sy the PU location on the closed orbit.
For time dependent functions in Egq.(11) we can calculate the
one~-side Fourier (Laplace) transform. Using (12) and (9), after



simple transformations we get

s2

2 . ~ - . (s) )
E__ + Ka(s,w)]y(w,s)' [V02(ijc(0,s) + x_(0,8))+ §w5 ]exp(]ﬁ}+

1

VB8P

+

K, (w) exp (Ju(T, ~T)) Y(w,s,)8(s-s ), (13)

where Rs(s,w) - K(s)-ARB(w). During the transformation we intro-
duced a new function y(w,s) instead of the Fourier component of
xc(t,s):

xc(w,s)= Ixc(t,s)exp(-jwt)dta y(w,s)exp(—jws/vo). (14)
0 .

The functions xc(o,s) and ic(o,s) = axc(o,s)/at in Eg.(13) describe
the particle distribution at the initial moment t=0. The particle
time of flight between PU and DK is

Tox™ (sx—sp)/vo. (15)
Due to the periodicity on s (10) we have for §(w,s):
Y(w,8+Cj) = y(w,s)exp(juwT,). (16)

We recognize in the left hand side of Eq.(13) the same form as
an usual betatron equation for a single particle. But we must
emphasize that is(s,w) is here a complex value and differs from
K(s) by AKB(w) due to space charge effects.

The particular solution for Eq.(13) consists of two parts. The
first one is §ro(“’s) and takes into account the initial particle
distribution at t=0 and the perturbation force F(s). The second one
is §x(w,s) and depends on the kicker effect of the feedback. The
first solution is

L ‘ : .
Yeo(w )= ) [vaz(ijc.(o,s’) + x_(0,8))+ E%J]exp(l‘%]
0
-VB(S)B(s") sin(y(s)-y(s’))ds’,
where y(s)-y(s’) is the phase advance between points s and s’ with
B-function values B8(s) and B8(s’'). This phase advance is

o o ds
y(s)-y(s')= J"/B(s). (17)

It is necessary to emphasize that §Eo(w,so)=§%0(u,so)=o, where S,

is an arbitrary point. For }x(w,s) we get at s>s,

K, () exp (Jw(T, ~T)) Y(w,s,)VB(S)B, sin(¥(s)-¥(s)).

Yp(w,S)= —
P K



The general solution of EqQ.(13) can be written in matrix form as
the solution of the homogeneous equation with the initial state
?o(w,so) plus the particular solutions §fo(w,s) and §K(w,s) for the
inhomogeneous equation:

Y(w,8)= M(wis,s)) ¥ (0, s))+ T, (0,8)+ ¥, (w,s),

where ~ ~
“ Y,(w,8,) n Yeq(W,s) A Y. (w,s)
yo(w,s°)={ o ]: yfo(w,s)-[,f° }; T (ws)=|.* ].
Yo(w,sy) Ygo(@rS) Yy (w,s)

The matrix ﬁ(w;s,so) is an ordinary transfer matrix from point S,

on the closed orbit to point s. It is not difficult to see that

A ‘ -la
Y (w,8,+C,)= 1 xr(u)exp(jw(tpx-r))ﬁ Aoﬁﬁyo(w,so),
PTK
where ﬁo is the transfer matrix from Se to s, (from DK to PU); B is
the transfer matrix from s_. to s_. ? is the 2x2 matrix in which

0 P
Tzlal and the other elements are zero.

Following Eq.(16) we have
Y(0,8,+C,)= exp(JuwT,)¥(w,8 )= exp(JuT,) ¥ (v, s,)=
= H_(0) ¥, (w,s) + ¥, (wis5+Cy),
where ﬁs(w) is the revolution matrix from point s, to point so+co.
This matrix includes the kick effect of feedback:
ﬂs(w)- B (w)D;

Yy A
M(w)= ﬁo+ —_— xr(u)exp(ju(rpx-r))Ao@. (18)

PTK
Here ﬁo is the unperturbed revolution matrix from point s, on the
closed orbit (sp is the PU 1location). Hence, the solution for

To(w s )= (exp(IuT ) T-A () 7T, (0, so+C)) .

Now we should remember that S, is an arbitrary point. Hence, after
obvious transformations on the inverse matrix we find from the last

solution for §°(w,s°) the general solution of Eq.(13) which

satisfies (16) for an arbitrary point s:

exp(ijo)i- ﬁ;l(w)detﬁs(w) .
¥, (0,8, (19)

Y(w,8)=
det(exp(ijo)i-ﬁs(w))



where g +C

~ = of. -2, . . ' F(s’ jWws’

yf(w,s) i [Vo (ijc(o,s ) + xc(O,s ))+ —Sa—l]exp(lvg—]~
‘VB(s)B (s )sin(2nQ(w) +y(s) =Y (s’))ds’.

