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cyclicity is necessary for a description of the effective action in terms of a generalized prod-

uct. In previous work we showed that this property indeed emerges for a non-associative

product that we extracted from open string amplitudes in curved background fields. In

the present note we extend our investigation through second order in a complete deriva-

tive expansion. We establish cyclicity with respect to the Born-Infeld measure and find

a logarithmic correction that modifies the Kontsevich formula in an arbitrary background

satisfying the generalized Maxwell equation. This equation is the physical equivalent of a

divergence-free Θ, which is required for cyclicity already in the associative case.
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1. Introduction

In a seminal paper, M. Kontsevich [1] gave an explicit formula for the deformation quanti-

zation of a Poisson structure on R
n in terms of a formal power series and established the

global existence on arbitrary Poisson manifolds using formal geometry. By definition, a

deformation quantization is an associative deformation of the commutative product that is

proportional to the Poisson bracket {f, g}Θ = Θ
µν∂µf∂νg to first order in Θ. A symmetric

part of Θ would be a Hochschild cocycle, which can be removed by a gauge transforma-

tion [1, 2]. The Jacobi identity of the Poisson bracket is equivalent to a vanishing Schouten

bracket [Θ,Θ] = 0, which, in turn, is necessary for the existence of an associative deforma-

tion.

Much work on deformation quantization was stimulated by the observation that non-

commutative geometry arises in open string theory [3]–[5]. The case of a constant back-

ground B-field was shown to lead to a non-commutative product of functions on the world

volume of a D-brane, which turned out to be given by the Moyal-Weyl formula. Cattaneo

and Felder [6, 7] then gave a physical derivation of Kontsevich’s formula in terms of a path

integral quantization of a Poisson sigma model [8], which corresponds to an open string

theory in a certain topological limit.

More recently the situation of open strings in curved backgrounds was considered and

it was shown that the resulting non-associative deformation coincides with Kontsevich’s

expression at first order of a derivative expansion [9]–[11]. In [10] we argued that a non-

vanishing field strength H = dB of the 2-form B-field is incompatible with a topological

limit of Einstein’s equations. The dependence on the metric gµν therefore should not be

ignored. The background fields actually include a gauge connection 1-form A that lives on

the brane in addition to the bulk fields Bµν and gµν . The equations of motion, however,

can only depend on the gauge-invariant field strength H = dB and F = B + (2πα ′)dA of

B and A.

– 1 –



J
H
E
P
0
3
(
2
0
0
4
)
0
0
3

Since D-branes can be embedded at arbitrary codimension we expect that only the

variational equation for the gauge field plays a role for the non-commutative dynamics

while the bulk field backgrounds B and g should remain unconstrained. The antisymmetric

non-commutativity parameter Θµν and the “open string metric” Gµν are related to these

fields by the matrix inversion G + Θ = (g + F)−1. The generalized Maxwell equation,

GρσDρFσµ−
1
2Θ

ρσHρσ
λFλµ = 0, which comes from the variation of the Born-Infeld measure

√

det(g + F) with respect to the gauge connection A, can thus be recast into the form

∂µ

(

√

det(g + F)Θµν
)

= 0 . (1.1)

For the resulting non-associative product [9, 10], we showed that, to first derivative order,

• the integrated product of two functions reduces to the ordinary product and that

• the integrated expression for the associator of three functions vanishes

up to surface terms for the Born-Infeld measure, if the generalized Maxwell equations (1.1)

are imposed on the background gauge field [10]. This property is called cyclicity. It is the

purpose of the present note to confirm that cyclicity in the above sense can be extended

at least through second order in the derivative expansion.

The topological limit corresponds to the situation where the metric is much smaller

than all eigenvalues of F so that Θ ≈ F−1. A vanishing field strength H = dB = dF = 0

(on the D-brane) thus becomes equivalent to the Poisson condition [Θ,Θ] = 0 and the

Born-Infeld measure reduces to the Liouville measure for the symplectic structure Θ. If

we then drop the condition that Θ be invertible and consider arbitrary Poisson structures

the Kontsevich formula still defines a deformation quantization, but the natural measure

is lost. In that context a measure Ω has to be introduced as an independent object [12].

Notably, Felder and Shoikhet constructed a cyclic (gauge-equivalent) modification of the

Kontsevich product for Poisson structures Θ that are divergence-free with respect to a

measure Ω, i.e.
∫

M

Ω · (f ∗ g) · h =

∫

M

Ω · (g ∗ h) · f (1.2)

for functions f, g, h ∈ C∞(M) of compact support if divΩΘ = 0 [13]. Using the identity

g ∗ 1 = 1 ∗ g = g this immediately implies the generalized Connes-Flato-Sternheimer

conjecture [14]:
∫

M

Ω · (f ∗ g) =

∫

M

Ω · f · g . (1.3)

In the context of open string theory, there exists a natural measure regardless of the rank

of F or of Θ, and the divergence condition has the natural interpretation of a generalized

Maxwell equation (1.1) if Ω is identified with the Born-Infeld measure
√

det(g −F) dDx.

Moreover, cyclicity (1.2), (1.3) of the deformed product can be preserved, at least through

second derivative order, even in the non-associative case. We conjecture that this property

can be maintained to all orders, but it may then become necessary to take into account

derivative corrections to the Born-Infeld measure [15]–[21].
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In this note we explore the cyclicity property at second derivative order of the back-

ground fields. Since a diagrammatic calculation along the lines of [10] would be extremely

tedious, we check the consistency of our proposal with an ansatz. We should, of course,

reproduce the topological limit, which essentially fixes the product up to gauge equivalence.

Since we need the explicit expression for the associator we first include all Kontsevich-type

graphs without loops with arbitrary coefficients. Associativity up to terms proportional to

the ‘Jacobiator’ J = 3
2 [Θ,Θ] of the Poisson bracket then fixes all coefficients of the ansatz,

except for a contribution to the product that is itself proportional to J . (Obviously such a

term is not constrained by associativity, but it can be fixed by a symmetry argument.) Thus

we recover the known results of [22, 23] and, since we are working in a derivative expansion,

extend them to all orders in the constant part of the non-commutativity parameter.

The main focus will then lie on the verification of the cyclicity property. Using the

equations of motion for the background gauge field and the expression for the associator,

cyclicity also fixes the gauge part of the product. We thus recover the contribution from

a loop diagram in Kontsevich’s expansion with the same coefficient that was explicitly

calculated in [24]. In addition, we find a new term with a logarithmic derivative of the

Born-Infeld measure, which restores cyclicity up to terms with at least three derivatives on

the background fields Θ and G.

