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ABSTRACT

The Reggeon calculus is developed as a
field-theoretic technigue for obtaining a general
sclution of Regge cut discontinuity fommulae
for the Pomeron (Pomeron unitarity). It is argued
that the experimental results of factorization
and rising cross-sections, if true asymptotic-
ally, lead uniguely tcadiffraction peak deter-
mined by the critical infra-red behaviour of an
effective field theory for the Pomeron. Recent
calculations of the diffraction peak are re-
viewed and compared with ISR data. The remark-
able success of the no-parameter prediction of
the height of the secondary maximum is emphasi-
zed.

Aiso reviewed, but only briefly, are
lattice analogue models of the Pomeron field
theory, together with other methods for calcul-
ating critical exponents of the infra-red beha-
viour. Finally the satisfactory s channel
status of the critical theory is discussed.
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SECTION 1 INTRODUCTION

In this lecture course*) I shall discuss the solution of the Regge cut discon-—
tinuity formulae derived in my previous course [l]. I shall consider the
particular case of a Pomeron {(or Vacuum) Regge pole with trajectory aft),
where o(0) = 1. In this case the Pomeron pole is isolated and is the leading
singulérity in the angular momentum plane when t > 0. However, at t = 0 the
multi-Pomercn cuts, with trajectory aN(t), N=2,3,..., which T have shown are

required by t-channel unitarity, all coincide with the pole at

4 (0) = N[a(— ) ~ 1] + 1 =1 (1.1)
N 2
N
To determine the resulting partial-wave amplitude we must solve the complete
set of coupled discontinuity formulae for the multi-Pomeron cuts, which we

call Pomeron unitarity.

In my previous course (which I shall refer to as I} I showed that if the
Pomeron is regarded as a quasi-particle in a non-relativistic two-dimensional
space, carrying momentum k and energy E = 1-j, so that the energy-momentum
relation is E = 1 - @(52), then Pomeron upitarity is essentially a conventional
unitarity condition on the scattering of such quasi~-particles. This result
suggests that a solution of t-channel unjtarity in which the basic Pomeron
singularity is not a pole would be analagous to a solution of momentum space
unitarity in which the basic state is not a pole. Since no such solutions

are known I argue that Regge poles and their associated cuts are the only
allowed angular momentum plane singularities. The experimental results of
factorisation and non-decreasing asymptotic total cross-sections then lead
uniquely to a single Pomeron pole with unit intercept, together with its cuts.
Having justified the consideration of Lhis particular case by experiment,

I shall then argue, during the course of these lectures, that the corresponding
theoretical solution is also unique and determines the asymptotic shape of

the diffraction peak.

My approach to the solution of Pomeron unitarity will be to write an effective

*#) The material in this paper is a development of the Reggeon Calculus which is
based only on the analytic approach to Regge theory given in Ref,_[l]. It
was prepared to accompany lectures given at the Les Houches Institute of
Theoretical Physics, June (1975} and will be published in the proceedings of
this. institute.



interacting field theory for the Pomeron treated as a quasi-particle. This

is Gribov's Reggeon Calculus {2]. We write a general interaction Lagrangian
and use a cut-off in {(E,k) space to eliminate all angular wmomenta and momentum
transfers where non-Pomeron interactions should be included. We then have

a very general solution of Pomeron unitarity. The behaviour of the elastic
diffraction peak (and also general diffractive production) is contrelled by
the j » 1, t - 0 or E,kz +~ 0 limit, that is the "infra-red" behaviour of the

Pomeron field theory.

By using the renormalisation group techniques of Wilson [3], which were originally
developed to study critical phenomena in statistical mechanics, we can show

that the behaviour of the Pomeron field theory in the dnfra-red limit is
independent of the details of the interaction Lagrangian. A form of universal

"eritical behaviour" is obtained and the elastic differential cross—section

dg .

(E%VAB for the scattering of particles A and B satisfies
g, v N 0yq2 5
(dt AR S > e [gAgB (log 8) ¢ (p )] (1.2)

o
) Vo \ R
where p = t (log S) and so the total cross—section satisfies

" N
o 8,8 {log S) (1.3)

AB S+ w
These results were first obtained by Migdal [4], Polyakov and Ter Martirosyan
and independently by Abarbanel [5] and Bronzan.

"ecritical expcnents" in the theory

The numbers n and v are two of several
which, in principle, can be c¢alculated exactly. More importantiv the "scaling
function" @ can alsc be calculated exactly. The couplings By and g, and the
scale parameter po can not be calculated, they depend on the details of the
underlying strong interaction dynamics which we do not attempt to explain.
There are, of course, non-leading terms which should be added to (1.2) and
(1.3) and their magnitude determines the experimental applicability of

these results.

Two recent results encourage me to believe that ir may be possible te use

{1.2) and similar results to make extensive predictions about diffraction
scattering. ;The first is the experimental discovery that diffractive production
appears to factorise for quite large transverse momentum [6]. The second

result is the theoretical caleulation [7] of the scaling function @{p) in Lhe
e-expansion of the Pomeron field theory (¢ = 4-D, where D is the dimension of

the quasi-particle space). As I shall show the result compares very well with
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the experimental results from the ISR. (There is some evidence, which T shall
briefly discuss in Section 3, that the c-expansion gives the best results in
lowest order. In this case we should take n = % and v = %% in (1.2)).

The factorisation of diffractive production indicates that non-leading terms

in (1.2) not associated with the factorising Pomeron propagator are small. The
close relation of @(p) to Lhe experimental diffraction peak suggests also

that the energy at which non-leading terms in the propagator (which should

also be added to (1.2}) can be neglected, may not be as high as previous

estimates have given. [4], [8], [9]

The major emphasis of this course will be on the theoretical developments
leading to (or related to)} the theoretical calculation of the diffraction peak.
My aim is to show that the results 1 shall present follow in very general
civcumstances, from the analyticity and unitarity properties of amplitudes
established in previcus courses - first in momentum space and then in the
angular momentum and helicity-planes. However, if these results also have
experimental applicability, as I have suggested above, then the prospecls
are very exciting. There are many diffractive regions of exclusive and
inclusive production processes, where the general Pomeron unitarity equations
derived in I can be used te write an effective Pomeron field theory which will
give similar asymptotic predictions to (1.2). ({(The triple Regge region of
thie one-particle inclusive cross-section has already been discussed from this
point of view [7], [10], [11]). While only a small number of diffractive
processes are experimentally observable at present machine energies, many
nore such processes should be observable in the next generation of accelerators
and colliding beams.

.
The layout of these lectures will be as follows. I will begin by writing the
elastic partial-wave amplitude as a sum over ("off spin-shell™) integrals of
Pomeron Greens functioms. If the Greens functions are constructed from an
interacting Lagrangian field théory then Pomeron unitarity will automatically
be satisfied, We introduce the most general interaction Lagrangian by using
the (cut-off) functional integrzl formalism of Calucci (12] and Jengo. By
implementing the renvrmalisation group transformation of Wilson [3], we show
that the infra-red behaviour of the general theory is the same as that of the
simple theory with a single point triple Pomeron coupling. In Wilson's terminology

all other parameters of the lugrangian are "irrelevant variables."

In Section 3 we consider directly the construction of the triple Pomeron theory.

We use the renormalisatlion group techniques developed by Sugar [13] and myself
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which allow the complete Pomeron propagator to be constructed {at least in
the E-expansion). These techniques have been used in Refs. [7] and [11]

to calculate both the elastic diffraction peak and the one-particle inclusive
cross—section in the triple-Regge region. The results of Ref. [7] are the most
extensive and we carry through the calculation of the diffraction peak given
there. We then compare the results with the ISR data - the height of the
secondary maximumé determined without parameters, is exactly right (note that

this number ~ 10 ). We also present the inclusive cross-section calculated

in Ref [7]. We note that there is no turnover at t = 0, of the kind usually

associated with a zero of the triple Pomeron vertex.

The calculation of the diffraction peak will be the pinnacle of this course

and this dis why 1 shall present it in detail. The subjects covered in the

later Sections are treated in much less detail, I shall certainly not have time
to give a complete review of all recent work in the Reggeon Calculus. A more
comprehensive review of the subject, which includes most work not published
within the last six months, can be found in Ref, [8]. Very little of the
material covered in these lectures is, however, also covered in Ref. [8]. 1
shall review just a few of the recent papers that are relevant to the diffraction

peak calculation.

In Section 4 I discuss the use of lattice analogue models to study the infra-red
behaviour of the Pomeron field theory. If such models can be set-up in a
satisfactory manner we expect to be able to apply well-established methods

in solid-state physics to calculate the critical exponents (although probably
not the scaling function) of (1.2) very accurately. We review the derivation

by Cardy [14] and Sugar of an analogue model from the functional integral
formulation of the field theory (this is the reverse of the argument for the
connection [3] between the Ising model and Aﬂ4 field theory). We also mention
briefly the work by Ellis [15] and Savit on the high temperature expansion

of an alternative analogue model [16].

In Section 5 we discuss the intriguing calculations of critical exponents by
Dash [17] and Harrington. They work directly with the two-dimensional triple
Pomeron theory and demand renormalisation point invariance of "B(g)" plotted
as a function of "y(g)". The results are very encouraging, even if their
theoretical foundation is not yet clear. They provide the best evidence for

the validity of first-order calculations in the t¢-expansion.

Section 6 contains a very recent argument* which shows that when the bare Pomeron

intercept is placed above the critical value which gives a renormalised Pomeron

#See note added at the end of the end of these lectures.
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intercept of one, a renormalised pole with intercept below one reappears. This
result is very interesting because it suggests that the Froissart bound can not
be saturated in the Pomeron field theory (with just a single Pomeron pole). This
also suggests that the black disk of the eikonal medel will mot persist when
Pomeron interactions are added to the model. The result of this Section also

closes our uniqueness argument.

Finally Section 7 contains a very brief review of what I classify as subjects
associated with the S-channel content of the Pomeron field theory. Some of
these subjects will be covered in more detail by DeTar in his lectures. These
include the interpretation of the bare Pomeron as being generated by initial
short-range multiperipheral production processes. This links up with the

very interesting question of the scale of diffraction processes and the approach
to asymtopia. It also provides a physical interpretation of the analogy of

much of the mathematics of previcus Sections with that used to describe critical
phenomena. I shall also briefly mention work that has been done on production
processes and the general programme of checking the complete consistency of

the Pomeron field theory with all S-channel unitarity constraints.