The complex value 2nQ(w) depends on the tune at frequency w/2m. It

is clear from (19) that the general solution in time domain

variables is fully determined by the eigen frequencies w . that is
the solutions of the following equation:

det (exp (JwT ) I-R_(w) )= det(exp(juT ) I-F(w))=

= exp(Jj2uwT,) - exp(ijo)Trﬁ(w)+ detM(w)= 0, (20)

where Tri(w) is the trace of the matrix M(w). The motion of the

particles will be stable if -

. Imwk > 0. (21)

It is easy to see that Eq.(20) and the stability condition (21) are

in accordance with the same equations in (10,12] which have been

obtained for ImQ=0. But equation (20) has a more general sense and

may be used when [ImQ|{>0. Due to the formal accordance between

Eq.(20) and similar equations in [101Vor [{12] we can say that the
results from [10,12) may also be used when |ImQi>0.
When xr(w) = 0 in (18), we have for w, from (20)

w, = (nk 3 Q(wk))wo, (22)

where n_ - integer (positive or negative). We shall use further the

k
agreement that for k = 1 the n, value is the nearest integer to

ReQ. Egq.(22) is well known ;h the theory of resistive wall
instability.

Now we make some assumptions for M(w) in (18) in order to
simplify our formulas. Let us assume 5;= 0 and tpx= T; these )
assumptions are usually valid in an accelerator. Then we get:

R(w)= B+ —2— X (A 1; (23)
PTK

Trf(w)= 2cos(2nQ)+K, () sin(2mQ(w) -y detM(w)=-1-K _(w)sin(y,.),

px)’
where wpx is a complex value, the real part of which is the phase
advance from PU to DK. Therefore, from (20) we get:

exp(Jw, T )= cQs(ZnQ(uk))+ %KT(wk)sin(ZHQ(Qk)-WPK) t

: jV’[sin(ZnQ(uk))- %xr(“k)°°s(2"Q(wk}'¢px)]2 - %Ki(wk) . (24)



This formula will be analyzed further.
The asymptotic behavior of the solution (19) for t-» can easily
be known with the formula:
lim X, (t,s8)= lim jw x (w,s).
t-m w-0
Of course, this relation is valid if the limit exists. For example,
when x =0 we have from (19):

lim X (t,8)= lim juw x (w,8)= 1lim jw y(w,s) exp(- st/v ) =

toe w0 w0
l+C
—EIHTEET ! °F(s’)VB(SYR (3" Tcos (nQ+y (s) -y (s'))ds’ . (25)

This is the well known formula for the closed orbit when we have a
perturbation in the magnetic guide field.

4 THE IDEAL FEEDBACK

The ideal feedback corresponds to a wide band amplifier without
filter (X ¢~1). In this case the amplitude and phase characteristics
K, of the feedback circuit depend weakly on frequency. If K. (w)

\
depends weakly on frequency
w dx
l——- H"-I <1, (26)

then we can consider xr as a parameter. Let us assume that the
condition (26) is also valid for Q(w). Then for IKT|¢1 we can write
from (24):

exp(jw, T,) @ exp(tj2mQ(w)) (1 7 j K, (0, )exp(Fiv,,)) . (27)

Hence, we get the damping time tD:

1 . -
To/tn- -Im(wkTo)- Elxr(uk)lsxn(RewPK)cos(p) 2n|ImQ(wk)|, (28)

where w-arg(xr). This decrement formula is well known ([8].
We see from (28) that the best damping will be for the ideal
amplifier with:
Icos(p)l = 1

or Rr real and for PU and DK locations such that: .
Isin(Rewa)l =1,

i.e. if the phase advance wa from PU to DK is equal to an odd



number of n/2 radians. In this situation the PU and DK are
separated by an odd number of quarter AB-oscillations. For such
positions the oscillations will be damped if the gain is

IKTI > 4niImQ|. (29)
Hence, for LHC we must ensure IKTl > 0.4 if 1ImQl = 0.03.
Dk Dk

0O000C00000O0 =
OO NWAM?UOMMNE®VWO
0000000000
00+ N W AMANOND VO

Fig.2

The dependence of the damping factor D¢

Dk- exp(-ImwkTo)- exp(-TO/tD), k=1, 2 (30)

on the gain IKTI is shown for the two cases |ImQl= 0.03 (Fig.2) and
IImQl= 0.01 (Fig.3). These curves correspond to the two solutions
of (24) with |cos(p¢)!l = 1 and Isin(RewPK)l = 1. One sees that the
curves agree with the analytical solutions (28) and (29) for
Ixrl « I. The minimum damping time T, 1.55To corresponds to
IK /= 1.02 (IImQl= 0.03).