The paper is organized as follows: section 2 contains a discussion of the physical

relevance of the cyclicity property and a brief review of the results of [10]. In section 3 we

present the ansatz for the non-commutative product and derive the modifications that are

required by cyclicity. We conclude with a discussion of our results. The evaluation of the

associator is outlined in the appendix.

2. Physical relevance of the cyclicity property

The requirement of a cyclicity property has shown up on a fundamental level of string theory

in several places. In the context of open string field theory it constitutes a necessary prereq-

uisite to be able to write down an action which satisfies the BV master equation [25]. An

analogous statement is known for closed string field theory [26] and topological strings [27].

In this section we discuss why cyclicity of a non-commutative product is a desirable prop-

erty in an effective action arising from open string theory, regardless of the associativity

of the product. Our arguments will be based on the lagrangian formalism and the varia-

tional principle of a (space-time) quantum field theory and on modular invariance of open

string theory on the disk. These considerations are quite general and apply to the full

non-commutative product emerging from string theory.

As is well known, the space-time low energy effective action can be obtained by comput-

ing string amplitudes; the equations of motion for the string background fields emerge from

calculating the conformal anomaly. Both quantities should be related by the variational

principle in the low energy effective theory. Turning to the perspective of string theory, the

purpose of introducing a non-commutative product on the world-volume of a D-brane is to

sum up the effect of the background fields in an elegant way. We expect that both the ac-
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tion and the equation of motion can be expressed in terms of a non-commutative product,

which means that the antisymmetric background field Θ should only appear implicitly via

the product. What are the implications of such an assumption?

To illustrate these considerations we pick some interaction term, say
∫

Φ ◦ (Φ ◦ Φ).

Applying the variational principle in order to obtain the equations of motion, we obviously

obtain three terms. From SL(2,R) invariance of disk on-shell correlators and from the

fact that the properties of the product should not depend on the on-shell condition of the

functions (because of the lack of a proper metric dependence), we can expect that the trace

property of the integral holds, i.e. that
∫

(f ◦ g) ◦ h =

∫

f ◦ (g ◦ h) , (2.1)

as well as
∫

f ◦g =
∫

g ◦f . Then our variation takes the form 3
∫

δΦ◦ (Φ◦Φ).1 To separate

the contribution to the equation of motion we still have to remove all derivatives from the

variation δΦ. Doing this by partial integration would produce an explicit Θ dependence in

the equation of motion. Therefore, we infer that as a building block of a field theory the

product should obey
∫

f ◦ g =

∫

f · g . (2.2)

Sticking to our example, we obtain 3
∫

δΦ · (Φ◦Φ), which gives rise to Φ◦Φ in the equation

of motion. Therefore we expect that the low energy field theory obtained from open string

theory contains a (generically non-commutative and non-associative) product that satisfies

the cyclicity property (2.1) and (2.2).

In order to see how this works at first derivative order, and as a warm-up for the

calculation in the next section, we briefly review the non-commutative product found in [10].

It was obtained from the computation of off-shell correlators of an open string sigma model

with arbitrary, massless, on-shell background fields apart from the dilaton, which was set

to zero. In the bulk these are the background metric g and the antisymmetric B-field and

at the boundary it is the gauge field A. The product found in [10] to all orders in the

non-commutative parameter Θ and to first derivative order in the background fields is

f(x) ◦ g(x) = f ∗ g −
1

12
Θµρ∂ρΘ

νσ (∂µ∂νf ∗ ∂σg + ∂σf ∗ ∂µ∂νg) +O
(

(∂Θ)2, ∂2Θ
)

, (2.3)

where ‘∗’ denotes the Moyal contribution to the product,

f(x) ∗ g(x) = e
i
2
Θµν(x)∂uµ∂vν f(u) g(v)|u=v=x . (2.4)

Although formally the same, this represents a non-associative version of Kontsevich’s star

product formula since Θ is not assumed to define a Poisson structure. Associativity of (2.3)

is violated by terms proportional to the Jacobi identity

(f ◦ g) ◦ h− f ◦ (g ◦ h) =
1

6
(Θµσ∂σΘ

νρ +Θνσ∂σΘ
ρµ +Θρσ∂σΘ

µν) [∂µf ∗ ∂νg ∗ ∂ρh] +

+O(∂2), (2.5)

1Interactions with higher powers in the fields yield a sum over different positionings of brackets.
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where we introduced the abbreviation

[f ∗ g ∗ h] = e
i
2
Θµν(x)(∂uµ∂vν+∂uµ∂wν+∂vµ∂wν )f(u) g(v) h(w)|u=v=w=x , (2.6)

which denotes the Moyal-type triple product with all terms containing derivatives on Θ

removed. Imposing the generalized Maxwell equation (1.1), it was shown in [10] that the

product (2.3) satisfies the cyclicity relations (2.1) and (2.2) to first derivative order of the

background fields. The relevant integration measure is given by the Born-Infeld measure
∫

=
∫

dDx
√

det(g −F), which arises from the vacuum amplitude. This result confirms

our general arguments above and motivates us to look at further derivative corrections to

the product.

Before we go on to the next section and consider the second derivative order, we want

to make a comment concerning the Moyal-type triple product [f ∗g∗h]. It differs from both

f ∗ (g ∗ h) and (f ∗ g) ∗ h. Expressions like (2.6) are useful for the evaluation of derivative

expansions, since they automatically keep all orders in the undifferentiated Θ. We should

keep in mind, however, that we actually work with a double expansion because already the

Moyal-type contributions have to be understood as formal power series. We do not use

the conventional ~ to indicate this fact because our derivative expansion is a formal power

series in two variables, controlling the number of Θ’s and the number of derivatives acting

on them, respectively. Our formulas keep terms of arbitrary order in the first parameter

and we drop all terms that are cubic in the second one.

3. The non-associative product at second derivative order

In order to check for the cyclicity of the ‘◦’ product, we first need to evaluate the associator.

For this purpose it is sufficient to drop all Hochschild coboundaries, i.e. all terms that can

be gauged away by a transformation

f ◦ g → D−1(Df ◦ Dg) , D = 1 +Aµν∂µ∂ν + · · · , (3.1)

where D is some formally invertible differential operator. In particular, contributions to

f ◦ g of the form Xµν∂µf∂νg with symmetric X can be gauged away with Aµν = −Xµν .

We thus start with an ansatz for the product that contains expressions with arbitrary

coefficients for all Kontsevich-type graphs with two derivatives acting on Θ, as displayed

in figure 1.