SECTION 2 POMERON GREEN'S FUNCTIONS AND THE
WILSON RENORMALISATION GROUP FORMALISM

The final equations of T ((6.33) and (6.34)) state that the elastic partial-
wave amplitude a(j,t} = F(E,Ez) satisfies (near t = 0)

w BEED = (DY [y M @D My (KD (2.1)

; o N
where de(E,EZ) is the phase-space for N quasi-particle Pomerons with energy
E, momentum k and energy-momentum relation E = 1 - u(kz). Ma is a muleciple
fixed-pole r;sidue which we can regard as an amplitud; for tﬁg scattering
of two particles into N Pomeroms. Equation (2.1) is illustrated in Fig. 2.1.
Note that since j n a{t) = 1 we have dropped the signature factors gT and
sin gj which appear in (6.33) of I. They can be harmlessly absorbed Ninto
Mu and MZ .

~N ~N
From Fig. 2.1 it should be clear that (2.1) can be interpreted as follows.
Two particles can act as sources for any number of Pomerons which then propogate
satisfying a unitarity condition before being absorbed by two other particles.

This analogy suggests the following solutiom of (2.1). We write
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o 2 .
F(E, k) = 3 F (k%) (2.2)
nm
: n,m=1
where an(E,gZ) describes the initial emissicn of n Pomerons and Final

absorption of m Pomerons, as illustrated in Fig. 2.2.

- . . .
‘nm(h,k )} can therefore be written in the form

n 2 9]
F(E,K) = de Gk S(E - T E.) 62(k ~ % k) g
nnm ~ S S 4 } . 1 -~ . L 11
i=1 i=1
m 2 m
xjﬁE'dk' S(E - £ ET) 8%(k - £ k) g
~m .m . 1 ~ . .1 m
i=1 i=1
x G (C, k, E'", k") (2.3)
nm ~T2 ~12 ~m ~m

where G (E, k, E, k) is a Pomeron Greens function for the scattering
nm ~ 1T I ~M -1

of n Pomerons into m Pomerons as shown in Fig. 2.3. s, and g, are couplings
of the external particles to the initial and final Pomerons respectively,
which can also have (regular) dependendance on En’ kn and E&, k& respectively.

Note that in the case of the propagation of a single Pomercn, all the integrals

in (2.3) can be performed by using all the §-functions. This gives

2 2 !
Foo(E,k™) = gilx————er (2.4)
11 - 1
r(lsl) (E’1_$2)
where
l r,

G E k

1 CF kg By, k) = e (2.5)

I‘!(l,l) (E’Ez)

The inverse Pomeren propagator (E,k”) will be the centre of atlenLion

for much of this course, since it gives the leading behaviour in (2.2) as

E, kz - 0.

It can easily be checked that if the Pomeron Green's functions Gnm satisfy
Pomeron unitarity, as they will in an interacting Lagrangian field theory, then
the unitarity condition (2.1) will be satisfied by (2.2) and (2.3). In faet

we can show from (6.33) ¢f I that the "on spin-shell" Pomeron freens [unctions
(Ei =1 - “(5§)Vi) is also required to satisly Pomeron unitarity. So the

jump from (2.1) to {(2.2) involves no more and no less than the familiar Jump
from S8-Matrix to Quantum Field Theory. We are assuming the existence of some
off spin~shell continuation of Pomeron scattering amplitudes which, as we

now discuss, in the neighbourhood of E,kz T0 (3 71, t " 0), can be described

by an effective interaction Lagrangian.
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To treat a general interaction Lagrangian we use the functional integral
formalism® and follow the treatment of Calucci [12] and Jengo. In our case
this formalism can be regarded as a compact way of describing some very
complicatad manipulations of the Feymman perturbation expansion (which is
well-defined to the extent that we have a cut—off in our theory, and so there
are no ultra-violet renormalisation problems). We shall drop this formalism
once we have obtained the result that we can neglect all but the triple
Pomeron interaction. The reader who wishes to avoid functional integral

expressions can go straight to the next Section.

We introduce a Pomeron field ¥, which (as a quantum field) in our non-relativ-
igstic formalism contains only destruction operators. The free propagator

i [E +. ie - ué%z + (uo - l)]_l represents a bare trajectory function

ao(t) =t ¢ét. The higher derivatives can be included in the general

interaction which we introduce by writing the action A in the form

J ded’  L(w,u%)

<=

B
1]

S dtdxu£{% LR S @ WG 4 (o = 1)bdk]
-~ Q (0]

3t

IR}

- [+ a; Vzw Vz¢ + oo ¥ (v2¢*).v (V2¢) + _..,J(t

o

, o2 ot 2 20002,
-i [r0 (=)"y + r, ET o+ rc'J )TV + —=)+ Tr

) ki 2,2 * 3 \:3 —_——
S P ) e P e N Tt D B 1,

+ o (2.6)

{Note that we introduce a general space dimension D from the start). [n this

expression [ ]0 is the bare Lagrangian, | ]u contains all higher derivative

terms in the trajectory function, [ ]r contains the triple Pomeron interaction

plus derivatives, [ ]l contains the four-Pomeron interactions plus derivatives

etc. Note the i in front of [ ]r which produces a non-hermitian interaction.

This is required by the (—-l)N factor in the Pomeron unitarity equation (2.1).

Next we write the generating functional

F(J) = f[dlbdlli*]e iA[‘P,‘P*] + i de«"k + J*w dth

*A simple introduction to this formalism can be found in the review article

on Gauge Theories by E.S. Abers and B.W. Lee, Physics Reports 9¢, 1 (1973).

v .7)
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which is a functional integral over classical fields ¥ and ¥*. We shall
discuss the precise definition of this integral further in Section 4. If

we define the quantum field theory Green's functions by

k81 m D n m
¢ (E .,k ,E', k') 6( 2 E. - I E!} &(% Kk, - ¥ kb
I .17 -7 M ~T . 1 . 1 . ~1 . ~ 1
i=1 i=1 i=1 i=1
= D —iE.t. + k.*x Do D SiE't! 4+ k'ex!
= [ v dt dx.e i i Li =i mde,dx!"e TTi7i 0 D1 Ti
. 1 1 . 1 1
i=1 i=1
t
< * — £ ! _— ' ' - .
O[TCo (e, )= wi(e ,x ) (e, %) == (e ,xt) |0 (2.8)

then this expression can also be written as a functional integral over the

classical fields ¥ and ¢* in the form

ialy,d*]

N JSdidyFe w*(Ergl)—--~ W(E;,gé) (2.9
™ plt _
e F(D) (2.10)

J=J%=0

Therefore we can summarise operations on Pomeron Greens functions by operations

on the generating functional F{J).

We impose a cut-off in (E,k) space by limiting the functional integration in
. y ; 2 ]
(2.7) to fields ¢ and §* which vanish for [E' > A%, k] » A, Ve then define

a renormalisation group transformation on (2.7) as follows. We write

P(E,k) = wl(E,k) + wz (E,k) {2.11)
ﬁz A
where v (BK) = b(Ek), v, =0, |E[ < =, [K] < §
n2 2 A
@2(}3,15) = ‘P(Eslf)s Lpl =0, a h JE; < AT, ‘b‘ < |'!“(| < & (2.12)
and so formally
Aly,p*] = A[Wl + wz, ¢l* + wz*] (2.13)

We then factor out the large |E| and Ikl integrations in (2.7) by writing

eiA[wl’ wl*] = fdw2d¢2* eiA[¢l + Wz, ¢1* + wz*] (2.14)

The Pomeron Green's functions can now be re—expressed in the form (2.10) with

B S S R LR LG UL ST R R L L L B T ST S B L L R TR e e I LTI R LT TS TR TR L T T i e A A P PR R e
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2
A replacing A and with the cut—off A replaced by 2— for |E| and by A/b for [k

However, if we now make the following change of variables in the functional

integration

g2, 0 = uE/a, k/b) (2.15)

and define
kS ~ %
Atly', 9] = Alyy, ¥ ] (2.16)
(The reason for the renormalisation factor & im (2.15) will soon be clear). We

can return the cut-off to its original value A and obtain (suppressing primed

momenta and energies for simplicity)

6 (B, k) S(E,) 8Pk, )
nm 1 1 1 ~1

mHn

*
sA T ' 1
= a_z N J‘ dllj‘dl‘}'* el‘A [‘b > P ]

*
P EE b k) L (2.17)

The right-hand side of (2.17) can be interpreted as a Creem's function evaluated

at {a Ei, b ki) i with action A'. Therefore, after eliminating &-functions on

both sides of (2.17) we obtain an extra factor of a—lb—D which gives

n+m

A _ .2 -1L-D A' .
G (Ei, k) =¢ a’b "G (aLi, b k) (2.18)

Hence, if we could contrel the transformation A > A', we could use (2.18) to

determine the behaviour of G (E,, k.} in the infra-red limit E,, kz_ -+ 0.
nm i* 407 i? -~ 1i

Now it is clear that by exponentiating the right-hand side of (2.14) and Taylor

*
enpanding about the point y = y = 0, we can re-express A and hence A' in the

gencral form (2.6). (Actually there are some subtleties connected with the

"normal-ordered™ form of (2.6) and with single powers of the fields [12], but these

can be ignored). Further we can fix g by demanding that the kinetic energy term
<

3

wh —EE-¢ have the same coefficient in A' as in A. We can also keep a'o fixed

by fixing b in terms of a.

A e
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The remaining parameters of A’ can not be controlled and clearly (2.18) is only
likely to be wvaluable if it should happen that in the limit a, b —+ =, the
parameters of A' apprcach fixed-values. That is a fixed-point of the renorma-

lization group transformation A + A', exists. In this case (2.18) gives

Pk oim
R ) @1 F @1 6, k) (2.19)

The vital point we make now, having noted the possibility of a fixed-point, is
that it follows from dimensional analysis alone that for any parameter X in A

the transformation A -+ A' has the form

o<

X' =a” A2+ R (2.20)

v = v(%) can be determined by taking the dimension of E to be that of k? and
assigning X the dimension of X’ by requiring that the action A be dimensionless.

R is the change in A resulting from the presence of the other parameters of A.

