

A SCALING PROPERTY OF SHRINKING DIFFRACTION PEAKS

G. Auberson and S.M. Roy*)
CERN - Geneva

ABSTRACT

$$b(s) \equiv \frac{d}{dt} \ln \left(\frac{d\sigma^{A}(s,t)}{dt} \right) \leq \frac{1}{4t_{o}} \left[\ln \left(\frac{s^{2}}{d\sigma^{A}(s,o)} \right) \right],$$

where $(\mathrm{d}\sigma/\mathrm{d}t)^{A}(s,t)$ is the absorptive contribution to the elastic unpolarized differential cross-section for particles with arbitrary spins at c. m. energy and momentum transfer \sqrt{s} , $\sqrt{-t}$, and t is the right extremity of its Lehmann-Martin ellipse for $s\to\infty$. If this inequality is saturated apart from a constant factor, then there must exist sequences of $s_n\to\infty$ such that

$$\lim_{S_{n}\to\infty} \left[\frac{d\sigma^{A}}{dt} (s_{n}, t = -\frac{\tau}{\xi(s_{n})}) / \frac{d\sigma^{A}}{dt} (s_{n}, 0) \right] = f(\tau)$$

where $f(\tau)$ is an entire function of order $\frac{1}{2}$.

^{*)} On leave from Tata Institute of Fundamental Research, Bombay, India

1. - INTRODUCTION

There is considerable interest in the possibility that the elastic diffraction peak possesses a scaling property at high energies $^{1),2)$. The first rigorous results on this question were obtained by Auberson, Kinoshita and Martin $^{3)}$ for a class of scattering amplitudes including those saturating the Froissart bound, and slightly generalized by Cornille and Simao $^{4)}$ and Roy $^{5)}$. Substantially new results have been obtained recently by Cornille and Martin $^{6)}$.

Here we obtain from unitarity and axiomatic analyticity properties an asymptotic upper bound on

$$\delta(s) = \frac{d}{dt} \ln \frac{d\sigma^{-A}(s,+)}{dt} \Big|_{t=0}$$

where $(d\sigma/dt)^A(s,t)$ is the absorptive contribution to the elastic differential cross-section for particles of arbitrary spin at c.m. energy and momentum transfer \sqrt{s} and $\sqrt{-t}$, respectively. We show that if this bound is saturated apart from a constant factor, $(d\sigma/dt)^A$ must have a non-trivial scaling property with a scaling variable $\tau \equiv -t$ b(s). In the case of dominantly absorptive amplitudes the present results (i) represent a substantial generalization of those of Ref. 3), and (ii) imply a non-trivial scaling property of the differential cross-section provided the diffraction peak width shrinks as $1/(\ln s)^2$ for $s \to \infty$. Such a shrinkage is compatible with, but not implied by, the present high energy data 7.

2. - BASIC RESULTS

Our starting point is the partial wave expansion, for arbitrary spins,

$$\frac{d\sigma^{A}}{dt}(s,t) = \sum_{l=0}^{\infty} (2l+1) \sigma_{l}(s) P_{l}(1 + \frac{t}{2k^{2}})$$
(2)

which converges for physical s for t within the Lehmann-Martin ellipse $^{8)}$ of right-extremity $t_{o}(s)$, with

$$t_0 \equiv \lim_{s \to \infty} t_o(s) \tag{3}$$

(e.g., $t_0 = 4m_\pi^2$ for $\pi\pi$ and πN scattering), k being the c.m. momentum. A fundamental consequence of unitarity proved only recently by Mahoux ⁹⁾ generalizing an earlier result of Cornille and Martin ⁶⁾ is that

$$\P(s) > 0$$
, for $l = 0, 1, 2, ...$

It is known in the spinless case that

$$\frac{2}{9} \left[\frac{\sigma_{\text{tot}}^2}{4\pi\sigma_{\text{L}}} - \frac{1}{k^2} \right] \leq 6(s) \leq \frac{1}{2(t_0 - \epsilon)} \left[\ln \left(\frac{s}{\sigma_{\text{tot}}} \right) \right], \epsilon > 0,$$
 (5)