Abbreviating derivatives acting on f and g with subscripts, we obtain the following

contributions to the product from Kontsevich-type graphs [1] that contain structures of
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Figure 1: Graphs with two derivatives acting on Θ.
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the form in figure 1A–1E:

f ◦ g = f ∗ g −
1

12
Θµγ∂γΘ

νρ(fµν ∗ gρ + fρ ∗ gµν) +
1

4
∂δΘ

µγ∂γΘ
νδ(A fµ ∗ gν)−

−
i

8
ΘµγΘνδ∂γ∂δΘ

ρλ(B1fµνρ ∗ gλ +B2fλ ∗ gµνρ +B3fµρ ∗ gνλ)− (3.2)

−
i

8
Θµγ∂γΘ

νδ∂δΘ
ρλ(C1fµρ ∗ gνλ + C2fνλ ∗ gµρ + C3fµνρ ∗ gλ + C4fλ ∗ gµνρ) +

+
1

16
(Θµγ∂γΘ

ρλ)(Θνδ∂δΘ
στ )(D1fµρνσ ∗ gλτ +D2fµρτ ∗ gλνσ +D3fλτ ∗ gµρνσ) .

There is no contribution from 1E because the only possible term Θδγ∂γΘ
µν∂δΘ

ρλfµρ ∗ gνλ
vanishes due to symmetry of µρ and νλ and antisymmetry of Θ. The contribution of

graph 1A can be gauged away and hence does not contribute to the associator (f ◦ g) ◦h−

f ◦ (g ◦ h). Nevertheless, it does contribute to the Kontsevich product with a coefficient

A = 1/6, which is exactly what we will need for cyclicity.

The evaluation of the associator in the appendix shows that consistency with the

topological limit fixes

B1 = −B2 =
1

6
, B3 = 0 , C2 − C1 =

1

3
, C3 = C4 = 0 , D1 = 2D2 = D3 =

1

18
.

(3.3)

The ambiguity C1 → C1−CJ and C2 → C2−CJ had to be expected because a contribution

of the form i
8CJJ

µνδ∂δΘ
ρσfµρ ∗ gνσ with

Jµνδ =
3

2
[Θ,Θ]µνδ = Θµγ∂γΘ

νδ +Θνγ∂γΘ
δµ +Θδγ∂γΘ

µν (3.4)

generates that shift and vanishes for J = 0 (the last term in (3.4) yields a contribution of

the form 1E that vanishes identically). The Kontsevich formula inherits invariance under

the parity transformation exchanging f and g and the sign of Θ from string theory via its

topological limit. This symmetry exchanges C1 with −C2, B1 with −B2, D1 with D3 and

leaves all other terms invariant, which implies that the appropriate value is C1 = −C2 =

−1/6. For the sake of generality we will, however, keep the C2 dependence in the following

expressions. The resulting product reads

f ◦ g = f ∗ g −
1

12
Θµγ∂γΘ

νρ
(

(fµν ∗ gρ + fρ ∗ gµν

)

+
1

4
∂δΘ

µγ∂γΘ
νδ
(

A fµ ∗ gν

)

−

−
i

48
ΘµγΘνδ∂γ∂δΘ

ρλ
(

fµνρ ∗ gλ − fλ ∗ gµνρ

)

−

−
i

8
Θµγ∂γΘ

νδ∂δΘ
ρλ
((

C2 −
1

3

)

fµρ ∗ gνλ + C2 fνλ ∗ gµρ

)

+

+
1

2

1

122
(Θµγ∂γΘ

ρλ)(Θνδ∂δΘ
στ )
(

fµρνσ ∗ gλτ + 2fµρτ ∗ gλνσ + fλτ ∗ gµρνσ

)

, (3.5)

and for the associator we obtain

(f ◦ g) ◦ h− f ◦ (g ◦ h) =

=
1

6
Jµνρ[fµ ∗ gν ∗ hρ] +

– 6 –



J
H
E
P
0
3
(
2
0
0
4
)
0
0
3

+2
( 1

12

)2
(Θµγ∂γΘ

ρλ)Jνστ
(

[fµρν ∗ gτ ∗ hλσ ] + [fµρν ∗ gλτ ∗ hσ] + [fνλ ∗ gµρτ ∗ hσ] +

+ [fν∗ gµρτ ∗ hλσ ] + 2[fµν ∗ gρτ ∗ hλσ] + 2[fλν ∗ gρτ ∗ hµσ] +

+ [fν ∗ gλτ ∗ hµρσ] + [fνλ ∗ gτ ∗ hµρσ]
)

+

+
i

24
Jµνδ∂δΘ

ρλ
(

3C2[fµρ ∗ gν ∗ hλ] + (3C2 − 1)[fµρ ∗ gλ ∗ hν ]−

− 3C2[fµ ∗ gρ ∗ hνλ]− (3C2 − 1)[fρ ∗ gµ ∗ hνλ] +

+ [fµ ∗ gνρ ∗ hλ] + [fλ ∗ gνρ ∗ hµ]
)

+

+
i

24
Θµγ∂γJ

νρλ
(

[fµν ∗ gρ ∗ hλ]− [fρ ∗ gλ ∗ hµν ]
)

, (3.6)

where each term contains the Jacobiator (3.4) as required by consistency with the topo-

logical limit.

Associativity up to surface terms. We will now check relation (2.1) for the prod-

uct (3.5) to second derivative order. To this end we integrate the associator (3.6) with the

measure,
√

det(g −F), and take the equations of motion for the background fields into

account. We will find that lines 3 – 5 of (3.6) vanish by themselves. The same holds for

lines 6 and 7. The second line can be pushed to second derivative order and cancels the

last two lines.

We start with the easiest piece, the terms proportional to (Θ∂Θ)J . In fact, these can

all be pushed into the third derivative order by partially integrating one of the derivatives

contracted with J , e.g.
∫

dDx
√

det(g −F)Θµγ∂γΘ
ρλJνστ [fµρν ∗ gτ ∗ hλσ] =

= s.t.−

∫

dDx∂ν

(

√

det(g −F)Jνστ
)

Θµγ∂γΘ
ρλ[fµρ ∗ gτ ∗ hλσ]−

−

∫

dDx(
√

det(g −F)Jνστ )∂ν(Θ
µγ∂γΘ

ρλ)[fµρ ∗ gτ ∗ hλσ ]−

−

∫

dDx(
√

det(g −F)Jνστ )Θµγ∂γΘ
ρλ∂∗ν [fµρ ∗ gτ ∗ hλσ]

≈ 0 + O(∂3) , (3.7)

where the derivative ∂∗ν acts only on the ‘stars’ in the product [fµρ ∗ gτ ∗ hλσ], since J is

totally antisymmetric. In a similar way the two lines containing the constant C2 vanish by

partially integrating twice.