(2.20) shows that if v < 0, the original value of ) in A will be completely
suppressed in the transformation A - A' as a » =». Thus we deduce that all
parameters with v < 0 are "irrelevant' parameters in Wilson's sense[3]. For
further discussion of this point we refer the reader to Ref, 3. We shall
simply accept that the controlling parameters in the transformation are those
with v > 0. Tt can easily be checked that

D

y =1 -2

Y = v( >

%20

v@) =1, v(x) =1 - %; v g

(2.21)

v(ao") = -1, v(;o') = - 23 etc.

2

and so for, 2< D < 4, which is the case we shall consider in the next Section,

the only relevant parameters are uo and rD. The values of the remaining

parameters in A' will be the same, in the limit a + =, as if we had started with

all parameters of A besides ao, a'o and rO equal to zero.

PR Ll T L RPN RN I B P S LS8 8NP B s e s s i RIS L o g Rl s mn e e R 1 R I L NI IERE | W A1 U+ arreenm e < r e e g e meme e o mre e e
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Thus we have reduced the problem to that of determining whether the "scaling
behaviour' of (2.18) cccurs in the theory with a simple triple Pomeron coupling.
That is whether a fixed-point is approached in such a theory. We could pursue
this question within the present formaliswm. However, we shall be able to
obtain results goiﬁg way beyond (2.18) by developing a different formalism to
calculate directly the infra-red behaviour of the triple-Pomeron theory. Imn
doing so we shall indirectly verify that (2.18) holds when o takes a certain

critical value {which puts the renormalized Pomeron intercept at one). At this

critical point, as (2.20) zrd (2.21) suggest, rorwas a r o However, a
. r
dimensionless coupling constant 8, = AE is driven to a fixed point and so
A

(2,18} can be used. ({(Perhaps we sheuld note that in the simple dimensional
analysis we have used in this Section v(E) = w(k2) = 2 and so v(u'o) =0, In

general we need not take uw(E) = vw(k?)).

SECTION 3 CONTRUCTION OF THE TRIPLE POMERON THEORY

AND CALCULATION OF THE DIFFRACTION PEAK IN THE «-EXPANSION

In this Section we consider directly the theory specified by the renormalized

Lagrangian LR(w) where

A
LR =3 1 53 (¢ 5t ¢l 23&2 o VgV
1. + o, +2 +
—y i Zorlv et v oyl 24wy (3.1)

We can alsc define a bare Lagrangilan Lu which has the same form as (3.1} but
with no Z's and containing bare parameters and fields which are dencted by a

o suffix (note that A= - 1). We can identify LR and Lu by writing

o "= Z af (3.3)



N w

(3.4)

However, the Greens functions defined by using LR (p) and L (wo) in (2.6) and
11

performing the functional integratiom over tields ¢ and wo respectively
differ by a normalization factor.

amputated Greens functions

F(N’M)

,k -« E' , k'Y= 1 G,  _(E, k.}G E'., k',
(El ~1’ £ m’> - m) .H. l,l( ~1) l,l( k 3)
1,1
S (E., k E' , k')
*EPamrtrt 1T Y Som
c
G i G :
where M is the connected part of M’ we have
i
NI IN G )
3 u

b

This result is given directly by (2.13) and (2.18) if we take a

We fix Zl, 22, 23 and A in terms of r and o' by requiring that
P (1’1}(E, K2} | =0
E=5kZ =20
o i (LD .
E, k =1
5k ( P E,
ko= kg
g i TR(l’l)
2 = '
—nz— (E, k) | . o
N
k = EN
- _ I D+1/2
E; 28, = 2B, E, (2n)
L‘S'l = 15.'1 =0

B L R e s Ll R DU T L L LD U SRR RN TR T, L T T T g R L R R T T B TR T R NI L T rppmp————

will

Defining now the (on energy and momentum shell)

(3.5}

(3.86)

(3.7)

(3.8)

(3.9

(3.10)

LR T TR YR Y e L R P A A TR
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The condition (3.7) will directly constrain A (or AO = aoﬂl) in terms of r and
o'. The applicatiom of the renormalization group to the theory specified by
(3.7) - (3.10) was first carried out by Abarbanel and Bronzan [5], using the
formalism familiar from relativistic quantum field theory. Here we shall use
a slightly different formalism due to Sugar and myself [13], which allows us to
explicitly construct Green's functions,.at least in the e—expansion. This
formalism is rather complicated but is powerful enough to calculate explicitly
the scaling function ¢{p) appearing in (1.2). Both the diffraction peak and
the triple Regge region of the one-particle inclusive cross—-section have been
calculated in this way in Refs, 7 and 11. The results of Ref. 7 are the most
extensive and since I want to present them in some detail T must develop the,
more complicated formalism. I shall show that the formalism simplifies

enormously if we only wish to.prove (1.3).

We shall not use a cut—off to eliminate ultraviclet divergences but rather use
the method of dimensional regularization whereby divergent Feynman integrals are
analytically continued from dimensions where they are convergent. This is
particularly suited Lo our purpose since we have other reasons {(the c—-expansion)
for varying the dimension D of E space in our theory. In fact it follows

from simple power counting that for D < 4, the theory is super—renormalizable.
Zl, 22 and 23 are finite (although they are nevertheless important objects in
our theory). In this case all the ultra-violet divergences of the theory (that
is poles in D) must be absorbed by the intercept counter-term A. This can be

shown to be the case by use of the following analysis, but we shall not give the

full details of this point.

We begin by defining a dimensionless coupling constant {c.f. Section Z - we now

distinguish the dimensions of E and k2)

rO
g = — (E )

D/4 -1 _ -1
o (DG TN L8
CI

(3.11)
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where L =

We also define

'renormalization group' functions

3ln Z3 3 In 23
vy " el Yo o |
a ? A
E In EN B,k2 k ¢ In kN B,EN
N
] A
L In ZZ | - 3 1In 9 [
= - e 2 , = - i,
E d ln EN B,k2 k d In kN B,E
N N
ag £g 3ln ¢
& = - ———
bE 3 In EN 4 M & 3 1n EN |
2 2
B,k N B,k N
_ 8g B 3ln ¢ _ '
Bk aln kzN |B E 8 3 n kzN |B,EN B = {ro’ % }

(3.12)

(3.13)

Z_, Z, and Z_, are functions of dimensionless parameters only which we take to

i 2 3

be g and X = &'k;/EN. Chain rule differentiation allows us to write, for

example, (using (3.2) - (3.4))

which, after elimination of

where we have used 2

3

23(g3)() = eXP f

[ 31ln Z 3 1n Z

E 3 3
= 2 + - N
'E g 2ln g (TE b 3 In y
B gin Z 9 1In 2
k 3 3
L A _—
" T 3 ing e T
31ln Z3

3 1n ¥
g dg' ¥(g,'x)
o B(g',X)

(0,x) = 1 and written

= BE( 1+ Tk) + Sk(l - TE)

YE(l + Tk) + Yk( 1- TE)

» can be integrated to give

(3.14)

(3.15)

(3.16)
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Similarly
__f gdgtT_. 5
22 =@ 0 3 (3.17)
and
;& dg! { B £ }
meo gty g el (-1
where
T = TE + Tk (3‘19)
Next we suppose that (as will be the case in the £-expansion) 8(g,X) has a
linear zero so that
Blg,X) = B' (XD (g—gl(X)) + higher terms (3.20)
Then for g near gl, it follows from (3.15), (3.17) and (3.18) that
- . - 5 B N ¢ g
nz ln(gl(K) g) + 1nzi(X) + x an’i(X)(g gl(k)) (3.21)
=
where Zi =y Z9s Zg and
B SISy A (3.22)
AP kK1 27 ST f3 7 ) ‘
B B B
with ( )l = ( )g=gl(X)° ¢, €, and c, must be independent of X since if this
were not the case, substituting (3.21) for In 2q in (3.14) would give a
logarithmic singularity from the %%ﬁ%% terms, whereas the other terms can be
explicitly shown to be free of legarithmic singularities,
/
(3.21) implies that
(@0 & TOO0GE M - &° (3.23)
g8y
which from (3.11) implies that
g. v &g - ° (3.24)
o 1
g
Teo - = (3.25)
or g gy = (=) ¢

81
and so if ¢ > o g+ B> 7 B, T % which from (3.11) is equivalent to EN -+ 0
with ué and r fixed. We shall exploit this resulrt.

From (3.21) we similarly obtain
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z “2 3.26
2 (gl - g) (3.26)
8178
3 —c2
v By G (3.27)
8, " &1
and also
7 ‘ EE.Q Ted - ;
3 (=== ¢ : (3.23)
8, ®1

To exploit these relations we need to know both E and g, as functiong of &

R, o . ] . o
which in purn we need to know as a functiocn X(gO,XO) of g, and KO for g, s

. k
(. = "jﬁfji). However, we can use (3.3) and (3.27) to write
N

o
o
ok’ G Zok? 2 .
P = —— Al = —. N g ¢ Gz (3.29)
1+ ecH EN ) ry c
N 4e D
ald
o
it}
g ("\) "4 c2
ooz (2057 (3.730)
s Q(X)ro

Hence if we keep the "scaling variable' o fixed, together with ué and ros then
we know from (3.30) that x remains finite as B, 7 * {or EN + 0) and hence
(3.26) and (3.28) give us real information. '

Now if we combine (3.8} and (3.9) with (3.6) and use {(3.26) and (3.28) we

obtain
cooe (1,1
ii—%§ = z71 (3.31)
E=-E
N - 1 525 =
: c -1 .« 1 e )
ﬂN - 0 EN z3 [ - 2 ] c (3.32)
w'r 4 fixed oL
o 8]
and
bife - gl
k" =-E 0“2 “3 {3.33)
=k
~ <N D
-_E . V7 ~(c +c.,) R
" £ GolCotey)yigrlz-litabsr 2 3 (3.34)
] N 0 3 72 = c
EN’ 0 L

EUUNSE I U T SOOI S R ORD TAUTEN B TP 08[BI DAL SHLAHPL DR OR IR PTUAAL D5 I 5V IS Y Sy 1R R 0 P T 4 RTE IR 7e g O P80 8 S e 1 e e
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As we remarked above all the Z's are finite for r_ , © fixed and E_ and EZN

0 N
i . .
fixed. Therefecre, we are quite content to calculatelh( ’l), which is

actually independent of EN and kzN. The above manipulations are ? bit )
confusing but some thought will show that all quantities (Z's, [k S, EN, k N’
etc.) associated with renmormalisation have simply been used as tools to determine
the derivatives of Fu(l’l) which are given by (3.32) and (3.34) if we simply

_ . 2
put -E, = E, EN = E, and write X = X (ro,u;, “Eys %N) = X(ro,dé, E, E Y.