The damping time required is linked to machine non-linearities.
It is known that the filamentation time due to tune spread AQ
is [13)

tt' TO/(HV?AQ).

For the LHC AQs 0.005. Hence, rti 45To. We shall assume that a
damping time of 10 revolution periods should be sufficient to
overcome filamentation:
tDS 10To< tt.
This corresponds to an amplitude decrease of 10% per revolution
(or D1 < 0.9 in Fig.2, 3) and gives (see Fig.2):

IKTI = 0.54.

This is the gain needed for the transverse feedback in LHC.
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In Fig.3, 4 the fractional part of Rer is shown:
{Rer}- IRe(wkTo/ZN)l, k=1, 2. (31)
The eigen frequencies w, can be found from (27) taking into account
the same agreement as in (22). One sees that increasing the gain
increases also the fractional part of the coherent Q. For
IKTI- 0.54 and |ImQ|= 0.03 this increase is equal to 0.004.

ReOk ¥ (RaQk >
T T T T T T = T T T T T —
0.308} 0.308 |- .
0.306 0.306 | .
0.304 0.304 }- i
0.302 0.303 |- 1 —
0.300 0.300 2 -
0.29@ 0.298 |- .
0.296 0.296 |- 4
0.234 0.29411nq1=0.01 -
0.292 0.292} K1
0.290 0.290 ta_ | i | - | | - |
Q. 0.00 0.09 0.18 0.27 0.36 0.45 0.54

Fig.5

If we assume that the initial error is estimated to [1]:
lxpl s 0.5 mmnm,
we can obtain the kicker strength from Eq.(9)

1 1
VB, By et
where it has been assumed that Bx= 8P= Bm”: 165.8 m. This kicker
strength is approximately the same as in the SPS, but the beam
"energy at injection in LHC is in 450/26 & 17.3 times higher than in
' SPS at injection. This means that the power for the LHC kicker must

be correspondingly higher.

'
lex' o I;TxPI s 1.6 urad, (32)

5 THR PEEDBACK WITH DIGITAL IIR-FILTER

Filters in the feedback circuits are used to suppress the
revolution harmonics in the PU signal. The FIR-filters (finite
duration impulse response filter) are widely used now (8,9], but
they decrease significantly the stability region [4,5,12]. On the
other hand IIR-filters (infinite duration impulse response filter)
have better characteristics (7,10] and their use for LHC will be
analyzed in the following.

11



One of the forms of an IIR-filter is shown in Fig.6. This filter
consists of non-recursive circuits with amplifiers am(u), recursive

. > > s P circuits with amplifiers bm(w) and delays Ty-
|To The order the filter is p. For chis filter we

J a, can write: 0
bl 1+m§lam(w)exp(-3mwTo)
A T A KT (W)= K(w) P . (33)
° 1- ¥ bm(w)exp(-jmwTo)

.4_‘":\&? m=]1
b //

P We must remember that an FIR-filter consists
Fig.6 of non-recursive circuits only, with bm= 0.
Let us assume that condition (26) is valid for K(w), am(w) and
bm(w). Substituting xr(w) from (33) into (20) we get for exp(ijo)
an equation of order (p+2). Hence, one will find additional beam
oscillation modes for the damper system with IIR-filter.
Some results for the IIR-filter of first order (p=1) follow. In
this case Eq. (20) becomes a cubic equation. If |K(w)!l « 1, then in
linear approximation we obtain:

exp(Jw,To) % exp(+i2mQ) (1F I7K(w,) exp(F3y )~

- %(al+b1)x(wk)[1t j(sin(znq-wpx)+ (bl-ucos(ZnQ))/sin(ZnQ)};

exp(jo, T )% b + (a ,+b,)uk(w.), (34)

where v 5
u= [b,sin(2nQ-y,) + sin(¥,.)]/[1 - 2b,cos(2mQ) + b1].
We see from (34) that the first two solutions for exp(jwkTo) differ
very little from the solutions of (28). The new third solution is
the low frequency solution and significantly depends on the IIR-
filter parameters. The third mode will be stable if tb I<1. This
condition is the stability condition for the IIR-filter itself.