The remaining second derivative terms in (3.6) are mixed up with the first derivative

order. Therefore let us concentrate on the latter and rewrite it as

1

6

∫

dDx
√

det(g −F)Jµνρ[fµ ∗ gν ∗ hρ] =

= s.t.−
1

6

∫

dDx ∂µ(
√

det(g −F)Jµνρ)[f ∗ gν ∗ hρ]− (3.8)

−
i

12

∫

dDx
√

det(g−F)Jµνρ∂µΘ
αβ([fα ∗ gνβ ∗ hρ]+[fα ∗ gν ∗ hρβ ]+[f ∗ gνα ∗ hρβ ]).
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The second line of eq. (3.8) can be shown to vanish because of the relation

∂µ(
√

det(g −F)Jµνρ) ≈ 0 , (3.9)

which holds by way of the equations of motion of the background field (1.1). This can be

seen as follows.

Expanding the Jacobiator we find

∂µ(
√

det(g −F)Jµνρ) ≈ (∂µ
√

det(g −F)) (Θνγ∂γΘ
ρµ +Θργ∂γΘ

µν) +

+
√

det(g −F) (∂µΘ
νγ∂γΘ

ρµ + ∂µΘ
ργ∂γΘ

µν) +

+
√

det(g −F) (Θνγ∂µ∂γΘ
ρµ +Θργ∂µ∂γΘ

µν) , (3.10)

where the second line vanishes identically because of the antisymmetry of Θ. Next we

exchange the partial derivatives in the last line of (3.10) and use the background field

equation (1.1), obtaining

∂µ(
√

det(g −F)Jµνρ)≈(∂µ
√

det(g −F)) (Θνγ∂γΘ
ρµ +Θργ∂γΘ

µν)− (3.11)

−
√

det(g −F)

(

Θνγ∂γ

(

∂µ
√

det(g −F) Θρµ 1
√

det(g −F)

)

+

+Θργ∂γ

(

∂µ
√

det(g−F))Θµν 1
√

det(g−F)

)

)

.

The terms where the partial derivative in the second and third lines acts on the Θ’s cancel

the contributions from the first line, while the other terms cancel again, owing to the

antisymmetry of the Θ’s. Thus we have established our claim (3.9), which shows that

from (3.8) only the last line

−
i

12

∫

dDx
√

det(g −F)Jµνρ∂µΘ
αβ([fα ∗ gνβ ∗hρ]+ [fα ∗ gν ∗hρβ ]+ [f ∗ gνα ∗hρβ ]) (3.12)

survives. It has to be considered together with other J∂Θ contributions in (3.6).

To this end we try to transform the last line of (3.6) into this form. As a first step we

rewrite it as

i

24

∫

dDx
√

det(g −F)Θµγ∂γJ
νρλ([fµν ∗ gρ ∗ hλ]− [fρ ∗ gλ ∗ hµν ]) ≈

≈
1

48

∫

dDx
√

det(g −F)JνρλΘµγ∂γΘ
αβ([fµνα ∗ gρβ ∗ hλ] + [fµνα ∗ gρ ∗ hλβ ] +

+ [fµν ∗ gρα ∗ hλβ ]− [fρα ∗ gλβ ∗ hµν ]−

− [fρα ∗ gλ ∗ hµνβ ]− [fρ ∗ gλα ∗ hµνβ ])−

−
i

24

∫

dDx
√

det(g −F)JνρλΘµγ([fµν ∗ gργ ∗ hλ] + [fµν ∗ gρ ∗ hλγ ]−

− [fργ ∗ gλ ∗ hµν ]− [fρ ∗ gλγ ∗ hµν ]) , (3.13)

where only the last expression cannot be written as surface term. Note that this is of first

derivative order. By partially integrating ∂ν we obtain

i

24

∫

dDx
√

det(g −F)Θµγ∂γJ
νρλ([fµν ∗ gρ ∗ hλ]− [fρ ∗ gλ ∗ hµν ]) ≈ (3.14)
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≈
i

24

∫

dDx
√

det(g −F)Jνρλ∂νΘ
µγ([fµ ∗ gργ ∗ hλ] + [fµ ∗ gρ ∗ hλγ ]−

− [fργ ∗ gλ ∗ hµ]− [fρ ∗ gλγ ∗ hµ])−

−
1

48

∫

dDx
√

det(g −F)JνρλΘµγ∂νΘ
αβ([fµα ∗ gργβ ∗ hλ] + [fµα ∗ gργ ∗ hλβ ] +

+ [fµ ∗ gργα ∗ hλβ] + [fµα ∗ gρβ ∗ hλγ ] +

+ [fµα ∗ gρ ∗ hλγβ ] + [fµ ∗ gρα ∗ hλγβ ]−

− [fργα ∗ gλβ ∗ hµ]− [fργα ∗ gλ ∗ hµβ ]−

− [fργ ∗ gλα ∗ hµβ ]− [fρα ∗ gλγβ ∗ hµ]−

− [fρα ∗ gλγ ∗ hµβ ]− [fρ ∗ gλγα ∗ hµβ ]) .

The last twelve terms in expression (3.14) cancel by partially integrating with respect to

∂γ , modulo higher derivative orders. Thus we are left with the four terms

i

24

∫

dDx
√

det(g −F)Jµνγ∂γΘ
ρλ([fρ∗gµλ∗hν ]+[fρ∗gµ∗hνλ]−[fµλ∗gν ∗hρ]−[fµ∗gνλ∗hρ]),

(3.15)

which we have brought into standard index ordering.

Now we are ready to take all remaining terms of (3.6) into account, i.e. expres-

sions (3.12), (3.15) and the seventh line of (3.6). If we rewrite (3.12) as

−
i

12

∫

dDx
√

det(g −F)Jµνγ∂γΘ
ρλ ×

×

(

[fρ ∗ gµλ ∗ hν ] +
1

2
[fρ ∗ gµ ∗ hνλ]−

1

2
[fµλ ∗ gν ∗ hρ]− [fµ ∗ gνλ ∗ hρ]

)

, (3.16)

and add (3.15) we obtain

−
i

24

∫

dDx
√

det(g −F)Jµνγ∂γΘ
ρλ([fλ ∗ gνρ ∗ hµ] + [fµ ∗ gνρ ∗ hλ]) . (3.17)

But this expression cancels exactly the next to last line in (3.6). So we have finally shown

that eq. (2.1) is fulfilled in second derivative order, i.e.
∫

x

(f ◦ g) ◦ h− f ◦ (g ◦ h) ≈ O(∂3) . (3.18)

In particular, we observe that the constant C2 remains undetermined.