N
We can write the complete propagator with the zero intercept condition (3.7)

imposed by integrating the derivatives given by (3.31) - (3.34) at {ixed X

te obtain

(5E 2 T 7 5E

p LoD g i?y = 7 Fap!
¢ - k 8k E

] (3.35)
A

1t is shown in Ref. [13] that the perturbation expansion of Yu(l’l)(E,kz) is
- -
given by replacing IE by —fE in (3.35). This implies that the intevrcept

counter—term Ao is given by

LS y * 2 3E

' ] (3.36)
k 3k E X

(which is independent of X). This illustrates the point that the ultra=-violet

divergences coming from E' = « are absorbed into Ao. X(E,kz) is still
determined implicitly by (3.30). However, it follows directly from (3.35)
together with (3.32) and (3.34) that (calculating %%“~< from (3.30))
X
(1,1 2 1 - 554
1 ’ (E,k7) . 4e = -1, ’ £07
u E+D lgc (-E) 23 A (1 + x(1 + e 1]
£ fixed 1- —
4c
D
!4 —Cg
X [QQ_ &.ﬁﬁl_ ] c (3.37)
r —_
o gz (X

2

This is the original scaling result of Abarbanmel and Bronzan rederived using
the approach of Ref. [13]. If the Sommerfeld-Watson integral is written
with a{j,t) = gi/F(l’l)(E,gz) then the general form of (1.2) follows immediatcly,

with

= _E&3
n =i (3.38)

and (after noting that X = X(p) with p defined by (3.29)

v = =1 c2 (3.39)

- £
4 ¢

S UL T
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Having developed the above formalism we peint out that it can be simplified
2
enormously if we only ask for the form of the propagator at k = 0. In this

case we can set kN = 0 in (3.8) and (3.9), so that Yk =1 =f8 = 0. We

k k
then have
B=p =2p
B LE B(g)
v o= = vie)
and so
i, - Bygt LB
23 ZB(g) exp fo dg Ea™)
From (3.32)
(L,1y
gl (LN’O) _ Z—l
dEN 3
-£ €3
. EN 4 ¢
ENVO
B —Y(gl)
and s0

y(l’l)(E,O) " EN 1~ Y(gl)
E+0

where gl is now a simple zero of £(g). Note that (1.3) follows immediately

from this result with
n = -Y(gl)

Therefore, if we only wish to calculate n, we need only calculate the simple

functions B8(g) and Y(g) (in the s-expansion say). This simple technique

(3.40)

(3.41)

(3.42)

{3.43)

(3.44)

(3.45)

(3.46)

(3.47)

can be extended to calculate v also but if we also ask for the scaling function

B{o) we must use the more complicated formalism.

Note that (3.37) does have the general form of (2.19). Fixing 52 in terms

of E by (3.30) is equivalent to fixing b in terms of a in (2.19). More

discussion of the relation between the formalism of this Section and the last

Section can be found in the paper by Calucci [12] and Jengo. Here we note only
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that imposing (3.7) fixes (uo - 1) in terms of r by the relation (3.36).
Qur assumption of a zero in B(g,X) with positive slope is then equivalent

to a fixed-point for éo'

Our next task is to combine (3.37) with the £-expansion of the theory to obtain
the scaling function #(v,e) = P(X,e) which appears in (1.2). The c-expansion
is an expansion of all quantities of the theory in powers of £ = 4 - D. When

€ = 0, the theory has a (broken) scale invariance and there is a zero (with
positive slope) of B(g,X) at g = 0 (an infra-red stable zero!). This zero
survives for small € as shown in Fig. 3.1l. Actually when ¢ <+ ( the theory
changes from a super-rencrmalisable theory to a just renormalisable theory.
That the theory is renormalisable at € = 0 is equivalent to the property that

the limit € - 0 is smooth., This in turn requires that a zero with positive

slope occur when £ v 0O,

The above discussion can be rephrased if we give the form of the variocus
functions in (3.13) to lowest order in €. They are calculated from the

Feynman graphs for T(l’l) and F(l’z)

shown in Fig. 3.2, We shall not give
the detailed Feynman rules for calculating these graphs. They can be found

in any of Refs. [5], [8], and [13]. The results are

2
v = 2f = - —B
E E 2(81) 2 (1+1/2)
2.
'Y — 2 _ g (/(/2)
S 2.
2(8m)" (1+4/2)
3 3
=_ £ 2g _ g
"k 58" 7 2, .
(8m) 2(8m)7(1+X/2)
3
¢ = & \hie)
e, = - B (3.48)
2(8m) " (1+X%/2)
which gives 3
S LI By
(8n)
N 2 _ 9 2
T = - __g_mf v o= - ~5Hw§ (3.49)
4(8n) (8m)
Thus we see that to this order in perturbation theory there is a zero of B at
g = 8m (%)1/2. This result will hold if higher terms in the perturbation expan-

sion for B do not have coefficients which are singular as ¢ - 0., However,
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this is essentially the requirement that the theory be renormalisable at

€ = . This, perhaps, helps to explain why the introduction of renormalised

quantities is a powerful tool, at least in the ¢-expansion.

Inserting (3.48) and (3.49) in the above equations we obtain

6 2 1/2 6 2 1/12 6 2
R e T e L e T At
{8m)“e (8m) Te (8n) "¢
which gives
1 1 . L1 _
c = '2— + O(E), CZ - 1_2 + 0(“‘): C3 - 6 + O(E-)
and so we can write
2 -1/4
£ ] - . 81T ™
gl = 8‘” 6 al(xsa) (_ = ( 3 ) d(}\,[-)
2 -1/24 ) 2 1/12
= 877 : - 817 ¢ .
22 = ( 3 ) az(xsﬁ) 2‘3_ ( 3 ) "“3()(923)

So far all the results I have presented are equivalent to those obtained in

(3.51)

(3.52)

Ref. [13]. The important step made in Ref. [7] is to note that the functions

in (3.52) are the vital ones for (3.37) and we retain very little of the
structure of the scaling function if we simply set a; = a, = ay = a-= 1 in
(3.52), even though this is the lowest order e-expansion result for these
quantities. We do much better if we first calculate general formulae for

their derivatives and then use the s-expansion.

For this purpose we first note that from (3.21)

Qani - [dg] dlnZ4 3lnZ{ ]
d1lnX dlnX dg 31nX

_ (—ganj) ~
InX “g = gy 31nZq 31nzg
(Banj) g d1nX - g
% '8 = g 1

where this second relation is also a particular consequence of the special

form of (3.21). Using (3.14) gives

LR DL L O R LU, Ly DT BT L T T e T I T R e T R e TR TN RE Tt AR LAl R

(3.53)

{3.54)

LR LR L VI TR LT L AL R AR NIRRT R RS I TR R T
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?ang

STo% = e—— {3.55)

peat]

and when this is combined with (3.15) and substituted in {(3.54) we cbtain

7. =z N O - i
dlndg . @, & (XE_EY (3.56)
dlnX E' 1 ag :f g = g]_

When this is evaluated using (3.48) and (3.49) we obtain for .y

dlnaz(~) £ X2
dlnX 8 1+X/2 (.57

Integrating this and similar equations for a, ay and a, gives finally

£
g, (0 =81 s a+y
2 - % £
817¢ 4 X 24
T = G5O 1+ 5)
, L _E
= L BrTe 12 Xy 8
, _ L €
- 817¢e 24 X, 16
2,00 = (5 1+ 3) (3.58)

Now, at last, we can substitute (3.58) into (3.37) and obtain the complete

form of the inverse Pomeron propagator Fu(l’l)(E,Ez), that is

£ 1 - L
1+ 2 = 4
(1,1 2 i N 12 81 e, 6 2(ud) 3
: €
L X 12 _ .
X[l + X(1 + ﬂ)] (1 + 5) (3.59)
where X is still implicitly defined by
D
) 2 1 1 E_
t [} >
adk - _ (82 a)lZ (z(io) )6 X(1 + §)~4 (3.60)
l+-?:z 0o
(-E)

An important point to mote here is that (3.59) holds uniformly in X. The

limits X + 0 and X +~ = can be smoothly taken in both (3.59) aand (3.60) and the

results correspond to the forms of F(l’l) obtained by calculating directly

with k2 = 0 or E = 0. The simpler procedure of (3.40) - (3.47) can be used lor

e TEPIE L ] IR R R e A RO
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these cases, and it is clear that (3.59) provides a very nice interpolation
between the two cases. A second very important peint is that (3.59) has no
fixed ecuts in E orx 52, despite the fractional powers appearing in both (2.59)

and (3.6Q0) ~ it is trivial to take E or 52 + 0, with k2 or E fixed respectively,
and obtain a finite result. We can also see that the square bracket in (3.59)
gives a single Pomeron pole for k2 - 0 (t » 0), while the factor {1 + %)L/lz
gives a two-Pomercn cut. These ;ingularities become ceomplex conjugate pairs

in t - 0.

