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ABSTRACT

New experimental results are reported on decay angular distributions in
diffractive dissociation of protons into (nﬂ+) in proton-proton collisions
at a centre-of-mass energy of Vs = 45 GeV. There is strong evidence for
two distinct components of diffraction dissociation which have different
decay angular distributions in the Gottfried-Jackson frame; the resonant
and the non-resonant component with (nﬂ+) invariant mass in the interval
1.6 <m < 1,7 GeV are separated by their different t dependence. We

find strong violation of s-channel and t—channel helicity comservation

for both the resonant and the non-resonant component.
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In the preceding letter ’ we have reported on diffractive one-pion

production in the reaction
1 | pp + p(am’)

at a centre-of-mass energy of Vs = 45 GeV. The aim of this letter is
. : . N . : + ‘

to describe the decay angular distributions of the (nT ') system and to

discuss questions concerning the helicity structure of the di

process.,

While for p° photo-production and elastic pion proton scattering helicity

2)

conservation in the s-channel is fairly well established”’, s-channel

helicity conservation (SCHC) has been disproved for diffraction

. . e . . b
dlssoc13t10n3). On the other hand, extensive studies )

of t-—channel
helicity conservation in the two-body dissociation N - Nm have not lead

to a clear answer.

In the present investigation of diffraction dissociation at very high

energy where non-diffractive exchange contributions to reaction (1)

5)

violation of both SCHC and TCHC for the resonant and for the non-

have been shown experimentally to be negligible”™ we find strong

~ resonant part of the reaction.

If helicity is conserved in a particular refereﬁce frame, the total
helicity of the (nﬂ+) system is the same as that of the dissociating
proton. We consider the two cases of s—channel and t-channel helicity
conservation which are thought to be singled out by dominant dynamical
mechanisms, e.g. the latter by Pomeron exchange. In the Gottfried-
Jackson system6) the polar angle OJ of the neutron in the (nﬂ+) rest
frame is measured against the direction of the dissociating proton,
and the azimuthal angle ¢J against the production plane. These angles
can be reconstructed with a probable experimental error of

Acos GJ ~0.017 and A¢J ~1.8", on average.

The observed angular distributions for different intervals of the

. . + . . : :
invariant mass of the (n7 ) system are shown in figure 1. We note a
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forward and a backward peaking of dc/dcosOJ, and an asymmetry, favoring
the forward direction, which is increasing with increasing mass. The
distributions in ¢ are peaking in the productlon plane, at ¢J Oo

for all mass 1ntervals. There appear to be two distinct componentsl)
of diffraction dissociation, resonance production and non-resonant
pion production. We expect these components to have different polar
and azimuthal angular distributions in the Gottfried-Jackson system;
production of a single resonance will be reflected by forward-backward
symmetry in do/dcos@J and by symmetry in dG/dq)J with respect to the
normal to the production plane, whereas in non-resonant pion production,
if it is assumed to be dominated by a double-peripheral mechanism, the
neutron will be produced predominantly forward and in the productlon

7)

To help demonstrating this we also show results of a model calculation

plane’’. There is qualitative evidence in the data for both components.

in figure 1. Non-resonant pion production has been described by a

simple Deck models); assuming a reggeized pion exchange leads to the
following double-peripheral matrix element squared7):
_ 4(t‘2—m2) ' 2 :
, ) t2e T 20L,",(t2 mﬂ) 2 8ty
IM|%2 = ¢ . s s,” e o (2)
(t _mz)z 2 1
2

where t and t designate the momentum transfers between incoming and

outgoing proton and dissociating proton and outgoing neutron, respectlvely,
$1 and s, are the subenergies squared of the outgoing proton and the
pion and the outgoing neutron and the pion, respectively; the differential
cross section for mp elastic scatterlng is taken proportlonal to‘egtl;'

and an empirical form factor, e&(tz—m ) is used to obtain a better

description of the data in the variable tye a% is the slope of the pion
Regge trajectory.

To perform a sensitive test of TCHC we have tried to sepafate the two
components on the basis of these expectations. A mass region including
the peak at 1650 MeV was selected as the most prominent resonant
contributionl), and another region, 1.30 < m < 1.40 GeV which is
dominated by non-resonant pion production. Owing to the 1argé statistics
of this experiment we can investigate do/d¢J in these mass regions for

different intervals of cos OJ.
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A necessary condition for TCHC is isotropy in the azimuthal angle ¢J9).
The observed angular distributions are shown in figure 2a and 2b.  We’
note strong deviations from isotropy for both the predominantly non-
résoﬁant mass interval 1.3 <m¢< 1.4 GeV and for the résbnant méss region
1.6 <m< 1.7 Gey. A tendencyAfo: an increase.of dO/dd)J at ¢J ~180° for
backward produced neutrons can be attributed to a baryon exchange
conffibutibnlo)vin a doﬁble-peripherai mechanism. |
Oﬁe'may argue that the resonant contribution in figure 2b may'interfere
with the non-resonant background and that a test of TCHC.ié not meaning-
ful. We have therefore attempted to separate resonant and non-resonant
events occurring in the same mass interval, 1.6 < m < 1.7 GeV. 1In the

1)

preceding letter ’ we have studied the variation of the slope of do/dt

as a function of the (nﬂ+) mass for various regions of cos OJ; we find
that for the region -0.3 < cos OJ < +0,.3 there is a minimum of the slope
in the resonance region. Hence, selecting events in this region of cos OJ
with ltl < 0.2 GeV? and 0.2 < |t| < 0.5 GeV?, respectively, we expect

an enrichment in non-resonant and resonant events. An enrichment of each
component is indeed observed in the mass spectra of figure 3. Investigating
again the distributions in ¢J of these samples we observe in figure 3 a
strong peaking in the production plane for non-resonant events and
approximate symmetry with respect to the normal to the production plane
for resonant events, as expected for a single resonance. However, we

do not observe isotropy. In the s~channel we observe even stronger

deviations from isotropy.

Hence, we conclude that helicity conservation is strongly violated in the
t-channel and in the s—channel for both components of diffraction
dissociation. Violation of TCHC may be reconciled with Pomeron exchange

by assuming that the Pomeron is transferring spin.
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Figure 1

Figure 2

Figure 3

FIGURE CAPTIONS

(a) Decay angular distribution of the neutron in polar

6)

angle @J in the Gottfried-Jackson system ° for
various mass regions of the (nﬂ+) system.

(b) Azimuthal angular distribution dO/dtbJ in the Gottfried-
Jackson system. ¢J = 0 corresponds to the production
plane. The solid ;urves represent the results of a
model calculation of a non-resonant diffractive

process.

- . . . 1

Due to phase-space limitations in the experiment ) the
distributions are shown for lt| > 0.1 GeV? and

cos OJ > -0.9. The cut at cos OJ = -0,3 in the first mass

bin is also due to these limitations.

do/dcbJ in the Gottfried-Jackson system for two mass regions,
(a) of predominantly non-resonant processes,

1.3 <m < 1.4 GeV, and
(b) containing resonant processes, 1.6 < m < 1.7 GeV, in

three intervals of cos GJ with the cut |t| > 0.1 GevZ.

Enrichment of the mass spectra in (a) non-resonant and
(b) resonant events by cuts on |t|. Selecting the mass
interval 1.6 < m < 1.7 GeV (the cross—hatched regions)
do/d¢J is plotted with the same |t| cuts. The
distributions are distinctly different; both are non-

isotropic and hence do not support TCHC.
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