where the left-hand side is due to McDowell and Martin 10 and the right-hand side due to Singh 11) is an improvement of previous results 12). The left-hand side has been shown by Cormille and Martin 6 to be valid for arbitrary spins provided that the factor $^{2/9}$ is replaced by $^{1/8}$; they also show that if $s \sigma_{tot}^{2}/\sigma_{el} \rightarrow \infty$, and if the left-hand side of (5) is saturated apart from a constant factor, $(d\sigma/dt)^{A}$ must have a "weak scaling" property. Here we generalize to arbitrary spins the right-hand side of the bound (5) and prove that a "strong scaling" property must hold if the resulting bound is saturated apart from a constant factor. Our main results are summarized by the following theorems, valid for elastic scattering of particles with arbitrary spin; ε will denote a positive number which can be chosen arbitrarily small.

Theorem 1 Upper bound on $(d\sigma/dt)^A(s,t)$ for complex t For $|t| < t_0$,

$$\left| \frac{d\sigma^{\Lambda}(s,+)}{dt} \right| \leq I_{o} \left(\sqrt{\frac{|t|}{t_{o}-\epsilon}} \omega(s) \right), \tag{6}$$

where I is the modified Bessel function of order zero, and

$$\omega(s) \equiv \ln \left[\frac{s^2}{\frac{d\sigma^A(s,0)}{dt}} \right]. \tag{7}$$

Theorem 2 Upper bound on b(s)

$$l(s) \leq \frac{\left[\omega(s)\right]^2}{4(t_0 - \epsilon)} = l_{Max}^{(s)}$$
(8)

Theorem 3 Bound on curvature of diffraction peak

$$\frac{d^{2}}{dt^{2}} \ln \left[\frac{d\sigma^{A}(s,t)}{dt} \right] \leq \frac{b(s) \left[\omega_{k}(s) \right]^{2}}{8(t_{o}-\epsilon)}$$
(9)

where

$$\omega_{l}(s) = \ln \left[\frac{s^{2}}{\frac{d}{dt} \left(\frac{d\sigma^{A}(s,+)}{dt} \right) \right]}$$
(10)

Remark

Theorems 1 to 3 are generalizations to arbitrary spin of Singh's results in the spinless case $^{11),13}$. Note that $\omega(s)\sim const.$ In s, for $s\to \infty$, because the lower bound of Jin, Martin and Cornille 14) which readily generalizes to arbitrary spins using the amplitudes of Mahoux and Martin $^{8)}$, gives

$$\frac{d\sigma^{A}(s,o)}{dt} \gg \frac{\sigma_{tot}}{16\pi} \gg const. s^{-12}$$
(11)

and hence

$$(2-\epsilon)\ln s \leq \omega(s) \leq 14 \ln s$$

$$s \to \infty \qquad s \to \infty \qquad (12)$$

Theorem 4 Bounds on physical region cross-sections

For $-4k^2 \le t \le 0$ we have

$$1 + tb(s) \leq \frac{d\sigma^{A}(s,t)}{\frac{d\sigma}{\partial t}(s,0)} \leq 1 + tb(s) + \frac{t^{2}b(s)[\omega_{1}(s)]^{2}}{16(t_{0}-\epsilon)}$$
(13)

Remark

The left-hand side of this inequality is due to Cornille and Martin 6); the right-hand side is presumably new.

Theorem 5 Strong scaling theorem

Tet.

$$f(s,\tau) \equiv \frac{d\sigma^{A}(s,t=-\frac{\tau}{b(s)})}{dt} / \frac{d\sigma^{A}(s,o)}{dt}$$