The final stage is to substitute (3.59) into the Sommerfeld-Watson integral

to obtain

6r

" £ r
; T2 1+
do _  gi(t) 6 (1+12) 2, ubt 24 :
ad = 16, 4 ®) T Fr{- = (In 8 ) (3.61)
where 1
] i ~wxl+€/24
F(x) = x —?/12/l+§Z S T dw e i (4.62)
- 14— - e
12 - 3 x,12
(-w) [1+x(1+2—1{)] [(1+5]
®{w) is defined by
_ & b
2+ HH o B (3.6%)
and 2 %' wi
k= (85 rlug) 4l (3.64)
O

Only the imaginary part of the amplitude is included in (3.61). Other sub-
dominant terms are larger than the real part and so it would be inconsistent
to keep it. We can finally eliminate the implicit function in (3.63) by
changing variables to u = 1 + %§ . We extract the contribution of the pole
at x = - 11%752 Jeaving the integral over the cut from y = 0 to 1. We can
then set ¢ = 2 and absorb irrelevant factors into g, to obtain
13
L. a4 nth (3.65)

where now

SO T R LT S M B e P PR S
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2 12
1 i 13x 13 Ll
Flx) = & cos @ (13,5) exp [ - 1 ] cos 13 }
L.l 7.1
12 13 12(33)
is I
7 .13 6 .13
(3 (33
2 . 13y 1
< 13 1p S dv sin § (u,x)[12 - 12]
" ox o0 B i
13 Ul3(l—U)13[£§U - L
2 12 12
12
x exp {- [ lx ]13 cos %5 (3.66)
2u12(1«u)

i
where pfo denotes a principal wvalue integral and the auxiliary function
P (u,x) is defined by

P (v,x) = %5 - sin - (3.67)

The diffraction peak, plotted against x, given by (3.65) (calculated oun a
comp ter) is shown in Fig. 3.3. In the same figure I have plotted the ISR
data at s = 2,500 GeV_z, taking u; = 0.5 and taking 1 GeV_2 as the basic unit
of s. Note that K = 1 because of the fractional power of %5 in (3.64). In
fact the measured wvalue of r gives K~ 1.25 and this is the value we used in
Fig. 3.3. I hope you will agree that the close fit of (3.66) to the shape

of the experimental diffraction peak is remarkable. Note that the height

of the secondary maximum relative to the optical point is independent of the
parameter aé, which I used to place the dip in the right position. I think

R . . . -6 .
it is very impressive that this number ~~ 10 ~ comes out without parameters.

T shall return to the significance of this calculation in Section 7. Here I
note that a similar (but even more complicated)} calculation has been carried
out in Ref. [7] for the case of the one-particle inclusive cross-section., There

is a general scaling law which holds for all large M2 - missing mass, and
s

MZ
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é “ e, (£) 17 8,(0) (1n%p°
2 2 ] M
dtdM 1nM ,ln—z— + ow A
M {1nM™)
x 6 (¢ n ), t (ln ¥, ) (3.68)
M In M

This is the contribution of the triple Pomeron graph shown in Fig. 2.4, which
is the leading asymptotic contribution. It has not yet been possible to

2
calculate the complete scaling function G except in the limits 1n M 7 <

1n 55 . In these limits we have
M
¢~ F° (c (In 2% (3.69)
2 M

ln§§-> > In M
M

¢~ 72 (¢ (1n ¥9Y) (3.70)
ln M° > » InS

In (3.69) F is the same function, given (apart from some normalisation factor)
by (3.62), which appears in the elastic diffraction peak. The function F is,
however, completely new. It has also been calculated in Ref, [7]. The
functional form is similar to (3.62) but we shall not give it here. It is shown

graphically, however, in Fig. 3.5. Note the secondary maximum is nearly

two-orders of magnitude higher.

Note also that in mo part of the triple Regge region does the inclusive cross-
section plotted as a function of t, for fixed s and Mz, show a dip in the
forward direction (that is t + 0). Thus for all practical purposes there is

no triple Pomeron zero. The triple Pomeron vertex of the Pemeron field theory

does vanish at L, = o, Ji = 1,¥i, but the inclusive cross-section does not
turn over because Pomeron cuts .are present as well as the pele and in this

case Ji # 1 also centributes significantly to the Sommerfeld-Watson transform.

AWTRUL TR TAER YYD PP R AOROANN M AP TIPS 1900 8 0 E 0 SRR PRI 0[S 00 31N R 8 R L W NPT PO S LR N g e e
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SECTION 4 THE LATTICE ANALOGUE-HIGH TEMPERATURE EXPANSIONS
AND RENORMALISATION GROUP TRANSFORMATION

Clearly we would like to escape the restrictions of the g-expansion which we
had to use to calculate explicitly in the last section. We would like to

be able to calculate directly in physical space-time, that is D = 2. In this
Section I shall describe attempts to do this which exploit the analogy of

the mathematics developed in Section 2 with that used to describe critical
phenomena. I shall comment further on the physical significance of the

analogy of diffraction scattering with a critical phenomenom in Section 7.

The first step we make is to develop an analogue model of interacting spins
distributed on a lattice, which, hopefully, has a phase transitiom or at least
critical behaviour with the same critical exponents as the Pomeron field
theory, It has been shown by Wilson [3] and Kogut that in this sense Aﬂq field
theory is analogous to the TIsing model and hence AQA can be used to determine

the critical expeonents of this model.

OQur procedure will be to reverse the argument of Kogut and Wilson. Starting
with the functional integral formalism of the Pomeron field theory, we shall
be ted to a lattice analogue model by evaluating the integral using the

saddle-point method. This result is due to Cardy [l4] and Sugar and we shall

follow their treatment very closely.

A lattice analogue of the Pomeron field theory has also been formulated by
Brower [16], Ellis, Savitland Zakrzewski; Their procedure is to choose the
degrees of freedom for the lattice field and the interaction so that the theory
resembles the continuum theory as closely as possible and in particular has

a smooth continuum limit. There is considerable freedom in formulating an
analogue model this way and the model studied in Ref. [16] is very complicated
compared with that obtained from the functional integral approach. 1In
particular it is not yet clear whether the more complicated model has the

same critical behaviour as the simﬁle modél. Here we shall concentrate on

the derivation of the simple model. We éhall discuss the applications of both

models ily briefly, since these have, so far, been rather limited.
For the reasons discussed in Section 2 we now keep only the triple Pomeron

interaction in the Lagrangian, we also cHahge to the real and imaginary part

of the field ¥ = @ + iX as variables. Dropping a time derivative we can write

e e [ ————————— e e et L L T R A LA O R R S IR TR TN TR ST TRE IR L
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L=29 X Cwan? vy (4. 1)
where
V= (4 -1ir®) (92 + xz) (4.2)

We drop the o suffices on our parameters in this Section since there will be
no renormalisation, nevertlicless & must be chosen sc that T(l’l)(u(O),O) =0
and so could still be written as uO(O) - 1 where aO(O) is interpreted as

the "bare" Pomeron intercept. The cut-off will be replaced by a finite
lattice distance. The generating functional of (2.7) now becomes

1 + +
F(J) = /dpdx e-fdtd X [L4+J ¥+ Jv )

(4.3)
The first step is to replace the continuum (t,x) space by a cubic lattice with
spacing & and b in the time and space directicns respectively. The generating

functional then becomes for J = 0,

D .
-a b ; L (ﬁi, Xi)

F(0) = fﬂd@idxi e (4.4)

1

where i labels the lattice points, and the derivatives %E and ¥V are replaced

by finite difference operateors on the lattice (divided by a and b respectively).
The integralions fd@idXi are now simple integrals over the real variables @i

and Xi from -= to +w. If A< 0, then these integrals are certainly convergent
with L given by (4.1). However, it can be shown from (3.36) that if «(0) = 1,

then & = Ac 2 0, that is the bare Pomeron intercept is » 1! (Strictly we nced

a cut-off in (3.36) if Ac'is to be finite at D = 2).

(4.4) must therefore be defined in A > 0, by analytic continuation from 4 < O.
This can be done by first distorting the @ integration as in Fig. 4.1. The
new contour intersects the imaginary axis at @ = ic (c » 0) and is

asymptotic to lines making angles o < %-with the real axis. We can now
continue in 4 up to any value less than cr, for then Re(d + ir@) ~ 0 everywhere
on the contbur, and Re irﬂ3 + = as |@] + «, The X integral is kept along

the real axis.

Now as we discussed in previous Sections the infra-red limit E,Ez = 0,r, a' fixed,
of our theory is equivalent to the limit r + = g,gz fixed. This means we can

2
take r very large in (4.4) in order to explore the E,k” = 0 limit of the theory.

It can also be shown from (3.36) that in two dimensions
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2 2

r r
bevar n (P

2
(the factor %T follows from the dimension of AC alone, the logarithm comes

from the simple two Pomeron loop in Fig. (3.2)). From {4.5) we see that

&C » @ when r + @ and so we can consistently take A& and r large in (4.4).

In this case the integral (4.4) can be evaluated by the method of steepest

descent. Temporarily ignoring the kinetic energy term in L, we look for

v v

saddle points in the @ and X integrations. Y] = X - 0 gives

@ P=X=0 (b) f=2ig5, X=0 (e,d) B =1 K=

nioe

When & > 0, (a) and (b) are outside the domain of convergence, (¢) and (d},
however, are accessible and the § - contour can be distorted {(dashed line
in Fig. 4.1), so that the contribution from all parts of the contour away

from (c) and (d) decreases exponentially when r,A + =

Therefore we write

_ i '
i’)—r+@i

A
- s, + X!
r i i

where s, = 1. Since the second derivatives of V at the saddle points are

0(A) we restrict ﬂi, X; < O(A_l/2

(4.3)

(4.6)

(4.7)

}. Substituting (4.7) into (4.4) and keeping

only second-order terms in @; and Xi gives a multiple Gaussian integral which

can be evaluated explicitly. In the limit of dinterest we then get

S

2 280’ 2 a1
(s,V7s;) =7}

F = b exp {= = (¥s5,)7 +
s, = £1 oy * v

We wish tu interpret s, as a spin at each site of the lattice, and F as the
partition functicn. Denoting each lattice point by co-ordinates t,x (which

take integer values) and setting D = 1 for clarity we can write

(Vs)z =a (s )2 = const - 2a”

- & s s
t,x t,x+1 t,x t,x+l

2 Js 1l -
v 2y = = -
(s S)<at 2 ¢ K St,x (St,x+l 2 £,x St,x—l

¢

Seal,x St—l’x)

(4.8)

(4.9}

(4.10)
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) ( - 8 } (4.11)

t,x(st,x+l + St,x-—l St+l,x t-1,x

, 2 -9 13 . .
if we drop St,x (St+l,x - St—l,X) =3¢ (3 ), which sums to zero on the lattice

(if periodic boundary conditions are imposed).

Ignoring a multiplicative constant, the generating functional now takes the

standard form of a partition function in a thermodynamic model

=H
F= fLe (4.12)
5,
i
with
H=-%k L s.s. t L I .58, (4.13)
<i,j> 3 <ijk> 1]
where {in D = 2)
2 r
2A Lo
k = > a L = -—-i* (4.14)
r r

The k term in (4.13) represents a sum over nearest neighbours in space
directions and the L term a sum over groups of three neighbouring spins in any

of the configurations shown in Fig. 4.2.

An important point to note now is that A in (4.13) still has all the symmetry
properties of the original Lagrangian with respect to (t + -t, x + -x) Z

(T = time reversal; s + -s spin flip) and (x * -x = s = space reversal). Also
the only time dependant term in changes sign under T alone. This preservation
of symmetry properties by the lattice analogue should ensure that, if the system
has a phase transition then the critical exponents will be that of the Pomeron

field theory.