Ordinary product up to surface terms. We proceed in checking whether the prod-

uct (3.5) reduces to the ordinary product under the integral. This task is greatly simplified

by observing that all terms with third or higher powers in Θ can be pushed to third deriva-

tive order. The linear Θ term was already shown to vanish by the background equation (1.1)

in [10], so that it remains to consider
∫

f ◦ g ≈

∫
(

f · g−
1

8
ΘµρΘνσfµν · gρσ−

1

12
Θµγ∂γΘ

νρ(fµν · gρ + fρ · gµν) +

+
A

4
∂δΘ

µγ∂γΘ
νδ fµ · gν

)

. (3.19)
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By the usual arguments expression (3.19) can be rewritten as

∫
(

f · g +
(6A− 1)

24
∂σΘ

µρ∂ρΘ
νσfµ · gν +

1

24
ΘµρΘνσ∂ρ∂σ(ln

√

det(g −F)) fµ · gν

)

.

(3.20)

Demanding that expression (3.20) becomes the ordinary product of functions requires A =

1/6; moreover, it shows that we have forgotten a contribution to the product, which is

capable of compensating the last term in (3.20). In fact, we involved only tree level and

loop diagrams in the product (3.5), which can be constructed with Θ. In particular, the

second term in (3.20) comes from a loop diagram in Kontsevich’s expansion. However,

the last term is not of this type and arises much in the same manner as the integration

measure (cf. [10]). Requiring relation (2.2) therefore determines the explicit dependence of

the product on loop contributions, i.e. it fixes the constant A and the factor in front of the

logarithmic term.

The product (3.5) therefore becomes

f ◦ g = f ∗ g −
1

12
Θµγ∂γΘ

νρ(fµν ∗ gρ + fρ ∗ gµν) +

+
1

24
∂σΘ

µρ∂ρΘ
νσfµ ∗ gν −

1

24
ΘµρΘνσ∂ρ∂σ(ln

√

det(g −F)) fµ ∗ gν −

−
i

8
Θµγ∂γΘ

νδ∂δΘ
ρλ
((

C2 −
1

3

)

fµρ ∗ gνλ + C2 fνλ ∗ gµρ

)

−

−
i

48
ΘµγΘνδ∂γ∂δΘ

ρλ (fµνρ ∗ gλ − fλ ∗ gµνρ)
1

2

1

122
×

× (Θµγ∂γΘ
ρλ)(Θνδ∂δΘ

στ )(fµρνσ ∗ gλτ + 2fµρτ ∗ gλνσ + fλτ ∗ gµρνσ) . (3.21)

The coefficient for the loop diagram, ∂Θ∂Θ, coincides with the result of ref. [24], whereas

the term ln
√

det(g −F) represents a new contribution to the product. One may wonder

whether this term spoils relation (3.18), but it can be eliminated by a gauge transforma-

tion (3.1) and thus has no effect on the associativity.

4. Conclusion

We have constructed a non-associative product that is cyclic with respect to the Born-Infeld

measure through second order in the derivative expansion. To this end we have evaluated

the associator for the product of three functions on the world-volume of a curved D-brane,

whose consistency with the topological limit yields the weights for an infinite number of

Kontsevich graphs as a by-product (cf. figure 1). Our product reproduces the Kontsevich

formula, including the gauge term, but has an additional contribution with a logarithmic

derivative of the measure that may diverge in the topological limit (note that a vanishing

divergence of the Poisson structure for some measure is required by cyclicity already in

the associative case [13]). In the context of effective low energy actions for open strings

in background fields cyclicity, rather than associativity, therefore seems to be the crucial

property.
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We conjecture that our results can be extended to arbitrary orders in the derivative

expansion, provided that one takes into account corrections from vacuum loops to the

Born-Infeld measure, see for instance [15]–[21]. It is well known that certain ambiguities

exist in the computation of the renormalized partition function [16], which are related to

the scheme dependence of the renormalization procedure. Some of these ambiguities may

be fixed by imposing the cyclicity condition using the open string partition function as

measure.

Since the non-associativity in the non-topological situation comes from the singularities

of the boundary OPEs, which we removed in [10] by subtraction, a proof of our conjecture

may require an analysis of the Ward identities and of the A∞ structure of open string field

theory [25, 28].

Recently, string-inspired superspace deformations have attracted a lot of interest [29]–

[33]. Such a deformation arises from considering open superstrings in a graviphoton back-

ground and can be directly calculated using a covariant quantum description of superstrings

with space-time supercoordinates [34]–[36]. Clearly, the starting point for these investiga-

tions is constant background fields. A corresponding investigation of non-constant back-

grounds is lacking at present. It would be interesting to see how Kontsevich’s formula

generalizes to a non-commutative product on superspace and whether non-associativity

is constrained in these cases by supersymmetry. Furthermore, it would be rewarding to

explore the physical aspects of curved brane geometries, such as brane stabilization due to

non-trivial background fluxes [37]–[40] in a supersymmetric setting.
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A. Evaluation of the associator

In order to compute the associator for a product that is compatible with the topological

limit, we start with the ansatz

f ◦ g = f ∗ g −
1

12
Θµγ∂γΘ

νρ(fµν ∗ gρ + fρ ∗ gµν)− (A.1)

−
i

8
ΘµγΘνδ∂γ∂δΘ

ρλ(B1fµνρ ∗ gλ +B2fλ ∗ gµνρ +B3fµρ ∗ gνλ)−

−
i

8
Θµγ∂γΘ

νδ∂δΘ
ρλ(C1fµρ ∗ gνλ + C2fνλ ∗ gµρ + C3fµνρ ∗ gλ + C4fλ ∗ gµνρ) +

+
1

16
(Θµγ∂γΘ

ρλ)(Θνδ∂δΘ
στ )(D1fµρνσ ∗ gλτ +D2fµρτ ∗ gλνσ +D3fλτ ∗ gµρνσ) ,

where we used the notation ∂µf = fµ for the derivatives acting on the inserted functions.

The coefficients Bi, Ci and Di are arbitrary constants and we dropped the gauge term with

coefficient A of (3.2). Compatibility with the case of a Poisson manifold implies that the
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associator of three functions

(f ◦ g) ◦ h− f ◦ (g ◦ h) = 0 +O(J, ∂J) (A.2)

only contains terms that are proportional to the Jacobiator J µρδ (3.4) or derivatives thereof.