Ιf

$$b(s)/b_{Max}(s) \gtrsim b_0 \neq 0$$
,
$$(15)$$

where $b_{max}(s)$ is defined by Eq. (8), then every sequence $s_n \to \infty$ must contain a subsequence $s_n \to \infty$ such that

$$\lim_{s_{n}\to\infty}f(s_{n},\tau)=f(\tau)$$
(16)

where (i) the limit is uniform in any bounded set of the complex τ plane, (ii) $f(\tau)$ is an entire function of order half obeying f(0) = 1, f'(0) = -1 and the representation

$$f(\tau) = \int_{\lambda=0}^{2/\sqrt{\xi_0}} d\mu(\lambda) J_0(\lambda \sqrt{\tau}), \qquad (17)$$

where
$$d\mu(\lambda)$$
 is a positive measure obeying $2/\sqrt{6}$, $d\mu(\lambda) = 1$, $d\mu(\lambda) \lambda^2 = 4$. (18)

Remarks

- (i) In Ref. 3), an analogous scaling property has been proved under a condition, which for purely absorptive amplitudes reads $\sigma_{\rm tot}$ > const(ln s)²; then the McDowell-Martin bound implies that the condition (15) for validity of Theorem 5 also holds. On the other hand, the condition (15) places no restriction on the behaviour of $\sigma_{\rm tot}$ allowing $\sigma_{\rm tot} \sim \bar{s}^{\gamma}$, ($\gamma > 0$), as well as $\sigma_{\rm tot} \sim (\ln s)^2$. Thus, for purely absorptive amplitudes, Theorem 5 is of more general applicability.
- (ii) The scaling variable $\tau = -t$ b(s) is not necessarily a constant multiple of $t \left(\frac{d\sigma}{dt} \right)^A(s,0) / \sigma_{e\ell}$ because the condition (15) allows $b(s)\sigma_{e\ell}/(d\sigma/dt)^A(s,0) \to \infty$ for $s \to \infty$. Correspondingly, the asymptotic behaviour of our scaling function can be quite different from that in Refs. 3), 6), as discussed later.
 - (iii) As in Ref. 3), uniqueness of the scaling function is not proved.
- Theorem 6 Upper bound on $d\sigma/dt^A(s,t)$ at finite energies in terms of $\sigma_{e\ell} \quad \text{and} \quad d\sigma/dt^A(s,0)$ For any physical s and for $-1 \le \cos\theta \equiv 1 + t/2k^2 \le 1$,

$$\frac{d\sigma^{A}}{dt}(s,t) \leq \frac{\sigma_{el}}{4k^{2}} \left[\sum_{\ell=0}^{L-1} (2\ell+1) \left(1 + \ell(\ell+1) A \sin^{2}\theta \right) + (2L+1) \epsilon_{L} \left(1 + L(L+1) A \sin^{2}\theta \right) \right]$$
(19)

where the integer L and the fraction ε_{T_i} are given by

$$\frac{d\sigma^{A}}{dt}(s,0) = \frac{\sigma_{el}}{4R^{2}} \left[\sum_{o}^{L-1} (2l+1) + (2L+1) \epsilon_{L} \right], 0 \leq \epsilon_{L} \leq 1.$$
(20)

Further, if $s(d\sigma/dt)^A(s,0)/\sigma \xrightarrow[el s\to\infty]{} \infty$, then we have the asymptotic bound

$$\frac{d\sigma^{\Lambda}(s,t)}{\frac{d\sigma^{\Lambda}(s,0)}{\frac{d\sigma^{\Lambda}(s,0)}{\frac{s\to\infty}{\tau^{l}fixed}}} \leq \frac{(1+4\tau')^{3/4}-1}{3\tau'}, \text{ for } \tau' \gamma 0,$$
(21)

where

$$\tau' = (-t) \frac{d\sigma(s,0)}{dt} / \sigma_{el}$$
(22)

3. - PROOF OF THEOREMS 1 TO 4

To prove Theorem 1, we pose the problem of finding an upper bound on $\left(\text{d}\sigma/\text{d}t\right)^A(s,t)$ for t within the Lehmann-Martin ellipse (in particular $|t| < t_o - \varepsilon$), given $\left(\text{d}\sigma/\text{d}t\right)^A(s,0)$, and the information that $\sigma_{\ell} \geq 0$ and

$$\frac{d\sigma^{A}(s, t_{o}-\epsilon)}{dt} < const. s^{2}.$$
(23)