Next we consider the Greens functions of the theory. Consider the two-point
function <O| T [¥(t,x), ?+(0,0)I||O>, which gives T(l’l). This is difficult
to calculate directly because of the problems associated with normal ordering
and a non-zerc expectation value of @ at the saddle-point. These problems
can be avoided, however, by observing that for t > 0

1

- <o (¥ (t,x) - ¥(t,x)]1[¥(0,0) - ¥(0,001|0>

<0l x(t,%) x (0,0)] 0> = -7

<olv(e,x) ¥1(o,0 |0 (4.15)

]
£

"since ¥ annihilates the vacuum. The left~hand side of this equation is
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_fdtePx  (@,%) (4.16)

F7lrepex x(e,x) %(0,0) e
and so we can carry out the saddle-point integratiom, keeping only the leading

terms in ¥(t,x) and X{0,0) to obtain
< Y W > .
o l¥(t,x) ¥(0,01[0> e <s s 4 (4.17)
2 G(t,x, A)

This is a particular example of the relation between the Green's functions of
the Pomeron field theory and the spin correlation functions of the analogue
model. It shows that a system with a doubly infinite number of degrees of

freedom at each lattice site has been reduced to a system with just two.

Having arrived at a lattice analogue model which is (or can be) set up in two
dimensions, what are fts uses? Firstly we would like a positive answer to

the question, is there a phase tramsition in two dimensions? The connection

may not be transparent but if there is a phase transition then this would
show {or could be used to show) that there is a fixed-point of the B function,
defined in the last Section, in two dimensions. If there is a phase~transition
then we expect scaling behaviour of the spin correlation functions G(t,.x,A)
appearing in (4.17) of the form
2
o T *
G(t,x,8) ™ (a-a ) £( , } (4.18)

N c _» 3B ~_ o
A AC ) Ac) 6 Ac)

The requirement that the limit & -+ Ac exists for G also leads to scaling laws

at & = Ac, for example,

™

t

G(t,x,0 ) " v f (4.19)

E.
l:,x2-+<’u (xz)u

When combined with (4.17) this result would imply a scaling law for the Pomeron
Greens functions in co‘ordinate space which would then give a corresponding
scaling law in E and k space.-

i
While it seems unlikely that the scaling function calculated in the previous
Section could ever be calculated like this, we might hope that the critical
exponents a,b,c could be calculated accurately. Unfortunately neither of
Refs. [14], [15] were able to prove the existence of a phase transition in

their respective models, although this was largely due to the complexity of

FRRTITRTY I T



the calculations. However, in both cases applications of the analogue models

were discussed. Ellis [15] and sSavit discussed the high temperature expansion

of their lattice analogue model. In general this method has been very
successful for the determination of critical exponents in thermodynamic lattice

models. To exploit an analogue model in this way we write
A .
H = 2 4.20
7 (4.20)
and identify T with the thermodynamic temperature. Clearly from (4.13) and
(4.14) p71 is closely analogous to T. (In fact if we write a' = Aa in (4.14)

we can directly identify T with 27ty

The high temperature expansion is an expansion of the theory in inverse powers of

T (or equivalently powers of H). The scaling law (4.18) can be rephrased in
terms of T - Tc where TC is the "critical temperature". TFor example,
¥
G{0,0,T) (T - 1)
e C
I=1 .
c o 0
oo (a+ 1) c,n
= et (R 4,21
A YR ey S ) (4-21)
" ioa, 7t (4.22)
T f=u

Taking ratios of successive terms gives

. ay 41 .
L{z) Z — =T (~Ew -1 (4.23)

and so L(%) should be a linear function of % with intercept ~T and slope Tr(x+l).
£ L -

Hence, by caleculating L(%) for sufficiently large %, we would hope to calculate
both TC and 4, In principle it would also be possible to determine 5 and 7 in

(4.18) by high-temperature expansions of suitable guantities.

Values for the crirical exponents of the Pomeron field theory were obtained by
Ellis and Savit in their model using this approach (assuming the existence

of a phase transition). These values were slightly higher than the results
given by the t-expansiun although since they were unable to calculate more
than three terms in the expansion (4.22), they were unable to place much
confidence on the exactness of their results. Their main conclusion was that

their results confirmed the approximate validity of the c-expansion results.

Cardy [14] and Sugar discussed a rather different application of their analogue

model. They considered what is a relarively old idea in critical plhenecmena,
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but which has only recently been applied. Am explicit remormalisation group
transformation is carried out on the lattice. The lattice sites are grouped
into cells, which consist of a finite number of sites and have the same periodic
structure as the original lattice. With each cell is associated a spin s'
which takes the valde of 1, according tc whether the sum ¢f all the site spins
in the cell is positive or negative. The configurations when the sum is zero
are assigned either to s' = +1 or s' = -1, in such a way that changing all site
spins transforms a configuration with s' = +1 intec one with s' = -1. The site
spins can now be relabelled by the cell spin s' plus an internal cell variable
0. A new Hamiltonian H' is determined by summing over ¢
1 1
o Ml e r e f(s) (4.24)
oi
Ng depends on the number of cells and can be thought of as the self-energy
of a cell. This transformations defines new couplings k and L in (4.13) and
once again the point of the exercise is to look for a fixed-point of the trans-

formation. This would correspond to scaling behaviour as discussed above.

Cardy and Sugar were not able to prove the existence of a fixed-peint although
there is some hope that further numerical work might lead to this result.

However, they were able to prove that if a fixed point exists, then the

Froissart bound is satisfied. That is if a solution of the form (l1.2) does
exist in two dimensions then n = 2. They were also able to show that the

elastic cross—~section is less than the total cross-section.

TR
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SECTION 5 THE LOOP EXPANSION AND THE
CALLAN-SYMANZIK EQUATION

In this Section we briefly discuss an alternative route to calculating directly
at D = 2, which has been employed by Dash [17] and Harrington. The method

used is again analogous to a technique used for critical phienomena except

that Dash and Harrington have extended the idea in what seems at the moment

to be a very promising direction.

The basic idea is simply to calculate the theory described in Section 3, in two
dirensions, in pérturbation theory, and see if the results are sensible. Now
the infra-red problems associated with imposing the intercept one condition
(3.7) are very serious in two-dimensions, and standard perturbation theory
certainly can not be used [13])]. The constructional method of Section 3 can

be used in principle by first calculating Y and 8 from lowest order perturbation
30 2o and & from (3.15),
(3.17) and (3.18) and then using (3.31), (3.33) and (3.35) to calculate the

theory (they will be convergent), then calculating z

complete propagator. If this propagator is used in the next order of perturb-
ation theory no divergence problems will be encountered and the process can

be repeated. In this way the complete theory can in principle be calculated

in two dimensions [13] (provided a zero of B exists at each stage). Unfortunately
this process is very complicated and while it would be very nice if somebody

had the strength to carry it through, at present this looks unlikely.

Alternatively it is possible to not impose the intercept one condition, and
calculate in the "massive" theory with intercept less than one. In this case
it is possible to calculate using the Callan-Symanzik equation. This also in-
volves B and ¥ functions but these are now defined as derivatives with respect
to the intercept (that is "mass") rather than the renormalisation point, as

in Section 3. It can then be argued that ultra-violet scaling behaviour
observed in the massive theory at a critical value of the coupling constant
must be identical to that found in the massless theory, since the mass (or
intercept) is unimportant in the ultra-violet region. (Preciseiy the same
argument is used to justify the calculation of the critical exponents of
massless Aﬂa using the massive theory [19]). Hence one calculates the 8 function
of the Callan-Symanzik equation, locks for a zero and calculates the associated

critical exponents.
This procedure was carried out in Ref. [17] for the Pomeron field theory.

However, although the results were not too discouraging - the critical exponents

were again of the same order of magnitude as in the c-expansion - the precise
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results were very sensitive to the normalisation point chosen to renormalise
the ultra-violet divergences of the theory. To all orders of perturbation
theory the critical exponents should be indcpendent of the renormalisation
procedure. MHowever, too finite order in perturbation theory, i.e., the

loop expansion, this will not necessarily be the case.

Consequently Dash and Harrington were led to demand invariance under changes
of the renormalisation peint. Conventicnally we ask for a zero of the 2

function regarded as a function of the dimensionléss coupling constant g

and than calculate y(g), say, to determine a critical exponent (compare

(3.40) - (3.47)). 1Instead we can plot £ as a function of Y for variocus values

of the senormalisation point EN. (For the purpose of illustration the reader

can associate & and Y directiy with the functicns defined in (3.40) and

{3.41), although strictly they are Callan-Symanzik functions - in two dimensions).

The results are shown in Figs. 5.1 and 5.2 in the one and two-loop approximation.

In the one-loop approximation a zero of the r-function, of course, exists for

all E_ . lowever, note that the intersection point is much better defined

N
than the zero as EN is varied. 1In the two loop approximation there is n¢
zero of the E-function. (Although the zero will, of course, return in the

three-loop approximation simply because E(g) ~ + g7 and #'(0) - 0. In the
two~loop approximation #{g) ~ - gS and thefe need not be a zero). lowever,
there is a point e where géW(YC) is independent of EN. Ta all orders of
perturbation theory we expect the zero of £ to be the only point with this
property. Further YC changes very little as we move from the one loop to the
two loop approximations. Hence, should we accept Yc as the best estimate of

n in {1.2) and (1.3)? 1 suspect so and I believe that further theoretical

investigation will help us understand why.

Dash and Harrington are currently applying this method to the critical
exponents of solid state physics, where, of coursc, most of the exponents
have been accurately determined'both experimentally and theoretically.
Apparently the initial results are encouraging. Here we note only that the
results for n = YC given by Figs. 5.1 and 5.2 lie very close to the first

order ¢ expansion result, that is
5 1 .
A O B 6 = 0.166 < 0.18 (5.1

The one and two loop results for v are equally encouraging, they give 1.05

and 1.08 respectively and so

EENTRNEEES IS
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v 1,05 < % = 1.08 < 1.08 (5.2)
That this calculation procedure gives (apparently) convergent numbers which
lie very close to the first order e-results is very encouraging and perhaps
helps to explain why the corresponding calculation of the scaling function
in Section 3 gave such good results. It is well-known that the second-order
e-expansion results [20] for n and v discourage the belief that the second-order

is any better (or worse!) than the first order.
SECTION 6 UNIQUENESS OF THE SOLUTION - WHAT HAPPENS WHEN 4 = AC

In this Section we close the argument for uniqueness of our solution thar we
referred to in the introduction by presenting a recent argument developud by

Sugar.

