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We prove that
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where (dc/dt)A{s,t) is the absorptive contri-
bution to the elastic unpolarized differentisl
cross-section for particles with arbiftrary spins
at c¢. m. energy and momentum transfer ,fs, ,/-%,
and t is the right extremity of its Lehmann-
Mzrtin ellipse for 8 @ . If this inequality
ig saturated sapart from a constant factor, ithen
there must exist sequences of 8y — @ such that

Sf—»oo[%g?s“’t' K] )/ gg:A(s"'o)] $9)

where f(T) is an entire function of order %.
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1a = INTRODUCTION

There is considerable interest in the possibility that the
elastic diffraction peak possesses a scaling property at high energies 1}’2).
The first rigorous results on this question were obtained by Auberson,
3)

Kinoshita and Martin for a class of scattering amplitudes inecluding

those saturating the PFroissart bound, and slightly generalized by Cornille

4) 5)

and Simao and Roy ~’. Substantially new results have been obtained re-

cently by Cornille and NMartin 6).

Here we obtain from unitarity and axiomatic analyticity proper-

ties an asymptotic upper bound on

b = & An izt (s |

+=0 ‘ (1)

where (dc/dt)ﬁ(s,t) is the absorptive contribution to the elastic differ-
ential cross-section for particles of arbitrary spin at c.m. energy and
momentum transfer Js and J—t, respectively. We show that if this bound
is saturated apart from a constant factor, (do/d.t)A must khave a non-trivial
scaling preperty with a scaling variable T = -t b(s). In the case of domi-
nantly abserptive amplitudes the present results (i) represent a substantial
generalizatiqn of those of Ref. 3), and (ii) imply a non-trivial scaling
property of the differential cross-section provided the diffraction peak
width shrinks as 1/(4n 3)2 for s—-® . Such a shrinkage is compatible

with, but not implied by, the present high energy data U .

2. - BASIC RESULTS

Qur starting point is the partial wave expansion, for arbitrary

sping,

drh =£(:u+1) ois) R4+ 5%2)
at = ) * (2)

which converges for physical s for +t within the ILehmann-Martin ellipse 8)

of right-extremity to(s), with



t, = Aim t,(®

S > (3)

(e.e., t0==4m§- for mm and 7N scattering), X being the c.m. momentum.
A fundamental consequence of unitarity proved only recently by Mahoux 9)

generalizing an earlier result of Cornille and Martin is that

g o, for Pz0,1,a,... »

I%¥ is known in the spinless case that -

Z
< 1 g
2| % _Llgbe< [2“('&‘)], €9

e ~ 12[f"5) tot
9larg R? sve0 " |
where the left-hand side is due to McDowell and Martin 10) and the right-hand
side due to Singh 1) is an improvement of previous results 12). The left-

hand side has been shown by Cornille and Martin 6) to be valid for arbitrary
spins provided that the factor 2/9 4is replaced by 1/8 ; they also show

. 2
that if s c‘tot/cef, .
from a constant factor, (do/dt) must have a '"weak scaling" property. Here

»®, and if the left-hand side of (5) is saturated apart

we generalize to arbitrary spins the right-hand side of the bound (5) and
prove that a "strong scaling" property must hold if the resulting bound is
saturated apart from a constant factor. Our main results are summarized by
the following theorems, valid for elastic scattering of particles with arbi-
trary spin ; e will denote a positive number which can be chosen arbitrarily

small.

Theorem 1  Upper_ bound on _(&c/dt)AgsLt) for complex t
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where IO is the modified Bessel function of order zero, and

82-
In [ gl_o_'A(s,O)] : ()
o

i

W (s)

———— — - - -—————-—-———-------—-—u——

Lo < [oo()f (s)

53w 4 (- e) Max (8)

Theorem 3 Bound on curvature of diffraction pesak

- ———— — o o . e ey LS g

. . :a
& ] ag“(s,w] < A wue]
2

sv0 gt -€) ©)
=0
where
| —=
Ly(s) = n[ dO'A[s,{‘)), | (10)
t=0
Remark

Theorems 1 to 3 are generalizations to arbitrary spin of Singh's

11),13)

results in the spinless case Note that w(s)~const. fn s, for

s—®, because the lower bound of Jin, Martin and Cornille 14) which readily

generalizes to arbitrary spins using the amplitudes of Mahoux and Martin 8

gives

H

2 si2
d,G‘Aso > Crot P Cons'\?
Y e ’d
) 16T s« | : (11)
and hence
(2- ~e) s & RO < 14 fns
$ 00 S>30

(12)



Por -4k2 < t<«< 0 we have

"

A
14+t8(s) £ d%lc’;.'A(s,{—) < 1 +th(s) + Phis e 5]

16 (to-€)
do? (s,0) S (13)
¥
Remark
The left-hand side of this inequality is due to Cornille and
Martin 6)

; the right-hand side is presumably new.