Using the facts that $|P_{\ell}(1+(t/2k^2))| < P_{\ell}(1+(|t|/2k^2))$, $P_{\ell}(1+(|t|/2k^2))$ increases with ℓ , and $P_{\ell}(1+(|t|/2k^2))/P_{\ell}(1+(|t|-\epsilon)/2k^2))$ decreases with increasing ℓ for $|t| < t_0 - \epsilon$

$$\left|\frac{d\sigma^{A}(s,t)}{dt}\right| \leq \sum_{l=0}^{L(s)} (2l+1)\sigma(s) P_{\varrho}(1+\frac{|t|}{2k^{2}}) + \sum_{l=L(s)+1}^{\infty} (2l+1)\sigma(s) P_{\varrho}(1+\frac{|t|}{2k^{2}})$$

$$\leq P_{L(s)}(1+\frac{|t|}{2k^{2}})\frac{d\sigma^{A}}{dt}(s,o) + P_{L(s)+1}(1+\frac{|t|}{2k^{2}})\frac{d\sigma^{A}}{dt}(s,t_{o}-\epsilon)/P(1+\frac{t_{o}-\epsilon}{2k^{2}})$$

and, since
$$P_{\ell}(z) \leq I_{0}(Q\ell+1)\sqrt{\frac{2-1}{2}}$$

for $z \ge 1$, $\ell = 0, 1, 2, \dots$ Ref. 5), p. 193

$$\left|\frac{d\sigma^{A}}{dt}(s,t)\right| \leq \int_{0}^{\infty} \left(\left(2L(s)+t\right)\sqrt{\frac{H}{4k^{2}}}\right) \frac{d\sigma^{A}}{dt}(s,0) \left[1+o(1)\right], L(s) = \frac{\sqrt{s} \omega(s)}{2\sqrt{\xi_{0}-2\xi}}$$

which is equivalent to Theorem 1. Theorems 2 and 3 follow exactly similarly, and we omit their proof. For theorem 4, we use the inequality, valid for $-1 \le \cos \le 1$, $\ell = 0$, 1, 2,...,

$$1 + (\cos \theta - 1) \left[P_{\ell}(\cos \theta) \right] \leqslant P_{\ell}(\cos \theta) \leqslant 1 + (\cos \theta - 1) P_{\ell}(\cos \theta - 1) + (\cos \theta - 1) \left[P_{\ell}(\cos \theta - 1) \right] + (\cos \theta - 1)^{2} P_{\ell}(\cos \theta - 1)$$

$$(25)$$

(whose left-hand side is due to Singh 11) and right-hand side to Cornille 6), and obtain, after inserting Theorem 3, the desired result.

4. - PROOF OF THEOREM 5

From Theorem 1 and assumption (15), we see that for S large enough, $\{f(s,\tau)|s>S\}$ is a family of analytic functions of τ in the disc $|\tau|< b_O(\ln S)^2$, uniformly bounded in this disc by

$$|f(s,\tau)| \leq S \quad I_o\left(2\sqrt{\frac{rr}{6_o}}\right)$$
(26)

We may thus repeat the arguments of Ref. 3) to conclude that every sequence $s_n^! \to \infty$ must contain a subsequence $s_n^! \to \infty$ such that $f(s_n^!, \tau)$ converges (uniformly in any bounded region of the τ plane) to an entire function $f(\tau)$ of order $\leq \frac{1}{2}$. We know from the uniformity of the convergence, and from Theorem 4 that f(0) = 1, and

$$1-\tau \leq f(\tau) \leq 1-\tau + \frac{\tau^2}{4b_o}, \text{ for } \tau \gg 0,$$

and hence $f(\tau)$ cannot be identically equal to one. Further, from analyticity inside a circle C of radius R, around $\tau=0$,

$$\left|\frac{df(t)}{d\tau} - \frac{df(s_n, \tau)}{d\tau}\right| = \left|\frac{1}{2i\pi} \int_{C} d\tau' \frac{f(\tau') - f(s_n, \tau')}{\tau'^2}\right|$$

$$\leq \frac{1}{R} \frac{Max}{\tau' \in C} \left|f(\tau') - f(s_n, \tau')\right| \xrightarrow{S_n \to \infty} 0$$
(28)

Hence $f'(\tau=0)=-1$; further, since $|P_{\ell}(\cos\theta)| \le 1$ for $-1 \le \cos\theta \le 1$

$$f(s,\tau) \leq 1$$
, and $f(\tau) \leq 1$, for all $\tau \gg 0$.