The a, parameter must be equal to -1 because we shall have the
solution (25) for the closed orbit if

K, (w=0) = 0.

This gives for (33):

P
La, =-1 (35)
m=l

and a,=-1 for p=1. This condition means also that the revolution
harmonics with frequency nf, will be suppressed completely.

12
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Fig.8

The dependences of the damping factor Dk (30) and of the
fractional part {ReQ, } (31) on |IK| are shown in Fig.7 and Fig.s
respectively. The PU and DK locations are such that Rey . is equal
an odd number of n/2 radians (for such PU and DK positions the
damping factor Dk is the best for an ideal feedback). All curves
have been calculated by the Cardan formula for Eq.(20) with
ReQ = 70.3, |ImQ| = 0.03, a= -1 and bls 0.62.

The curves 1 and 2 correspond to the eigen frequencies with the
number of oscillations per turn in the neighborhood of ReQ. Curve 3
corresponds to the third root of Eq.(20). This oscillation mode is
determined by the filter structure and is in accordance with the
approximate formula (34). For a small gain the damping time Ty is
determined by curve 1. For example, if [K| = 0.50 then T,¥ 10T,
(corresponds to Dl' 0.9). '

It is necessary to emphasize that the damping time 7, and the
stability region for |K| are limited by the first mode (for a small
IX|) and the third mode (if |K| is large). Hence, the T, values are
determined by region between curves 1 and 3 in Fig.7. The best
damping corresponds to the cross point of curves 1 and 3. This
value depends on |ImQ! and bl. ‘

The parameter b1 was chosen to optimize the damping factor
obtained from the curves MAX(Dk(bl, IXl)), k=1, 2, 3. These
curves are shown in Fig.9a. One sees that for |ImQl = 0.03 the best
damping corresponds to bls 0.62. In this case [K| = 0.50 for
01' 0.9. In Fig.9b the transfer function of the filter is shown.

One sees that 'x:‘“hxn‘ O.3w°)l = 1.22 for b= 0.62.

13
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Fig.9. (a) MAX(D ) versus IK| and (b) IR | frequency
response versus u/wo for bla 0.32+0.1n; n=1,..4.

The curve labels are n-values.

The optimum value for b1 depends on |ImQl. For example, 1if
IImQ! = 0.01 then b = 0.66. For this case the dependences of D, and
of {ReQ,} on |K| are shown in Fig.10 and Fig.l1ll respectively. One
sees that |K| = 0.30 for D,= 0.9.

From these results it follows that in the filter design it is
useful to foresee the possibility to vary bl.

Dk } <ReGk >

= T T T T T =
1.0 0.30 1
0.9 0.27} 2 .
0.8 0.24} 4
0.7 0.21} .
0.6 o.18} 3
0.5 0.15} .
0.4 o.12} .
0.3 1InQ1=0.01 0.09} 4
0.2 0. .06l 11al1=0.01 . ]
0.1 0.03} . : k1
-0 0 550550180370 3¢ 0350 54

Fig.11

The other important peculiarity of the damper system with
IIR-filter is shown in Fig.8, 11. One sees that the difference
between {ReQ,} (k= 1, 2 3) is not small. For example, if
ImQ| = 0.03 then the coherent frequencies are 0.30w,; 0.22w, and

14



0.08w° for |K| = 0.50 (DI- 0.9). However, the presence of more
than two transverse oscillation modes does not prevent the use of
such a damper system: all these modes are damped oscillations in
the stability region. Nevertheless, possible parametri: resonances
of such a damper system must be studied (the problem for external
resonances 1is shortly discussed in (6}).

6 CONCLUSION

The following Table contains the main parameters to be proposed
for the LHC damper system without and with an IIR-filter of the
first order in the feedback circuit. All values are shown for the
gain IKTI or |K| corresponding to Dl- 0.9.

Table
Parameter ' ImQ = 0 {ImQ| = 0.01 [ImQl = 0.03

Ideal feedback

I, | (D,= 0.9) 0.19 1 0.31 0.54

IAin (urad) 0.57 . 0.93 1.63

Feedback with

IIR~filter (p = 1)

b, 0.67 = 86/128| 0.66 = 84/128! 0.62 & 79/128

K| (D,= 0.9) 0.18 | 0.30 0.50

' ' . 1.22

IR (0, )] 1.18 1.19

1K, | 0,31 N 0.36 0.61

lax; | (urad) 0.64 ) 1.08 1.84
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