Let
A A
do~ T a9 ¢5,0)
(5, )= T (st=- 7;3) At
§ ol : 5 (14)
If
g(s)/f,max{S) > f’. $0 ,

S -» 00 (15)
where bmax(s) is defined by Eg. (8), then every sequence s/ > ® must
contain a subsequence 8,7 @ such that

,Eim ;(Sn»'r) = :F(T>
sn.—)oﬂ (16)
where (i) the 1imit is uniform in any bounded set of the complex T plane,

(ii) £(v) 4is an entire furction of order half obeying £(C)=1, £'{0)= -1

and the representation /‘ﬂ.—
/%,

{0 = j du d (AT )
A= ©

» (17)
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where dp(A) is a positive measure obeying

T,

2T, ) 4
ANA = .
A ydﬂﬁ): 1, A:ufd/u{ ‘ (18)
= O

Remarks

- — -

(i) 1In Ref. %), an analogous scaling property has been proved under &
condition, which for purely absorptive amplitudes reads T ot >

> const(4n 8)2 s then the McDowell-Martin bound implies that the condition

(15) for validity of Theorem 5 also holds. On the other hand, the condition

(15) places no restriction on the pehaviour of Oiot allowing Gtotndgy’

(y > 0), as well as otothl(zn s)a. Thus, for purely absorptive amplitudes,

Thecrem 5 is of more general applicability,

(ii) The scaling variable 71 =-t b(s) is not necessarily a cornstant
multiple of % (da/dt)A(s,O),/ce£ because the condition (15)
allows b(s)cez/(dc/dt)A(s,O)ﬂ>m for s—® . Correspondingly, the asymp-
totic behaviour of our scaling function can be guite different from that in

Refs. 3), 6), as discussed later,

(iii) As in Ref. 3), unigueness of the scaling function is not proved.

oy o o e e i o e e w0 i o ) D A e

For any physical s and for =1 < cos® =1 + t/2k2 <1,

TR -4 W
do's iy < B zwu)(m(mm&e) @ L+1)6L(1+ L(L+4)aa-ne)
at— 4 h‘ €=o0 ' o
| (19)
where the integer I and the fraction € are given by

L-14
G 1)€
4]%45,0) '“4°|:’- Z(Mu) FRLHEL ) ose,_éi. (20)
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Purther, if s(dc/ﬂt)A(s 0)/a - ®, then we have the asymptotic bound

el s
- /4
el _ |
g(”{-) < (1"'47'), t ,fo'r'Z',7/0,
3T (21)
9 g (s,0) :_—;m

where

A
= (-t) d9 0 /G
= (t) 4 (s o)/d -

3. - PROOF OF THEOREMS 1 TO 4

.- To prove Theorem 1, we pose the problem of finding an upper
bound on .(dc/dt) (syt) for ¢ within the Lehmamn-Martin ellipse (in parti-
cular - [4] <- ty ~g),. glven '(dc/dt)A(s,O), and the information that

Ty > 0 and

olo" (s,i: ¢) < ot 5

S»>R - (23)

Using the facts that ]Pz(1+(t/2k Nl <z (1+(]t|/2k )), P (1+(]t|/2k 1Y)
increases with 4, . and Pz(1+(jt|/2k2))/P (1+((t —e ) /2K )) decreases with
increasing 4 for ]t[ < t -e

L)

. drts] < ¢ Zeun rn»Pfo%) +Zm+*>? S

Llsm |

It ~¢
<P "'JH )do-“ 9+ fnﬁ ‘L.w)dr“ o 9/ m_%_)

and, since

P@< I, o 3T )

for z> 1, £=0,1,2,... [Ref. 5), p. 193]



, dO"(s *)I | ((.‘lL(s)-&!)‘/_-)olf(s,O)[iq-o(i)] L= Y2 JI;S:)

which is equivalent to Theorem 1. Thecrems 2 and 3 follow exactly similarly,
and we omit their proof. For theorem 4, we use the inequality, wvalid for
—1<COQ_<_1, 4€u=0, 1, 2,--.,

1+ (coae-i)[ (ca/o&)] & Beosd) € d+toa9-4)‘8'[mﬁ‘=b+

corl:)

+ oaf-4 (cws@ =4) (25)

(whose left-hand side is due f$c¢ Singh 1) and right-hand side to Cornille 6)),

and obtain; after inserting Theorem 3, the desired result.

4. -~ PROOF OF THEOREM 5

From Theorem 1 and assumption (15), we see that for § large
enough, {f(s,T)|s > 8} is a family of analytic funetions of v in the
dgise |v| < (n $)2, uwniformly bounded in this disc by

1§ 6 54>S L (2 é‘l)

(26)

We may thus repeat the arguments of Ref. %) to conclude that every sequence
s! ~® must contain a subsequence 5, ~® such that f(sn,T) converges
(uniformly in any bounded region of the r plane) to an entire function
f(r) of order <#. We know from the uniformity of the convergence, and
from Theorem 4 that f£(0)=1, and

2
-1 £ $()L 1-7 +:;_"E., for Ty 0

(27)

and hence £(7)} cannot be identically equal to one. Further, from analy-

ticity inside a cirele C of radius R, around 1 =0,
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Idf(r) d}(sﬂ,'r), I %ﬁ ﬁdT';(v')-;/sn.'r’)l

frlcz

< 4 Max )}(7’)-.;(3"“7’)) — 5 0

= R ~leC 5> (28)

gence- £1(7=0) = -1 ; further, since IPz(cosO)] <1 for -1 < cosO < 1
Fs) €1 L and S £ L, Jor alf7 50

If the order of f£(7) were less than half, the Phragmén-Lindel8f theorem 15)
and Eq. (29) would imply that f£(r) is bounded everywhere and hence a cong-
tant ; this is not the case. Hence f(rv) must be of order half.