If the order of $f(\tau)$ were less than half, the Phragmén-Lindelöf theorem ¹⁵) and Eq. (29) would imply that $f(\tau)$ is bounded everywhere and hence a constant; this is not the case. Hence $f(\tau)$ must be of order half.

Integral representation

As in proof of Theorem 1, we show easily that, uniformly for $-T \leq \tau \leq 0$, for $s \to \infty$,

$$f(s,\tau) = o(1) + \sum_{\ell=0}^{L(s)} (2\ell+1) \sigma_{\ell}(s) P_{\ell}(1 - \frac{\tau}{2k^{2}\ell(s)}) / \sum_{\ell'=0}^{L(s)} (2\ell'+1) \sigma_{\ell'}(s),$$
(30)

with L(s) given by Eq. (24); further for $\ell \leq L(s)$, $z = 1 - (\tau/2k^2b(s))$, [see Ref. 5), p. 193]

$$0 \leq I_{0}((2l+1)\sqrt{\frac{2}{2}}) - I_{2}(z) \leq I_{0}((2l+1)\sqrt{\frac{2}{2}}) - I_{0}(\frac{\sqrt{\frac{2}{2}}}{2+\sqrt{\frac{2}{2}}})$$

$$\leq \left[(2l(s)+1)\sqrt{\frac{2}{2}} - \frac{L(s)\sqrt{\frac{2}{2}}}{2+\sqrt{\frac{2}{2}}} \right] I_{0}((2L(s)+1)\sqrt{\frac{2}{2}}) = o(1)$$

uniformly for $-T \le \tau \le 0$. Hence we may approximate $P_{\ell}(z)$ by $I_0((2\ell+1)\sqrt{(z-1)/2})$ to obtain

$$f(s,\tau) = \int_{\lambda=0}^{2/\sqrt{L_o}} d\mu_s(\lambda) I_o(\lambda\sqrt{-\tau}) + o(1), -\tau \leq \tau \leq 0, s \to \infty,$$
(31)

$$d\mathcal{U}_{s}(\lambda) = \frac{d\lambda}{\sum_{\substack{l(s)\\\ell'=0}}^{L(s)}} \sum_{\substack{l(s)\\2l'+1)}}^{L(s)} \underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}} \underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}}}\underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}} \underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}}}\underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}}\underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}}\underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}}\underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}}\underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}}\underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}}\underbrace{\sum_{\substack{l(s)\\2l'\neq 0}}^{L(s)}}_{\substack{l(s)\\2l'\neq 0}}\underbrace$$

Consider a sequence $s_n^{\dagger} \to \infty$ such that $f(s_n^{\dagger}, \tau) \to f(\tau)$. It is known that for every sequence of positive measures $d\mu_{s_n^{\dagger}}(\lambda)$ of unit norm on $\lambda = \left[0, 2 / \sqrt{b_0}\right]$, there exists a subsequence s_n and a positive measure $d\mu_{(\lambda)}$ of unit norm such that, for every continuous function $g(\lambda)$,

of unit norm such that, for every continuous function
$$g(\lambda)$$
,

$$\lim_{S_{n}\to\infty}\int_{0}^{2/\sqrt{\delta_{0}}}d\mu_{S_{n}}(\lambda)g(\lambda) = \int_{0}^{2/\sqrt{\delta_{0}}}d\mu(\lambda)g(\lambda). \tag{34}$$

Thousing
$$g(\lambda) = I_o(\lambda\sqrt{-\tau})$$
, we have $2/\sqrt{\epsilon_o}$

$$f(\tau) = \lim_{S_n \to \infty} \int_0^{2/\sqrt{\epsilon_o}} d\mu_{S_n}(\lambda) I_o(\lambda\sqrt{-\tau}) = \int_0^{1} d\mu_{S_n}(\lambda) I_o(\lambda\sqrt{-\tau}), \quad (35)$$

first for $-T \le \tau \le 0$, and by analytic continuation, for all complex τ . Finally, f'(0) = -1 yields Eq. (18).