Obviously the terms involving four Θ’s do not mix with the other terms in the second

derivative order. Inserting the different contibutions to the generalized star product into

the associator (A.2), we obtain the following (Θ∂Θ)2 terms from expanding the lowest

order part:

(f ∗ g) ∗ h− f ∗ (g ∗ h) =
1

32
(Θµγ∂γΘ

ρλ)(Θνδ∂δΘ
στ ) ([fρσ ∗ gλτ ∗ hµν ]− [fµν ∗ gρσ ∗ hλτ ]) ,

(A.3)

where square brackets around the product of three or more functions indicate that there

are no derivatives on Θ’s contained in theses expressions. Introducing the notation

f ◦1 g = −
1

12
Θµγ∂γΘ

νρ(fµν ∗ gρ + fρ ∗ gµν)

for the first derivative order we obtain the following terms

(f ◦1 g) ∗ h− f ∗ (g ◦1 h) = −
1

48
(Θµγ∂γΘ

ρλ)(Θνδ∂δΘ
στ )×

× ([fµρσ ∗ gλτ ∗ hν ] + [fλσ ∗ gµρτ ∗ hν ] + [fν ∗ gµρσ ∗ hλτ ] +

+ [fν ∗ gλσ ∗ hµρτ ])

(f ∗ g) ◦1 h− f ◦1 (g ∗ h) = −
1

48
(Θµγ∂γΘ

ρλ)(Θνδ∂δΘ
στ )×

× ([fµρσ ∗ gτ ∗ hνλ] + [fµσ ∗ gρτ ∗ hνλ] + [fρσ ∗ gµτ ∗ hνλ] +

+[fσ ∗ gµρτ ∗ hνλ]+[fλσ ∗ gτ ∗ hµνρ]+[fσ ∗ gλτ ∗ hµνρ] +

+[fµνρ ∗ gλσ ∗ hτ ]+[fµνρ ∗ gσ ∗ hλτ ]+[fνλ ∗ gµρσ ∗ hτ ] +

+[fνλ ∗ gµσ ∗ hρτ ]+[fνλ ∗ gρσ ∗ hµτ ]+[fνλ ∗ gσ ∗ hµρτ ])

(f ◦1 g) ◦1 h− f ◦1 (g ◦1 h) =

(

1

12

)2

(Θµγ∂γΘ
ρλ)(Θνδ∂δΘ

στ )×

× ([fµνρσ ∗ gτ ∗ hλ] + [fµνσ ∗ gρτ ∗ hλ] + [fρνσ ∗ gµτ ∗ hλ] +

+[fµρτ ∗ gνσ ∗ hλ]+[fµτ ∗ gρνσ ∗ hλ]+[fρτ ∗ gµνσ ∗ hλ]+

+[fνλσ ∗ gτ ∗ hµρ]+[fλτ ∗ gνσ ∗ hµρ]−[fµρ ∗ gνσ ∗ hλτ ]−

−[fµρ ∗ gτ ∗ hλνσ ]−[fλ ∗ gµνσ ∗ hρτ ]−[fλ ∗ gρνσ ∗ hµτ ]−

−[fλ ∗ gνσ ∗ hµρτ ]−[fλ ∗ gµτ ∗ hρνσ]−[fλ ∗ gρτ ∗ hµνσ ]−

− [fλ ∗ gτ ∗ hµνρσ]) , (A.4)

where we have used symmetry properties to cancel some contributions. Next, we have to

consider the contributions of the second derivative order in (A.1). We use the following

notation:

f ◦(Θ∂Θ)2 g = −
1

16
(Θµγ∂γΘ

ρλ)(Θνδ∂δΘ
στ )(D1fµρνσ ∗ gλτ +D2fµρτ ∗ gλνσ +D3fλτ ∗ gµρνσ) .
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The terms arising from this contribution are the only ones where the arbitrary constants

Di enter the calculations. We obtain

(f ◦(Θ∂Θ)2 g) ∗ h− f ∗ (g ◦(Θ∂Θ)2 h) =

=
1

16
(Θµγ∂γΘ

ρλ)(Θνδ∂δΘ
στ )(D1[fµρνσ ∗ gλτ ∗ h] +D2[fµρτ ∗ gλνσ ∗ h]

+D3[fλτ ∗ gµρνσ ∗ h]−D1[f ∗ gµρνσ ∗ hλτ ]−

−D2[f ∗ gµρτ ∗ hλνσ ]−D3[f ∗ gλτ ∗ hµρνσ]) (A.5)

and

(f ∗ g) ◦(Θ∂Θ)2 h− f ◦(Θ∂Θ)2 (g ∗ h) =

=
1

16
(Θµγ∂γΘ

ρλ)(D1[(f ∗ g)[µρνσ] ∗ hλτ ] +D2[(f ∗ g)[µρτ ] ∗ hλνσ ] +

+D3[(f ∗ g)λτ ∗ hµρνσ]−D1[fµρνσ ∗ (g ∗ h)[λτ ]]−

−D2[fµρτ ∗ (g ∗ h)[λνσ]]−D3[fλτ ∗ (g ∗ h)[µρνσ]]), (A.6)

where the indices in square brackets remind us that the derivatives act only on the inserted

functions but not on the ‘star’, since these terms are already of second derivative order. In

expanding these expressions we have to be careful, because of the symmetries mentioned

above. Putting (A.5) and (A.6) together we find that all terms containing undifferenti-

ated functions cancel. Comparing the result with (A.3) and (A.4), we observe that there

are only two contributions with four derivatives acting on f and two contributions with

four derivatives acting on g. From the index structure, antisymmetrization makes it clear

that terms containing four derivatives acting on the same inserted function can never be

absorbed into a term proportional to a Jacobiator. Thus these terms have to cancel

(Θµγ∂γΘ
ρλ)(Θνδ∂δΘ

στ ) [fµρνσ ∗ gλ ∗ hτ ]

(

( 1

12

)2
−

D1

8

)

= 0 ,

which fixes D1 to be D1 = 1/18. In the same way we obtain

D3 = D1 =
1

18
.

Now the remaining constant D2 has to be chosen in such a way that all terms combine to

expressions proportional to a Jacobiator. Let us collect all terms of the form [∂ 3f ∗∂g∗∂2h].

After rearranging the indices, and using the symmetries, we find

(1

9
−D2

)

[fµρτ ∗gλ ∗hνσ ]+
(1

9
+D2

)

[fµρσ ∗gν ∗hλτ ]+
2

9
[fµρν ∗gτ ∗hλσ]+

2

9
[fµρτ ∗gσ ∗hλν ] .