We argued in the introduction that unitarity in the angular momentum plane locks
very like unitarity in momentum space and stated that we know of no sclutions

to this sort of condition besides basic poles plus cuts, (apart from degenerate
massless theories). Note that the Pomeron trajectory must have a t-dependence
and in particular must have a singularity at the two-pion threshold. This means
that a degenerate Schwartz trajectory with the Pomeron and all multi-Pomeron
trajectories co-inciding is not possible, that is we can not solve (1.1) with
aN(t) = ot} when 2(t) is singular at the two-pion threshold}, It might also be
possible to argue that Regge poles plus their associated cuts are the only
allowed angular-momentum plane singularities as follows. Mandelstam [21] has
argued that only Regge poles would be allowed in the angular momentum plane

if elastic (t-channel) unitarity were exact, and as we know the cuts are
associated with the multiparticle unitarity condition. It is possible that the
multiparticle equations could be introduced successively and at each stage

it could be proved that the only new angular momentum singularities allowed

were those generated by the singularities present at the previcus level.
Certainly a maximal analyticity hypothesis could be formulated this way, which

would imply the result we require,

In the introduction we next used the experimental facts of factorisation plus

rising cross-sections to argue that the Pomeron must be a single isolated pele

in t » 0 and must have @{0) = 1. 1In Section 2 we argued that the general class
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"quasi-Pomerons"

of solutions of Pomeron unitarity given by a field theory of
with arbitrary interaction Lagrangian had the same E,Ez -+ 0 behavicur as Lhe
simple theory with a peint triple Pomeron interaction studied in Sectiomn 3.
(It is possible te avoid this result by arranging a cut—off dependent cancel-
lation of terms in the Renormalisation group transformation [12]. Such a
cancellation is very artificial and it seems extremely unlikely that this form
of solutinn would avoid the famous decoupling problems. As I discuss briefly

in Section 7, the triple Pomeron theory does avoid these problems).

Nevertheless there is further possibility for a different solution which we
have not yet eliminated. In Section 3 we imposed the condition (3.7), that

is T(l’l) {(0,0) = 0 and that implied A = &C = ao(O) -~ 1 (»0). Now we can
ask what happens if A > Ac? If A< AC then the situation is relatively simple,
we simply get a leading {(renormalised) pole with intercept less than one (this
can easily be shown from perturbation theory, which is convergent in this case).
However, if 4 > &C we might perhaps expect the contributions of other Pomeron
Greens functions, besides the propagator, in (2.2) to become important. Model
calculations have led some people te believe that the eikonal result of
saturation of the Froissart bound would occur when the sum over m and n in
(2.2) was carried out [23], [24]. Personally I have never understood how a
satisfactory angular momentum plane structure could arise in this case. The
following argument (due to Sugar [18] and as yet unpublished) suggests very
strongly that if & > Ac then we simply recover a.leading Pomeron pole with

intercept less than one.

As we discussed in Section 4 when A > > O the functional integral giving the
generating functional of the theory is dominated by the saddle-points (c)

and (d) in (4.6). Suppese we pick on one and give the field corresponding
vacuum expection values. (As we shall see this will lead to sensible results
for a4 » » rzfa,, but for 4 57 which is ﬁhe case for A AC as we discussed

in Section 4, it would not give sensible results). We could choose either, but
) 2iA°

suppose we choogse (d), where ¥ = 0 and ¢* = - and write
2ih :
vo= oy, e (6.1)
g0 that F= .1; +-ﬁ1 where
<>
¢ - 1 igts 2. P o= a'VETReVYT - ARTHED! (6.2}

e
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- aprl , ir
L= mpr” 4+ 5

I ARG (6.3)

Note that it is -2¢'#*¢' which appears in (6.2}, so that LO is the free Lagran-
gian for a bare Pomeron with intercept uO(O) - 1= -A, that is uo(O) < 1l. We
can not yet do perturbation theory with LI given by (6.3), since our Greens

functions are still given as vacuum expectation values of | and ¢*, e.g.,

¢V ety = <0lbex,0) v (0,0 |0 (6.4)
: 1 6 N

HD T T Y (6.5)

PRES )

F(O) J= 63(0,0) J=g%=0
= <0]y' (x,t) {2%9_ + ¢'%(0,0)1]0- (6.6)

However, order by order in perturbation theory

<0lu'{x,t)] [0~ =0 <0lp' (x,£) |0+ # O _ (6.7)

. X 2
since ' commutes with the interaction term A¢'", but U'#* does not. Therefore

¢ Gee) = 0[yt G,0) 814 00,0 0> (6.8)

and we can simply do standard perturbation theory with ¥' and ¢'¥% as our basic

fields, and LI given by (6.3).

Suppose now that we deo perturbation theory to a given order n and calculate

the self-energy which we write as
I = (6.9)

(the reason for this graphical notation will soon become clear). Suppose

we add one more line attached to two triple Pomeron vertices
£, = (6.10)

This gives one more logs integration with three extra inverse propagators

which are of order A if A > > 0 and so

2 2
2[didk o
rf 3 C oes <t (6.11)

1f we denote (-A)w'z by
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-—"i.“"l‘Jl < (6.1.2)
There are two possibilities for adding such vertices to Zn

1) )_C:G) 2) . (6.13)

In both cases we have four new propagators, two new r's, one new & and cne

new logs integration giving

2 2 ‘
2, dEdk r : ‘ -
r S = y I (6.14)
r2
Consequently for 4 = =» o we have
(1,1) ., 2 1 o | o
Ve - i oGl (635

and so we recover an isolated leading pole with intercept less than one.

N : ’
For & AC the above arguments clearly do not work. However, there seems Lo
be nu reason for any change of structure as A approaches A . Theréfore, it

seems safe to assume that there is only one critiecal value of A at which the

Pomeron Field theory gives a rising total .cross—section and the scalivng form

¢1.2) and (1.3) results. Saturation of the Froissart bound does not seem Lo
be possible with a single factorising Pomeron pole, as suggested by experiment.
OF course, it remains an open question whether such behaviour could be obtained

with some finite {or possibly infinite) number of pocles.

SECTION 7 S-CHANNEL UNITARITY: THE BARE PERTURBATION EXPANSION
THE ASYMPTOTIC SCALE, AND PRODUCTION PROCESSEb

So far we have concentrated almost exclusively on the elastic partial—wavé:
amplitude and in particular the contrlbutlon of the Pomeron propagator. I
have emphasised that we can make a prec1se ana1y51q of the infra- red o¢hav1nur
of the propagator and so predict the asymptotic dlffractlon peak As I have .
stated (but not proved) the propagator does give the leadlng behav1our of the
differential cross-section (sufficiently near t = o) and 51nce thls can be
calculated exactly my attitude has been to smmply calculate thlS behav1our '
and compare with experiment afterwards. 4s 1 shall dlscuss bhortly I belleve
this approach can be extended to the asymptotic behav1our of all exclusive aud
inclusive preduction processés.' 4As I have also empha31zed 1t is the content of

t-channel ypitarity that we are exploiting (together with crossing and

analyticity). While I believe this is the determining factor, it means that
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we can only indirectly check the constraints of s-channel unitarity by such

means as checking that inclusive sum rules are satisfied asymptotically.

We can try te develop a more detailed understanding of the s—channel production
processes that are producing the Pomeron field theory results by introducing

the bare perturbation expansion. The theoretical significance of this will

be discussed in a lot more detail by DeTar. Here we note only that there is

an expansion of the Greens functions of the triple Pomeron theory of Section 3
in which we write the complete set of Feynman graphs (as illustrated in Fig. 7.1)

where the propagator is given by

Fo(l’l) = E - aégz + 4, (7_ 1)

and the vertex is o (apart from a normalisation facter). Since AO » 0, we
expect the convergence of this expansion to be somewhat delicate. We can now
attempt to identify the bare propagator with some elementary object in our
underlying strong interaction thecry. For example, in a dual model it might
correspénd (roughly - see DleTar's lectures} to the set of graphs which contain

a single Pomeron. In a field theory it would be the basic set of graphs
generating a vacuum pole near one. Alternatively we can try to be more physical

by taking the imaginary part of our amplitude and identifying the various

graphs with producticon processes through unitarity.

Accepting the experimental evidence that production processes are successfully
described by a basic multiperiphal process (uniform spread in rapidity with

a sharp momentum transfer cut-off, and short-range correlaticns in rapidity)

we might identify this process with the imaginary part of the bare Pomeron -

as in Fig. 7.2. The second graph in Fig. 7.2 is then identified {partly)

with diffractive production of large missing masses as in Fig. 7.3. As DeTar

will elaborate there are other contributions to the imaginary part of the

graph of Fig. 7.3. All Pomeron Greens functions would have similar expansions

and their imaginary parts are interpreted as connected with diffractive production

or absorptive corrections as in Fig. 7. 4.

Lf we suppose that the bare expansion (or rather the first few terms) are what
we see at present energies, then we can try to extract the bare parameters

Tys ué, AO etc. from experiment. The present rise of the total cross—section
can be attributed to a bare Pomeron pole with intercept above one. The series
has an energy dependence which guarantees that it will diverge at asymptotic

energies and reproduce the asymptotic results of Section 3. Note that this
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interpretation of the experimental results fits nicely with the critical
phenomenen analogy. The basic production process is a short-range (in rapidity)
interaction which by itsell would simply produce a simple Pomexron Regge pole.
However, the interaction is so strong that it produces a rising total cross-—
section, with the absorption balanced at its most critical value so that the
cross—-section continues to rise asymptotically (& = AC). To achieve this it

is essential that long-range interactions set in and critical behaviour

develops.

Having developed the short-range interaction or perturbation picture, we can

try Lo estimate the energy at which the asymptotic {or long-range) behaviour

sets in. This is discussed in Refs. 7 and 11 as well as in a recent paper by
Amati [25] and Jengo. Before discussing this here, let us note that both
asymptotically and sub-asymptotically, the contribution of the higher Pomeron
Greens functions are determined by the arbitrary couplings 8, B appearing

in (2.2). 1In general these contributions will be associated with non-factorising
diffraction processes, which become increasingly important for larpge t.