5. - PROOF OF THEOREM 6

$$\sigma_{\ell}(s) = \frac{1}{2} \int_{-1}^{1} d(\cos\theta) P_{\ell}(\cos\theta) \frac{d\sigma}{dt} (s, t = -2k^{2}(1-\cos\theta)),$$
(36)

the positivity of $(d\sigma/dt)^{A}(s,t)$, and $\left|P_{\ell}(\cos\theta)\right| \leq 1$, we have

$$\sigma_{\mathbf{g}}(s) \leqslant \sigma_{\mathbf{o}}(s) = \frac{\sigma_{\mathbf{e}l}^{A}}{4k^{2}} \leqslant \frac{\sigma_{\mathbf{e}l}}{4k^{2}},$$
(37)

where $\sigma_{e\ell}^{A}$ denotes the absorptive contribution to $\sigma_{e\ell}$. Further from 17)

$$|P_{k}(\cos\theta)| \leq [1 + 1(l+1)\sin^{2}\theta]^{-1/4}, -1 \leq \cos\theta \leq 1,$$
(38)

$$\frac{d\sigma}{dt}^{A}(s,t) \leq \sum_{\ell=0}^{\infty} (2\ell+1)\sigma_{\ell}(s) \left[1 + \ell(\ell+1) \sin^{2}\theta\right]^{-1/4}$$
(39)

We seek then an upper bound on the right-hand side of this equation given $(d\sigma/dt)^A(s,0)$, and the constraints $0 \le \sigma_\ell(s) \le \sigma_{e\ell}/(4k^2)$, and readily derive Theorem 6.

6. - ZEROS AND ASYMPTOTIC BEHAVIOUR

- A) Exactly as in Ref. 3), we deduce that $f(\tau)$ has infinitely many zeros in a small neighbourhood of the positive τ axis (i.e., negative taxis).
- B) Unlike Ref. 3), our assumption (15) allows the left-hand side of the equation . 42%(s)

$$l_{s}(s) \sigma_{s}^{A} / d\sigma_{dt}^{A}(s,0) = \int_{0}^{4k^{2}l_{s}(s)} d\tau f(s,\tau)$$
(40)

to be unbounded for $s \to \infty$, and hence allows $f(\tau)$ to be non-integrable in $\tau = [0,\infty]$. This is most easily seen from the following example in the spinless case, with $a_{\ell}(s)$ denoting partial waves of the absorptive part: $a_{\ell}(s) = 1$, $\ell = (0,L_1)$ and (L_2,L_3) ; $a_{\ell}(s) = 0$ otherwise.

$$L_1 = \sqrt{s} \sqrt{\frac{\sigma}{16\pi}(1 - \frac{\sigma}{2c^2})}, L_2 = c\sqrt{s} \ln s \left[1 - \frac{\sigma b}{64\pi c^4} \frac{1}{(\ln s)^2}\right],$$
 $L_3 = c\sqrt{s} \ln s, b < 2c^2, c < 1/(2\sqrt{t_0})$
(41)

Then, for
$$s \to \infty$$
,
$$\sigma_{el}^{A}(s) = \sigma_{tot}(s) \to \sigma, \quad \frac{l_{s}(s)}{(l_{ns})^{2}} \to l_{s}, \quad \frac{l_{s}(s)}{(l_{ns})^{2}} \to \frac{l_{s}(s)}{\sigma_{tot}} \to \frac{l_{s}(s)}{\sigma_{t$$

Thus $f(\tau)$ can approach a constant for $\tau \to \infty$.