The first term has to vanish, since it cannot, because of the index structure, be expressed

as part of a Jacobiator. This fixes the remaining constant to be

D2 =
1

9
.
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With the same value the remaining three terms are cyclic in νστ and thus turn the prefactor

(Θνδ∂δΘ
στ ) into a full Jacobiator

( 1

12

)2
(Θµγ∂γΘ

ρλ)Jνστ 2 [fµρσ ∗ gν ∗ hλτ ] , (A.7)

where we have written the full expression with the correct numerical prefactor. Repeating

this procedure for the other terms gives the following contribution to the associator

(f ◦ g) ◦ h− f ◦ (g ◦ h) = 2
( 1

12

)2
(Θµγ∂γΘ

ρλ)Jνστ ×

×
(

[fµρν ∗ gτ ∗ hλσ ] + [fµρν ∗ gλτ ∗ hσ] + [fνλ ∗ gµρτ ∗ hσ ] +

+ [fν ∗ gµρτ ∗ hλσ ] + 2[fµν ∗ gρτ ∗ hλσ ] + 2[fλν ∗ gρτ ∗ hµσ] +

+ [fν ∗ gλτ ∗ hµρσ] + [fνλ ∗ gτ ∗ hµρσ]
)

. (A.8)

Now we turn to the next contributions arising from our ansatz (A.1). Let us consider

the part proportional to ΘΘ∂∂Θ and collect all terms in the associator that arise from

expanding lower order parts of the generalized star product

(f ∗ g) ∗ h− f ∗ (g ∗ h) =
i

16
ΘµγΘνδ∂γ∂δΘ

ρλ
(

[fµν ∗ gρ ∗ hλ]− [fρ ∗ gλ ∗ hµν ]
)

(f ◦1 g) ∗ h− f ∗ (g ◦1 h) =
i

24
ΘµγΘνδ∂γ∂δΘ

ρλ
(

[fνρ ∗ gλ ∗ hµ] + [fλ ∗ gνρ ∗ hµ]

+ [fµ ∗ gνρ ∗ hλ] + [fµ ∗ gλ ∗ hνρ]
)

. (A.9)

From the contributions at second derivative order, terms with undifferentiated functions

again do not survive, and we obtain

(f ◦∂∂Θ g) ∗ h+ (f ∗ g) ◦∂∂Θ h− f ∗ (g ◦∂∂Θ h)− f ◦∂∂Θ (g ∗ h) =

= −
i

8
ΘµγΘνδ∂γ∂δΘ

ρλ × (A.10)

×
(

C7 ([fµν ∗ gρ ∗ hλ] + 2 [fµρ ∗ gν ∗ hλ] + [fρ ∗ gµν ∗ hλ] + +2 [fν ∗ gµρ ∗ hλ])−

− C8 ([fλ ∗ gµν ∗ hρ] + 2 [fλ ∗ gµρ ∗ hν ] + [fλ ∗ gρ ∗ hµν ] + 2 [fλ ∗ gν ∗ hµρ]) +

+ C9 ([fµ ∗ gρ ∗ hνλ] + [fρ ∗ gµ ∗ hνλ]− [fµρ ∗ gν ∗ hλ]− [fµρ ∗ gλ ∗ hν ])
)

.

Collecting the terms with two derivatives acting on the insertion f , we find

i

16
ΘµγΘνδ∂γ∂δΘ

ρλ
(

(1− 2B1) [fµν ∗ gρ ∗ hλ] +
(2

3
+ 2B3

)

[fµρ ∗ gλ ∗ hν ] +

+ (4B1 − 2B3) [fµλ ∗ gν ∗ hρ]
)

. (A.11)

We observe that the three terms are cyclic in νρλ, provided the coefficients are equal; this

fixes the constants to be

B1 =
1

6
, B3 = 0 .
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Going through the same procedure for the terms with two derivatives acting on g, we find

i

16
ΘµγΘνδ∂γ∂δΘ

ρλ
(

(−1− 2B2) [fρ ∗ gλ ∗ hµν ]−
(2

3
+ 2B3

)

[fν ∗ gρ ∗ hµλ] +

+ (4B2 − 2B3)[fλ ∗ gν ∗ hµρ]
)

, (A.12)

which fixes the constants to

B2 = −
1

6
, B3 = 0 ,

and is thus compatible with the above values. With these values for B1 and B2 the

remaining terms cancel and we are left with the following result

i

24
ΘµγΘνδ∂γ∂δΘ

ρλ
(

[fµν ∗ gρ ∗ hλ] + [fµρ ∗ gλ ∗ hν ] + [fµλ ∗ gν ∗ hρ]−

− [fρ ∗ gλ ∗ hµν ]− [fν ∗ gρ ∗ hµλ]− [fλ ∗ gν ∗ hµρ]
)

. (A.13)

To turn these expressions into terms proportional to a Jacobiator, we rewrite

ΘµγΘνδ∂γ∂δΘ
ρλ = Θµγ∂γ(Θ

νδ∂δΘ
ρλ)−Θµγ∂γΘ

νδ∂δΘ
ρλ .

Then the first term on the right-hand side gives rise to

i

24
Θµγ∂γJ

νρλ([fµν ∗ gρ ∗ hλ]− [fρ ∗ gλ ∗ hµν ]) . (A.14)

The remaining terms proportional to Θ∂Θ∂Θ,

−
i

24
Θµγ∂γΘ

νδ∂δΘ
ρλ
(

[fµν ∗ gρ ∗ hλ] + [fµρ ∗ gλ ∗ hν ] + [fµλ ∗ gν ∗ hρ]−

− [fρ ∗ gλ ∗ hµν ]− [fν ∗ gρ ∗ hµλ]− [fλ ∗ gν ∗ hµρ]
)

, (A.15)

still have to be considered. To this end we follow the above procedure and collect the terms

proportional to Θ∂Θ∂Θ arising from lower derivative orders:

(f ◦1 g) ∗ h− f ∗ (g ◦1 h) =
i

24
Θµγ∂γΘ

νδ∂δΘ
ρλ
(

[fνρ ∗ gλ ∗ hµ] + [fλ ∗ gνρ ∗ hµ] + (A.16)

+ [fµ ∗ gνρ ∗ hλ] + [fµ ∗ gλ ∗ hνρ]
)

(f ∗ g) ◦1 h− f ◦1 (g ∗ h) =
i

24
Θµγ∂γΘ

νδ∂δΘ
ρλ
(

[fµρ ∗ gλ ∗ hν ] + [fρ ∗ gµλ ∗ hν ]−

− [fρ ∗ gλ ∗ hµν ] + [fµν ∗ gρ ∗ hλ]−

− [fν ∗ gµρ ∗ hλ]− [fν ∗ gρ ∗ hµλ]
)

−

−
i

24
Θγδ∂γΘ

µν∂δΘ
ρλ
(

[fµρ ∗ gν ∗ hλ] + [fµ ∗ gνρ ∗ hλ]−

− [fλ ∗ gµρ ∗ hν ]− [fλ ∗ gµ ∗ hνρ]
)

.