Integral representation

e o o 00 s T vy o S o

As in proof of Theorem 1, we show easily that, unlformly for

L(s) L{$
F6.0 = (1) +] (2t+1)0'(s)P(i w») (m,)o-m

-I<1<0, for s-m,

(30)

with L(s) given by Eq. (24) ; further for £ < L(s), z=:1-(7/2k2b(s)),
[éee Ref. 5), p. 193]

0<& T ((at+1)JT) B®< Io((“‘*“)‘/r)'-ro([;f}i—')
é [(2‘_(,)“_) \Ff - L(S)Iq?_’—_—i_ -J I:( (aLlS)H)@ ) = 0(12

iq—JZ‘:L

uniformly for -T < T < 0. Hence we may apprOxlmate P, (z) by

I ((2£+4 W(z-1)/2) to obtain



2/V%,
£6,79) = Sd}xs(z\)f (MW-T) + o(1) -T¢T40, s...,.o

M=o (31)
d ety 5 0~ A=)
A ) |
d’u A= (3 Z@&H)G'(S) 4 5[5) o
eZ'(at'u)G‘ (s) =0

sl = S d/usw L o

16)

Consider a seguence s!—~® suchk that f(sr‘l,r)ﬂf(“r). I+ is known that
for every sequence of positive measures dp.sr(l) of unit norm on
A= EJ 2/«} ], there exists a subsequence s and a positive measure

dp()d of un:l.t norm such that, for every continuous function g ),

Sn:'"°° ° 0 (34)
Choosing g(h) I (M/——'r), we havezlm
$) = b ja,u WL (NT) = [d,umr (AJ-?)’
(35)

Sn""oo o

first for -T< 7 <0, and by analytic continuation, for all complex T.

Finally, £'(0)=-1 yields Eq. (i8).

5. =~ PROOF OF THEQREM 6




- 10 -

the positivity of (do/dt)*(s,t), and IPz(cosOH < 1, we have

!
a 'zl
G < Gpl$) = 4k S T (57)

where c‘:z denotes the absorptive contribution to Tep® Further from 17)

IB((MO)' < [i-l- l[-(’+1)bin18] 1/4 £ s B¢ i

(38)

we have

cs b < '2 Y )O'(s)Ii /1Y) AI#GJ

(39)

We seek then an upper bound on the right-hand side of this equation given
(&7/dt) {s,0), and the constraints 0< cz(s) <o z/(4k » and readily

derive Theorem 6.

6. - ZEROS AND ASYMPTOTIC BEHAVIOUR

A) - Exactly as in Ref. 3), we deduce that f£(7) has infinitely many zeros
in 2 small neighbourhood of the positive T axis (i.e., negative 1t

axis).

B) - Unlike Ref. 3), our assumption (15) allows the left-hand side of the

equation 4k*4 (s)

L) 0;;"/ %}'A(sp) Jd"t f (7)

(40)

to be unbounded for s—®, and hence allows £(1) +to be non-integrable
T::[@,m:]. Thisg iz most easily seen from the following example in the
spinless case, with z( s) denoting partial waves of the absorptive part :
aﬂ(s)= 1, £=(0, L ) and (LQ,L ) a, (s)=0 otherwise,
= =&Y, L= VS Ins[4- A ]
L| rJ fe"'-') s Lz...c yhs i 6‘41'!’0!'@!13) ,
2
Ly = cVs Pns £ <L 2ct, ¢ L 1/(-‘N to (41)




- 11 -

Then, for s-w,

O‘A(s)—_eot.fs)-"o' ﬁﬂ%’-,— R TOL S
2

@“5 | ciol'?

:F(S;T);‘:;g(’r)=[i'é%‘; +'f—c:‘]o( r)] T ( &;‘)' (42)

Thus £(t) can approach a constant for T-®.

For compariscn, ncte that in the (spinless) strong scaling
case of Ref. 3), £(T) is not only integrable on T = [0,@_] but obeys
the loecal bound [£(r1)| < c/JT for To® .

In the wezk scaling case of Ref. 6), it was shown that

o0
(an/fley <otk , Tz -t 4050/

(43)

From unltarlty,

Sdr ') < jd'f'a“" ) L Comat

(44)

3)

i
f(?)nLjduL(u)J N?E) jduln[u) jd?'}[rb(g@.
(45)

Purther, from Theorem &, we deduce that

3/4
/ (14—41") -1 /
:“T) < 37/ » T 20 (46)

Here

~1/4 ,
{() < Conat.(T')  fur T et

(47)
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Thus the Hankel transform representation of our scaling
funetion £(v) and its asymptotic behaviour are quite different from
the previously known cases of strong and weak scaling.
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