For comparison, note that in the (spinless) strong scaling case of Ref. 3), $f(\tau)$ is not only integrable on $\tau = [0,\infty]$ but obeys the local bound $|f(\tau)| < c /\!\!/ \tau$ for $\tau \to \infty$.

In the weak scaling case of Ref. 6), it was shown that

$$\int_{0}^{\infty} d\tau' f(\tau') < \text{const}, \ \tau' = -t \frac{d\sigma}{dt} f(s, 0) / \sigma_{el}$$
(43)

From unitarity,

$$\int_{0}^{\infty} d\tau' f^{2}(\tau') \leq \int_{0}^{\infty} d\tau' f(\tau') \leq Combt.$$
(44)

and hence we have the Plancherel formula 3)

$$f(\tau') = \frac{1}{2} \int_{0}^{\infty} du h(u) J_{0}(\sqrt{\tau'u}); \int_{0}^{\infty} du h'(u) = \int_{0}^{\infty} d\tau' f'(\tau') < Corot.$$
(45)

Further, from Theorem 6, we deduce that

$$f(\tau') < \frac{(1+4\tau')^{3/4}-1}{3\tau'}, \tau' > 0$$

Here

$$f(\tau') < const.(\tau')^{-1/4}, frr \tau' \rightarrow \infty$$

Thus the Hankel transform representation of our scaling function $f(\tau)$ and its asymptotic behaviour are quite different from the previously known cases of strong and weak scaling.

ACKNOWLEDGEMENT

We wish to thank A. Martin for useful discussions.

j No

REFERENCES

- 1) J. Dias de Deus Nuclear Phys. <u>B59</u>, 231 (1973); V. Singh and S.M. Roy - Phys. Rev. <u>1D</u>, 2638 (1970).
- 2) V. Barger Proceedings XVII International Conference on High Energy Physics, London (1974);
 - V. Barger, J. Luthe and R.J.N. Phillips Nuclear Phys. <u>B88</u>, 237 (1975);
 - P.P. Divakaran and A.D. Gangal T.I.F.R. Preprint (June 1976).
- 3) G. Auberson, T. Kinoshita and A. Martin Phys. Rev. D3, 3185 (1971).
- 4) H. Cornille Nuovo Cimento Letters 4, 267 (1970); H. Cornille and F.R.A. Simao Nuovo Cimento 5A, 138 (1971).
- 5) S.M. Roy Physics Reports <u>50</u>, No 3 (1972).
- 6) H. Cornille and A. Martin CERN Preprint TH. 2130 (1976);
 H. Cornille Saclay Preprint D.Ph.T. 76/14 (Phys.Rev.D, to be published);
 H. Cornille and A. Martin Saclay Preprint D.Ph.T. 76/72.
- 7) G. Giacomelli Physics Reports <u>C23</u>, 123 (1976).
- 8) H. Lehmann Nuovo Cimento 10, 579 (1958);
 A. Martin Nuovo Cimento 42, 930 (1966).

 For arbitrary spin case, see: G. Mahoux and A. Martin Phys.Rev.

 174, 2140 (1968).
- 9) G. Mahoux to be published.
- 10) S.W. McDowell and A. Martin Phys. Rev. 135B, 960 (1964).
- 11) V. Singh Phys.Rev.Letters <u>26</u>, 530 (1971).
- 12) T. Kinoshita Lectures at the Boulder Summer School (1966); J.D. Bessis - Nuovo Cimento 45A, 974 (1966).
- 13) V. Singh Ann. Phys. 92, 377 (1975).
- 14) Y.S. Jin and A. Martin Phys.Rev. <u>135</u>, B1369 (1964); H. Cornille - Nuovo Cimento <u>4A</u>, 549 (1971).
- 15) R.P. Boas "Entire Functions", Academic Press, N.Y. (1954), p. 4.
- This follows directly from the compactness of the set of positive measures with norm ≤1 in the vague topology. See, e.g.:

 M. Reed and B. Simon "Methods of Modern Mathematical Physics, I: Functional Analysis", Academic Press, N.Y. and London (1972), Section IV.5.
- 17) A. Martin Phys. Rev. 129, 1432 (1963).