Note the different tensorial structures of these terms. Owing to the symmetries, the second

and third terms in the last parenthesis of (A.16) cancel. We rearrange the two terms in

– 15 –



J
H
E
P
0
3
(
2
0
0
4
)
0
0
3

the second equation of (A.16) proportional to Θγδ∂γΘ
µν∂δΘ

ρλ by

−
i

24
Θγδ∂γΘ

µν∂δΘ
ρλ
(

[fµρ ∗ gν ∗ hλ]− [fλ ∗ gµ ∗ hνρ]
)

= (A.17)

=
i

24
Jµνδ∂δΘ

ρλ
(

[fµρ ∗ gν ∗ hλ]− [fλ ∗ gµ ∗ hνρ]
)

−

−
i

24
Θµγ∂γΘ

νδ∂δΘ
ρλ
(

[fµρ ∗ gν ∗ hλ]−[fλ∗gµ∗hνρ]−[fνρ∗gµ∗hλ]+[fλ∗gν ∗hµρ]
)

.

Putting the pieces of (A.15), (A.16) and (A.17) together, we find:

i

24
Θµγ∂γΘ

νδ∂δΘ
ρλ
(

[fνρ ∗ gλ ∗ hµ] + [fνρ ∗ gµ ∗ hλ] + [fλ ∗ gνρ ∗ hµ] +

+ [fµ ∗ gνρ ∗ hλ] + [fρ ∗ gµλ ∗ hν ] + [fν ∗ gµλ ∗ hρ]

+ [fµ ∗ gλ ∗ hνρ] + [fλ ∗ gµ ∗ hνρ]
)

.

The terms with two derivatives acting on the insertion g can be recast to give Jacobiators;

thus the contribution of the lower derivative order (A.15) and (A.16) to the associator is

given by

i

24
Jµνδ∂δΘ

ρλ
(

[fµρ ∗ gν ∗ hλ] + [fλ ∗ gν ∗ hµρ] + [fµ ∗ gνρ ∗ hλ] + [fλ ∗ gνρ ∗ hµ]
)

+ (A.18)

+
i

24
Θµγ∂γΘ

νδ∂δΘ
ρλ
(

[fνρ ∗ gλ ∗ hµ] + [fνρ ∗ gµ ∗ hλ] + [fµ ∗ gλ ∗ hνρ] + [fλ ∗ gµ ∗ hνρ]
)

.

Now we compute the terms that arise from the second derivative order contribution to the

◦-product proportional to C1 and C2. Again terms involving undifferentiated functions

cancel and we obtain

(f ◦Θ∂Θ∂Θ g) ∗ h+ (f ∗ g) ◦Θ∂Θ∂Θ h− f ∗ (g ◦Θ∂Θ∂Θ h)− f ◦Θ∂Θ∂Θ (g ∗ h) =

= −
i

8
Θµγ∂γΘ

νδ∂δΘ
ρλ
(

C1([fµ ∗ gρ ∗ hνλ] + [fρ ∗ gµ ∗ hνλ])−

+ C2([fν ∗ gλ ∗ hµρ] + [fλ ∗ gν ∗ hµρ])−

− C1([fµρ ∗ gν ∗ hλ] + [fµρ ∗ gλ ∗ hν ])−

− C2([fνλ ∗ gµ ∗ hρ] + [fνλ ∗ gρ ∗ hµ])
)

.

In order to arrange the pieces from (A.18) and (A.19) in terms of Jacobiators we have to

impose the condition

C2 − C1 =
1

3

on the constants C1 and C2. Eventually we obtain

i

24
Jµνδ∂δΘ

ρλ
(

3C2[fµρ ∗ gν ∗ hλ] + (3C2 − 1)[fµρ ∗ gλ ∗ hν ] + [fµ ∗ gνρ ∗ hλ] +

+ [fλ ∗ gνρ ∗ hµ]− 3C2[fµ ∗ gρ ∗ hνλ]− (3C2 − 1)[fρ ∗ gµ ∗ hνλ]
)

. (A.19)

This already completes the calculations of the associator (A.2), since the terms proportional

to C3 and C4 cannot be recast into Jacobiators, in view of the symmetrization of µνρ. Thus
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the coefficients C3 and C4 have to be zero. Hence we obtain the final result

(f ◦ g) ◦ h− f ◦ (g ◦ h) =
1

6
Jµνρ[fµ ∗ gν ∗ hρ] + 2

(

1

12

)2

(Θµγ∂γΘ
ρλ)Jνστ ×

×
(

[fµρν ∗ gτ ∗ hλσ] + [fµρν ∗ gλτ ∗ hσ ] + [fνλ ∗ gµρτ ∗ hσ]

+ [fν ∗ gµρτ ∗ hλσ] + 2[fµν ∗ gρτ ∗ hλσ] + 2[fλν ∗ gρτ ∗ hµσ]

+ [fν ∗ gλτ ∗ hµρσ] + [fνλ ∗ gτ ∗ hµρσ]
)

+
i

24
Jµνδ∂δΘ

ρλ ×

×
(

3C2[fµρ ∗ gν ∗ hλ] + (3C2 − 1)[fµρ ∗ gλ ∗ hν ]−

− 3C2[fµ ∗ gρ ∗ hνλ]− (3C2 − 1)[fρ ∗ gµ ∗ hνλ] +

+ [fµ ∗ gνρ ∗ hλ] + [fλ ∗ gνρ ∗ hµ]
)

+

+
i

24
Θµγ∂γJ

νρλ
(

[fµν ∗ gρ ∗ hλ]− [fρ ∗ gλ ∗ hµν ]
)

. (A.20)

It contains one free parameter, namely C2. The product (A.1) then reads

f ◦ g = f ∗ g −
1

12
Θµγ∂γΘ

νρ
(

fµν ∗ gρ + fρ ∗ gµν

)

−

−
i

8
Θµγ∂γΘ

νδ∂δΘ
ρλ
((

C2 −
1

3

)

fµρ ∗ gνλ + C2 fνλ ∗ gµρ

)

−

−
i

48
ΘµγΘνδ∂γ∂δΘ

ρλ
(

fµνρ ∗ gλ − fλ ∗ gµνρ

)1

2

1

122
×

× (Θµγ∂γΘ
ρλ)(Θνδ∂δΘ

στ )
(

fµρνσ ∗ gλτ + 2fµρτ ∗ gλνσ + fλτ ∗ gµρνσ

)

,

and the coefficients coincide with those known from Kontsevich’s formula [1, 22, 23].
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