Since factorisation seems to be so good [6] we assume that we can neglect

8y~ ="8 7 and need discuss only the factorising Pomeron propagator.

There is general agreement in Refs. 7, 11, and 25 that the transition between’

the bare expansicn and the asymptotic expansion is determined by a factor

K -2 In § (7.2)

where k depends on the normalisation convention. Essentially by using the
techniques of Section 3 all three sets of authors comstruct models which
illustrate the transition. There is also agreement that when r and uo' are

determined from present experiments the transition region is
In 8~ 10 - cr S v 104 - 105 G.eV2 (.7'3j)

Fig. 6.5 shows a plot of recent cosmic ray experimental results for the total
cross—section of protons on air [26]. If you look closely you can see that
there is a transition from the sharp emergy rise around the 15R region of

103GeV_1 to a slower energy dependence, which cccurs around 104 - lOSGeV_l.

How do we reconcile the scale of (7.3) with the close fit of the diffraction
peak calculated in Section 3 with the 1SR data? Firstly it could well be that

since the diffraction pattern is changing only slowly with energy at the 1SR
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{(the dip is moving in approximately like 1n S as required by (1.2)) it is
already close to its asymptotic shape and will not change much as the energy
rises through another order of magnitude. Physically we know that the total
cross-section reflects all production processes and so may approach its

asymptotic behaviour more slowly.

However, 1 would add a note of caution to using the bare expansion to extract
the parameters T and ué. Conventionally the sharp exponential t-dependence
of differential cross-sections is associated with the residue functions

g, and 83 in (1.2). This t-dependence is then factorised out of the inclusive
cross—section before extracting the triple Pomeron coupling which is then alsec

parametrised with an exponential in order to extract - However, as we see

from Fig. 3.3 very little of the t-dependence may be due to 8y and g If

we fit %% directly with (3.65) and fit HE%§7 with (3.68) we may reach very
different conclusicns en the parameters r and ué. (A detailed form of

(3.68) can be found in Ref. [7]).

A further advantage that is often claimed for the bare expansion is that the
cutting rules of Abramovskii [27], Gribov and Kanchelli (which DeTar will
discuss) can be used to calculate the Reggeon Calculus rules for inclusive
cross-sections directly from the rules for the elastic amplitude. However,

I am coptimistic that we will be able to take discontinuities in a well-defined
way within the formalism of I. We should then obtain well-defined Pomeron
unitarity equations (and hence a Pomeron Field Theory prescription) for all
inclusive discoatinuities without the "AGK rules" - or rather we would prove

these rules.

Given explicit Pomeron Field theory formulae for all exclusive and inclusive
amplitudes there will be many s-channel unitarity constraints to check. The
one-particle inclusive sum rule has been finally checked in full detail in the
triple Pomeron region in Ref. [7]. Using the AGK rules Caneschi [28] and

Jengo have verified that the multiplicity moments <nP> have the behaviour

P(l+m)

<nP> “w 1ln 8 (7.4)
where v also appears in (1.2). Further they have shown that
c='”P’ s A+ P Ly S o) (7.5
P P 2 1z PR P .
which not only is in agreement with all positivity requirements but also is
in surprisingly good agreement with experiment {[28]. Finally Bartels [29] and
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Rabinovici have used the Pomeron Field Theory rules for production amplitudes pre-
viously extracted from Hybrid Feynman graphs by Bartels [30] te show that the old
Finkelstein-Kajantie problem is definitely avoided. They did, however, find a

bound on the magnitude of the particle/two Pomeron coupling.

NOTE VERY RECENT DEVELOPMENTS

Since these lectures were prepared a large number of papers have appeared which
are relevant to the material of the latter part of the lectures. As a result, T
have prepared a list of all the papers that I am aware of, giving the sections of
the lectures that they are relevant to together with some short comments, This

list appears below.

I would also like to emphasize that the argument of Section 6, which was com=

municeted to me by Sugar, was just one result of an extensive investigation by a

iarge collaboration. This work is more completely reported in the first paper

listed under Section 6 below.

Section 2

W.A. Bardeen, J.W. Dash, S.S. Pinsky and V. Rabl, Phys. Rev. D 12, 1820 (1975).
This paper discusses explicitly the stability of the triple Pomeron theory
agalnst the addition of a four-Pomeron interaction.

Section 4

G. Parisi, Phys. Letters 56B, 470 (19753). This gives a third lattice mocel, which

is quite similar to that of Ref. [16].

A general discussion of the relation between high-energy behaviour and statistical

mechanics is given by
J.R. Ellis and R. Savit, Nuclear Phys. B94, 477 (1975).
Further material relevant to this section appears in

R.C. Brower, J.R. Ellis, R, Savit and . Zinn—-Juscin, CERN TH 2125 (1976), to appear,
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Section 5

J.W. Dash and S.J. Harrington, Phys. Letters 59B, 249 {(l975); LBL preprinc 3885
(1975). These papers give improved results for Lthe calculations reported in
Ref. [17].

J.A. Shapiro and T.F. Wong, Phys. Rev. D 12, 2390 (1975). This paper criticizes
the work of Dash and Harrington by compariﬁg it with similar calculations of

Ap" critical exponents.
Section 6

H.D.1. Abarbanel, J.B. Bronzan, A. Schwimmer and R.L. Sugar, SLAC-PUB-1619 (1975).
This paper gives a general argument that the instability of the vacuum shifts

a bare Pomercn intercept above the critical value to one belew this value.

There has been a lot of controversy surrounding this subject, particularly with
respect to how the Green's functions of a shifted Pomeron field should couple to

the external particles. Relevant papers are

S.A. Jackson, CERN TH 2058 (1975).

J.R. Ellis and R. Savit, CERN TH 2094 (1975).

D. Amati, L. Caneschi and R. Jengo, CERN TH 2047 (1975).

V. Alessandrini, D. Amati and R. Jengo, CERN TH 2089 (1975).

In the last two papers the one-dimensional Reggeon Field Theory is studied in de-

tail.

W.J., Zakrzewski, Durham preprint (l975). This paper studies the effect of higher

crder couplings on the intercept shift.

In the light of the controversy it seems to me that the vital question for a theory
that starts with a bare Pomeron intercept above the critical value is "can the
theory be organized to demonstrate that Pomeron unitarity i1s satisfied by the
complete partial-wave amplitude?" This question has not been answered yet. The
perturbation expansion of Section 6 is unsymmetric with respect to i andld)+ and

so does not satisfy Pomeron unitarity perturbatively. It seems to me that the

only possibility to satisfy Pomeron unitarity may be to obtain a renormalized pole

{+ cuts) with intercept less than one. 1In this case (essentially) nothing new

has been learned by formally starting with the bare intercept above one.
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Section 7

There have also been many new papers relevant to this section. New approaches to

the bare perturbation expaunsion of the Reggeon Calculus are given by

M. Ciafaloni, G. Marchesini and G. Veneziano, WIS 75/22Ph and CERN TH 2048 (1975).
These authors develop the ""tepological expansion' which is motivated by both
duai- and field-theoretic models. Not only is the expansion crossing sym-
metric so that t— and s—channel unitarity can be simultaneously studied, but
it alsc seems to resolve the counting problems inherent in deriving the
Reggecn Calculus bare perturbation expansion from an underlying theory. The
ACK'cutting rules are also derived.

M. Baker and L.D. Mclerran, Seattle preprint (1975)., This paper discusses the
physical basis of the bare expansion when it is combined with the AGK cutting
rules. The AGK cutting rules are also discussed from many different points
of view in the following papers. There seems to be universal agreement that
these rules are very general,

T. De Grand, Phys. Rev. D 8, 2233 (1975).

T. De Grand and C.E. De Tar, CERN TH 1962 (1975).

J. Koplik and A.H. Mueller, C0-2271-57 (1975).

L.D. Mclerran, J.H. Weis, RLO-1388-673 (1975).

N. Staton, Imperial Coll. preprint {1975).

P. Suryani, Phys. Rev. D 12, 2124 (1975).

J.L. Cardy and P. Suryani, Santa Barbary, Cincinnati preprint (1975).

The phenomenological application of the bare expansion te both elastic and in-

clusive experiments has been studied by
A. Capella, J. Kaplan and J. Tran Thanh Van, Nuclear Phys. B27, 493 (1975) and

CERN TH 2083 (1975). Thesé authors conclude that the bare parameters of the

Pomeron are not compatible with a "critical" Pomeron.

The addition of low energy threshold parameters to the bare propagator, analogous

to the temperature in statistical mechanics, is advocated by
J. Dash, Oregon preprint OITS-75-37 (1975).

For present energiles Gribov himself advocates a perturbative approacl based on

the smallness of the Pomercn slope.
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V.N. Gribov, Leningrad preprint 148 (1975). This gives o, ~ (In In s)? at appli-

T
cable energies. The approach is scmewhat similar to that of Amati et al,

above,

Thorough discussions of the avoidance of decoupling problems by the Strong Coupling

Pomercn can be found in

J.L. Cardy, Phys. Rev. D 12, 3346 (1975).
J. Bartels and E. Rabinovici, FNAL 75/55 (1975),

Finally we note three other general review papers

J.L. Cardy, APS proceedings, Seattle (1975).
E. Savit, CERN TH 2059 (1975).
A.B, Kaidalov and V.A. Khoze, Leningrad preprint I93 (1975).

We also note that the Reggeon unitarity relation, on which these lectures are
based, has been challenged by B.M. McCoy and T.T. Wu, FNAL 74/88, 74/89 (1974).
Their arguments are based on field theory. However, the challenge has been refuted

by I.T. Drummond and I.G, Halliday CERN TH 2086, 2108 (1975).
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Fig. 2.1 Pomeron unitarity

N m

Fig. 2.2 The expansion of the Froissart-Gribov amplitude in terms of Pomercn
Green's functions

Fig. 2.3  The general Pomeron Green's function
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Fig. 3.3 Comparison of the scaling function for the diffraction peak with
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Fig. 3.4

The triple Pomeron contribution to the one-particle inclusive
cross—section
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Fig. 5.1 The twisted fan fur B(g) in lowest order
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Cutting the bare propagator
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The bare expansion for the Pomeron propagator
Cutting the first Pomeron interaction diagram
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